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AbstractÐThe Kocks±Mecking hybrid model for polycrystal deformation has been developed further, in
order to obtain an easy de®nition of polycrystalline behaviour, from knowledge of the single crystal stress±
strain curves. The hybrid model is a one-parameter theory that considers the ¯ow stress governed by total
dislocation density. This is the addition of the statistically stored dislocations, independent of the grain
size, and the geometrical dislocations, necessary to accommodate the deformation, and thus dependent on
the grain size (as proposed by Ashby). The condition for the onset of necking is used to determine the par-
ameters of the equation of the model. The analytical description of the resulting ¯ow law was used to ana-
lyse the tensile behaviour of copper sheets, with ®ve di�erent grain sizes, which were deformed at three
di�erent strain rates. 7 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Mechanical properties (constitutive equations); Dislocations (theory); Copper

1. INTRODUCTION

The plastic deformation of metals has been exten-

sively studied over the last decades: see, for
example, Refs [1±3]. The formulation of the most
recent models describing the ¯ow stress has been
developed by considering complex microstructures

present in cold-deformed metals [4, 5]. In this way,
several microstructural elements are taken into
account in these new physically based theories, as,

for example, the dislocation densities inside the
cells, the cell size, the cell structure and misorienta-
tion. Such models have to incorporate certain el-

ements of empiricism in order to cover phenomena,
which nevertheless needs further research.
Single-parameter models (see Refs [6±10], for

example) are still extensively used in the modelling
of metal plasticity. These models consider that the
¯ow stress is given by an equation of the type
t=t(r, _g, T ), where _g and T are the strain rate and

temperature, respectively, and r is the total dislo-
cation density, which represents the current struc-
ture. This equation needs to be complemented by

another that describes the structural evolution with
strain, at a given strain rate and temperature:
dr=dg � f�r, _g, T �: The evolution rate of the dislo-

cation density depends on hardening and on

dynamic recovery components: the former is of an

athermal nature and the latter is in¯uenced by ther-

mal activation. For low dislocation density, at the

beginning of deformation, the hardening rate

depends on the athermal nature of dislocation±dis-

location interaction, being independent of the strain

rate and temperature. When plastic deformation g
increases, the parameter r evolves to a saturation

value rs due to the dynamic recovery mechanisms

and the ¯ow stress also tends toward saturation

value ts. The usual formulation of the one-par-

ameter model leads to a Voce type equation to rep-

resent ¯ow behaviour [11, 12].

During tension of polycrystals, the macroscopic

¯ow stress s and strain e can be calculated from t
and g as follows: s=Mg, e=g/M, where M is a par-

ameter independent of the grain size (the Taylor

factor, for example). This parameter accounts for

the passage of the stress and strain in active slip

systems to macroscopic stress and strain [13±15].

Besides, in the case of polycrystals the evolution of

dislocation density with strain depends on the grain

size [16±23]. At a given strain value, when the grain

size decreases, the density of dislocation increases.

Also, the number of active slip systems can increase

[24]. Both e�ects promote the accommodation of

local plastic deformation, between adjacent grains.
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In fact, the accommodation process imposes mul-
tiple slip inside the grains and the total dislocation

density increases quickly, mainly at the beginning
of deformation, depending on the grain size. After
Ashby [25], the rate of dislocation storage during

polycrystal deformation depends on two terms. One
is equivalent to the stored dislocation term, in the
case of monocrystal. The other term deals with so-

called geometrical dislocations, which are necessary
in the accommodation of plastic deformation
between the grains of the polycrystal. This allows

formulation of the hybrid model for polycrystal de-
formation. Basically, this model considers two pro-
duction terms of dislocations, as mentioned above,
and an annihilation term.

This work focuses on the e�ects of the grain size
on the parameters of the hybrid model for polycrys-
tal deformation. The hybrid model is developed by

introducing a parameter that characterises the re-
lationship between the two production terms. The
in¯uence of the value of this parameter on the evol-

ution of the density of dislocations with defor-
mation, and on work-hardening behaviour, is
considered. We deduced and discussed the possi-

bility of using the condition of the onset of necking
as an easy determination for some parameters of
the hybrid model. An example of an experimental
study is shown: polycrystalline copper samples with

®ve di�erent grain sizes were deformed in tension,
using three di�erent strain rates.

2. ANALYTICAL DESCRIPTION OF THE FLOW
LAW

2.1. Hardening and dynamic recovery compounds of

microstructural evolution

The current stress t can be decomposed into two
additive contributions, related to lattice friction and

to the interaction between dislocations:

t � t0 � amb
���
r
p �1�

where b is the magnitude of the Burgers vector, m
the shear modulus, r the dislocation density and a
a numerical factor, which is mainly dependent on

the material and characterises the strength of dislo-
cation±dislocation interaction (a=0.5±1.0). In f.c.c.
metals, the value of t0 can be neglected, in order to

simplify analytical development.
The rate of stress variation, with the strain

y=dt/dg, can be deduced from the above equation,
as follows (see Refs [6±10], for example):

y � dt
dg
� amb

2
���
r
p dr

dg
: �2�

Stress t depends on the evolution of dislocation
density with deformation. This evolution is the
result of competition between the production rate
and the annihilation rate of dislocations (see Refs

[6±10, 26±30], for example):

dr
dg
�
�

dr
dg

��
ÿ
�

dr
dg

�ÿ
: �3�

Both terms in this equation can be deduced from

the physical mechanisms of deformation. In the
case of monocrystals, the production term is associ-
ated with athermal storage (independent of the tem-

perature and strain rate) of moving dislocations
that become immobilised, after travelling the mean
free path l. This term is proportional to the average

spacing between dislocations
���
r
p �l � b=

����
r
p

, b being
the constant of proportionalityÐb 1 100) and it is
possible to de®ne a constant of proportionality k1
between (dr/dg )+ and

���
r
p

such that k1 � 1=bb:
The annihilation rate, associated to dynamic

recovery (stage III), is assumed to be linear in r (k
being the constant of proportionality). As the an-

nihilation event occurs when dislocations of oppo-
site signs pass at a distance R apart, k can be
considered as being kA 2R/b [8, 9, 26]. The single

parameter theory describes the thermally activated
softening term (dr/dg )ÿ as a function of the strain
rate _g and the absolute temperature at a given

structure S, which can be represented by the dislo-
cation density r: (dr/dg )ÿ=f (S, _g, T )=f (r, _g, T ).
So, it is possible to form the following equations:�

dr
dg

��
� 1

bl
�

���
r
p
bb
� k1

���
r
p �

dr
dg

�ÿ
� kr: �4�

In the case of polycrystals, the dislocation density
at a constant strain value depends on the grain size.
The dislocation model, proposed by Ashby [25],
allows for the separation of the strength contri-

bution to those that are independent and dependent
of the grain size. Thus, the rate of stored dislo-
cation is the addition of two terms:

�
dr
dg

��
�
�

dr
dg

�S

�
�

dr
dg

�G

: �5�

The ®rst term concerns so-called statistical dislo-
cations and is equivalent to the stored dislocations
term in the case of monocrystal [®rst part of

equation (3)]. The second term concerns geometrical
dislocations in order to accommodate the plastic de-
formation between grains of polycrystals:

�
dr
dg

�G

� 1

blG
� c

bD
� k2 �6�

where lG is the mean free path of the geometrical
dislocations, which is constant for each grain size D

and proportional to it (through the constant c,
being c1 1 for copper).
Finally, the evolution of the dislocation density

with deformation can be written as follows:
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dr
dg
� k1

���
r
p � k2 ÿ kr: �7�

According to this equation, the dislocation density
evolves towards a steady state value rsat for which

(dr/dg )=0, such as:

�������
rsat

p � k1
k

0@1� �������������������
1� 4

kk2

k21

s 1A
2

� k1
k

�1� ��������������
1� 4x
p �
2

�8�

x being a value where:

x � kk2

k21
: �9�

The term x=k � k2=k
2
1 is not dependent on dislo-

cation annihilation and thus it independently
characterises the relative production of geometrical
dislocations. For monocrystals, there is no pro-

duction of geometrical dislocations, k2=0, and con-
sequently, x = 0. In coarse-grain size polycrystals,
the geometrical dislocations play a minor role in de-
formation and k24 0 (so, x4 0).

With regard to the annihilation parameter k, we
account for the possibility that the value of k
depends on the grain size. In fact, the annihilation

rate can be in¯uenced by the arrangement of dislo-
cations (see Ref. [26], for example). This one is a
function of the grain size as has been studied pre-

viously [16±23]. In this context, k will be called kV

for deformation microstructures typical of mono-
crystals. For coarse-grain size polycrystals, it is

expected that the value of the annihilation par-
ameter k is close to kV.
Therefore, equation (8) can now be written as fol-

lows:

�������
rsat

p �
�������
rV

sat

q �1� ��������������
1� 4x
p �
2

: �10�

In this equation,
�������
rV

sat

p � k1=k
V represents the satur-

ation dislocation density, in the case of monocrys-
tals or coarse-grain size polycrystals (as above

mentioned), i.e. in the absence of representative
density of geometrical dislocations.

2.2. The relationship between geometrical and
statistical dislocation densities

Equations (4) and (6) allow us to represent both
the statistical and geometrical dislocation densities
in the grain, as a function of the strain, as follows

(neglecting dislocation density at the beginning of
deformation, in order to simplify the equation):

log rS � 2 log k1 � 2 log gÿ 2 log 2

log rG � 2 log k1 � log g� log
x

k
: �11�

It is now possible to determine the evolution of the

ratio between the cumulated production of geo-
metrical and statistical dislocation densities during
deformation by an equation of the form:

log

 
rG

rS

!
� ÿlog g� log

�
4
x

k

�
: �12�

So, the knowledge of the value �x=k� � �k2=k21� for
a given grain size, which is independent of dislo-

Fig. 1. Evolution of the ratio �r=rV
sat), between the dislo-

cation density and the respective saturation value in the
absence of geometrical dislocations, as a function of
�kVg=3�, for several x values: (a) di�erent x values without
change in the ratio (kV/k = 1); (b) two x values, di�erent
to zero; for each one, three di�erent (kV/k ) values are
considered (kV/k = 0.9, 1.0 and 1.1). Note: the value of
�kgV=3� is close to the shear strain g for copper; in this
case, the k values are close to 3 (Table 2 shows that Mk is
between 8.50 and 9.94, the Taylor factor being M = 3.06
for a material without texture), as discussed in the text.
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cation annihilation as mentioned above, allows for
the determination of the relative evolution of geo-

metrical and statistical dislocation densities.
Through the integration of equation (7) it is poss-

ible to describe the evolution of the ratio r=rV
sat

(between the dislocation density r and respective
saturation value rV

sat, where geometrical dislocations
are absent) as a function of the shear strain g in the

grain, by the equation (neglecting the initial dislo-
cation density, in order to simplify the equation):

8>>>><>>>>:
1��������������

1� 4x
p ln

26664
��������
r
rV

sat

r
k

kV
�1� ��������������

1� 4x
p � � 2x��������

r
rV

sat

r
k

kV
�1ÿ ��������������

1� 4x
p � � 2x

37775

ÿ ln

24ÿ  ��������
r
rV

sat

r
k

kV

1���
x
p

!2

�
��������
r
rV

sat

r
k

kV

1

x
� 1

35
9>>>>=>>>>;
�
kV

k

�
� kVg:

�13�

Examples of the results of this equation are shown in

Figs 1(a) and (b). It is possible to see in this ®gure
that the geometrical dislocation density shows its im-

portance long after the respective density becomes
much less than statistical dislocation. Considering

that k and consequently the value of the ratio kV/k
depends on the grain size, the curves in Fig. 1(b)

cross each other and the corresponding stress evolves

similarly with deformation. This can be an additional
reason for the curves crossing, which is sometimes

observed when the grain size is changed. A common
explanation considers texture e�ects [31, 32].

2.3. The hybrid model and the Voce equation

The relationship between the shear strain and
stress and the equivalent strain or stress, at the
grain level, is assumed by using a type Taylor factor
M. The passage from monocrystal to polycrystal

needs the use of a mean (for all grains) Taylor fac-
tor M, to relate macroscopic to the local stress and
strain s=Mt and e=g/M. Equation (1) allows us

to write (neglecting s0=Mt0):

s �Mamb
���
r
p

: �14�
The rate of the variation of macroscopic stress with
strain Y=ds/de=M 2y=M 2(dt/dg ), can be

deduced from equation (2):

Y � ds
de
� M2amb

2
���
r
p dr

dg
� M2amb

2
���
r
p �k1 ���

r
p � k2 ÿ kr�:

�15�
Consequently, the stress evolves towards a steady
state value as follows:

ssat �Mamb
k1
k

�1� ��������������
1� 4x
p �
2

: �16�

The integration of equation (15) allows us to write:

eÿ ec �

�
1

Mk

�
8>>>>>>><>>>>>>>:

1��������������
1� 4x
p ln

26664
�
ÿ s

ssat

�1� ��������������
1� 4x
p � � 1ÿ ��������������

1� 4x
p ��

ÿ sc

ssat

�1� ��������������
1� 4x
p � � 1� ��������������

1� 4x
p �

�
ÿ s

ssat

�1� ��������������
1� 4x
p � � 1� ��������������

1� 4x
p ��

ÿ sc

ssat

�1� ��������������
1� 4x
p � � 1ÿ ��������������

1� 4x
p �

37775

ÿ ln

26666664
ÿ
 

s
ssat

1� ��������������
1� 4x
p

2

!2

� s
ssat

1� ��������������
1� 4x
p

2
� x

ÿ
 

sc

ssat

1� ��������������
1� 4x
p

2

!2

� sc

ssat

1� ��������������
1� 4x
p

2
� x

37777775

9>>>>>>>=>>>>>>>;
�17�

where ec and sc are the integration constants, corre-
sponding to a point on the tensile curve.

When the geometrical dislocations can be neg-
lected, the above equation becomes the Voce
equation (x=0) as follows:

s � sV
sat ÿ �sV

sat ÿ sc� exp

�
ÿ MkV

2
�eÿ ec�

�
: �18�

In this equation, the value kV can be di�erent from
those of k, as in the case of equation (14), which
depends on the structure and consequently on the
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grain size. In fact, the rate of dynamic recovery
may be dependent on the type of dislocation struc-
ture [5, 26, 33, 34], which in turn depends on the

grain size [24]. Other parameters such as tempera-
ture and strain rate also in¯uence its value.
The linear relationship in the Y(=ds/de )=f(s )

diagram, which characterises the Voce equation,
can be obtained as follows:

Y � Y0

�
1ÿ s

sV
sat

�
�19�

where Y0=M 2yII, the quantity yII being related to
the stage II hardening of monocrystals. It is recog-
nised that yII and consequently Y0 are independent

of the strain rate and depend on the temperature
through the temperature dependence of m [6±10].
An important feature of the dislocation storage is
its athermal character:

Y0 �M2yII �M2 amb
2

k1: �20�

It is now possible to express the saturation stress

sV
sat for coarse-grained material, which obeys the

Voce equation (x = 0), as a function of Y0 and
MkV:

sV
sat �

2Y0

MkV
�Mamb

k1
kV
: �21�

In the general case of ®ne-grained materials, the

saturation stress ssat [equation (13)] can be
expressed as a function of Y0, Mk and x as follows:

ssat � Y0�1�
��������������
1� 4x
p �
Mk

� sV
sat

kV

k

�1� ��������������
1� 4x
p �
2

: �22�

Fig. 2. Y/Y0 vs s=sV
sat diagram for: (a) kV/k = 1, with

di�erent x values; (b) x=0.05, with di�erent kV/k values.
Fig. 3. �s=sV

sat��Y=Y0� vs s=sV
sat diagram for the same cases

as in Fig. 2: (a) kV/k=1, with di�erent x values; (b) x=
0.05, with di�erent kV/k values.
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The value of Mk can be determined from equation
(18):

1

Mk
� sV

sat

2Y0

kV

k
: �23�

It is now possible to write equation (17) as follows:

eÿ ec �
�
sV

sat

2Y0

kV

k

�
8>>>>><>>>>>:

1��������������
1� 4x
p ln

26664
�
ÿ 2

s
sV

sat

k

kV
� 1ÿ ��������������

1� 4x
p ��

ÿ 2
sc

sV
sat

k

kV
� 1� ��������������

1� 4x
p �

�
ÿ 2

s
sV

sat

k

kV
� 1� ��������������

1� 4x
p ��

ÿ 2
sc

sV
sat

k

kV
� 1ÿ ��������������

1� 4x
p �

37775

ÿ ln

266664
ÿ
�

s
sV

sat

k

kV

�2

� s
sV

sat

k

kV
� x

ÿ
�

sc

sV
sat

k

kV

�2

� sc

sV
sat

k

kV
� x

377775
9>>>>>=>>>>>;
: �24�

Also, from equations (20) and (22) and by utilising
equation (15), it is possible to write:

Y
Y0
� 1� 2x

1� ��������������
1� 4x
p 1

s
ssat

ÿ s
ssat

1� ��������������
1� 4x
p

2

Y
Y0
� 1� x

s
sV

sat

kV

k
ÿ s

sV
sat

k

kV
: �25�

It is now possible to determine the evolution of the

work-hardening rate as a function of the stress.
This is shown in Figs 2(a) and (b) for several cases
of the values of x and kV/k. When x increases, the

stress value, for which work hardening attains Y0,
also increases. This e�ect is seen up to saturation
stress: whatever the stress value, the Y values are

greater for larger x values. For the same x value,
the saturation stress is determined by the relative
value kV/k.

An alternative way to analyse work-hardening
behaviour is by using a diagram type sY=f(s ) as
follows:

s
ssat

Y
Y0
� 2x

1� ��������������
1� 4x
p � s

ssat

ÿ
�

s
ssat

�2 1� ��������������
1� 4x
p

2

s
sV

sat

Y
Y0
� x

kV

k
� s

sV
sat

ÿ
� s
sV

sat

�2 k

kV
: �26�

In Figs 3(a) and (b), the results corresponding to Figs
2(a) and (b) are shown. For an x value that di�ers

from zero, the origin of these curves is vertically dis-
placed, and the curves for small grain sizes can cross

the large grain size curve, for low kV/k values.

2.4. The condition for the onset of necking

In the knowledge that at the beginning of necking

the following condition can be veri®ed:��
1

s
Y

�
� 1

�
necking

�27�

it is possible to determine the value sV
sat as:

sV
sat � sV

n

MkV � 2

MkV
�28�

where sV
n is the stress at the instability point corre-

sponding to the maximum load. If we consider that

the constants of equation (18) represent the stress
and strain at this point, the Voce equation can now
be written in a speci®c formulation, as follows:

s � sV
n

�
MkV � 2

MkV
ÿ 2

MkV
exp

�
ÿ MkV

2
�eÿ eV

n �
��
:

�29�
This is an equation, with a physical basis, to

describe the mechanical behaviour of a material
with large grain size, for which it is necessary to
know the values of sV

n , e
V
n and MkV. The values of

sV
n and eV

n can be directly obtained from the exper-
imental tensile curves. As the texture evolution can
be neglected during deformation for values up to
approximately 0.35, the value of MkV can be con-

sidered as being constant during a tensile test.
Besides, the value of MkV can be related to eV

n

from equation (25):

eV
n �

2

MkV
ln

�
MkV � 2

2

�
: �30�

Therefore, knowledge of the value of sV
n and eV

n

allows us to determine the constants of equation
(18) and consequently to plot the curve given by
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this equation, which is suitable for f.c.c. materials
of coarse-grained size.

In the case of ®ne-grained materials, the geo-
metrical dislocations cannot be neglected and it is
not possible to ®nd an easy method to determine

the parameters of equation (17). However,
equations (14), (15) and (21) allow us to obtain the
following relationship:

2

Mk
�x
�

2ssat

sn�1�
��������������
1� 4x
p �

�2
� 2ssat

sn�1�
��������������
1� 4x
p � ÿ 1

� x

�
sV

sat

sn

�2�
kV

k

�2

�s
V
sat

sn

kV

k
ÿ 1: �31�

Also, from equation (15) and taking into account
equations (20) and (22), it is possible to write:

s�Y � Y0� � 2ssat

1� ��������������
1� 4x
p ���

x
p � sV

sat

kV

k

���
x
p
: �32�

So, knowing the values of Y0 and sV
sat obtained

from the results of coarse-grained material (or alter-
natively the knowledge of monocrystal behaviour,
through y0 and tV

sat, and the M factor) and plotting

the Y�ds=de� � f �s� diagram of the tensile curve for
a ®ne-grained material, it is possible to determine,
by using the above two equations (31) and (32), the

corresponding values of
���
x
p

and kV/k, as follows:

���
x
p �

s�Y � Y0�
sn

ÿ s�Y � Y0�
2Y0

1ÿ
�
s�Y � Y0�

sV
sat

�2
�33�

kV

k
� s�Y � Y0�

sV
sat

1���
x
p : �34�

In Fig. 4 the parameters used in these equations are
represented. This is an easy way to determine the
importance of the geometrical dislocations, when
the behaviour of a coarse-grained material is

known. Another way is to ®t the experimental ten-
sile curve through equation (17).
In conclusion, the behaviour of a coarse-grained

material can be deduced from the values of sV
n and

eV
n obtained at the maximum load in tension, in par-
ticular the values of MkV and sV

sat [equations (28),

(30) and also using equation (21) to determine Y0].
For other grain sizes (less than approximately
100 mm), the values of x and kV/k can be deter-

mined from equations (33) and (34). This is by

Fig. 5. Examples of true stress s±true strain e curves for:
(a) all the grain sizes studied (15, 40, 70, 175 and 350 mm),
at a strain rate _e=10ÿ2/s; (b) two grain sizes (15 and
350 mm) and the three strain rates studied �_e=10ÿ4, 10ÿ2

and 1/s).
Fig. 4. Y vs s diagram representing parameters of equations

(33) and (34), such as: s(Y=Y0), sV
n , sn � sV

sat, ssat.
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tracing the tensile curve for the corresponding grain
size and knowing the mechanical behaviour of the

same material of coarse grain size, or even the
behaviour of the monocrystal.

3. GRAIN SIZE EFFECT ON THE WORK-
HARDENING BEHAVIOUR OF COPPER

3.1. Experiments

Oxygen-free high purity copper (99.95% Cu)
sheet, 5 mm thick, previously cold-rolled and
annealed, was used in this research. The grains were

equiaxed with 15 mm grain size. The sheet was sub-
sequently annealed at di�erent temperatures, in
order to induce secondary recrystallisation. Four
grain sizes were obtained, depending on the tem-

perature, namely 40, 70, 175 and 350 mm for 400,
500, 650 and 8008C, respectively, for an annealing
time of about 1.5 h. Thermal processing was carried

out on tensile specimens in a 10ÿ6 Torr vacuum, in
order to avoid any hardening during subsequent

mechanical operations.
Di�erent texture measurements were performed

for the samples of the smallest and the largest grain

size, in order to check the in¯uence of subsequent
annealing. For every case a weak rolling texture
was found. The quantitative comparison of pole

®gures is rather di�cult, owing to the di�erent size
of grains compared with the spot size. From these
measurements, it must nevertheless be concluded

that the same crystallographic orientations are pre-
sent in both cases and that no di�ering orientations
appear. This result, which seems to be valid for the
range of grain sizes studied in this work, is consist-

ent with previous results on copper [24].
The tensile tests were performed along the trans-

verse direction with respect to the rolling direction

on ISO 50 samples at room temperature. Three in-
itial von Mises strain rates, close to 10ÿ4, 10ÿ2 and
1/s, were used. A 50-mm strain gauge was used in

order to measure the extension. A microcomputer
was interfaced with the tensile test machine and the
signals from load and extension were converted and

stored through computer software, in the form of
true stress s±true strain e. For further processing of
these data, computer software was developed, to
allow outputs of s=f(e ) and Y(=ds/de )=f(s ).

3.2. Results

Examples of true stress s±true strain e curves are
shown in Fig. 5(a). In this ®gure it is possible to

compare the e�ects of the grain size on the level of
the curves: the smaller the grain, the greater the
stress at each strain. Figure 5(b) shows examples of

tensile curves at di�erent strain rates.
Figure 6(a) shows the evolution of the work-

hardening ratio Y as a function of the stress s. At

very low stress, the work hardening is higher as the
grain size decreases, for a given strain rate. At
greater stress values, higher hardening is still
observed for the smaller grain sizes. When changing

the strain rate, at a given grain size, the lines start
at the same point, and they become slightly further
apart for higher stress [Fig. 6(b)].

3.3. Discussion

As was previously discussed [24], the in¯uence of
geometrical dislocations on polycrystal behaviour

drops drastically for copper grain sizes, which are
larger than approximately 100 mm. The present
stress±strain curves con®rm these results. In fact,

the Y=f(s ) curves for 350 mm grain size are quite
linear and tend to cross the vertical axes at a ®nite
value Y0, typical when geometrical dislocations are
not considered. So, equations (15) and (16) can be

Fig. 6. As Fig. 5, but for the evolution of the work-hard-
ening ratio Y as a function of the stress s.
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used to describe the behaviour of larger grain size

(350 mm) copper sheets.

For the three strain rates, the values of MkV and

sV
sat were determined using the results of 350 mm

grain size. For that, equation (18) was ®tted to the

experimental results s=f(e ). Equation (21) allowed

us to determine Y0. This value and the value of sV
sat

were used in equation (19) to compare them with

experimental results Y=f(s ). A good ®tting was

con®rmed for all cases.

Similar results for MkV and sV
sat were obtained

using equations (30) and (28) (deduced from the

condition of the onset of necking) and the exper-

imental values of sn and en. As shown in Table 1,

the values are quite similar, which means that for a

large grain size, the complete tensile curve can be

deduced from the knowledge of sn and en and by

using equation (29).

The value of Y0 is approximately the same, what-

ever the case of strain rate, which agrees with its

independence of the strain rate (and temperature).

This value is equal to 1600 MPa, similar to the

results previously mentioned by other authors [6, 8].

The values of sV
sat, and consequently MkV, depend

on the strain rate. This study is not within the

objectives of the present work, but it is possible to

observe that this agrees with what can be expected

[5, 28, 33, 34]: sV
sat and _e are quite linear in a logar-

ithmic representation.

For smaller grain sizes, the behaviour cannot be

described by the Voce equation and so the

equations of the hybrid model must be utilised. In

the present case, the values of x and Mk were

obtained by ®tting equation (24) to the experimen-

tal curves and using the values of Y0 and sV
sat men-

tioned in Table 1. In Fig. 7 some examples of the

comparison between experimental and ®tted curves

are shown. The values of x and Mk obtained by

this ®tting are also shown in Table 2. A good ap-

proximation of the x values is obtained by using

equation (33) (deduced from the condition of the

onset of necking), when the values of s(Y=Y0) and

the coarse-grain size behaviour (Y0 and sV
sat� are

known. The value of s�Y � Y0� can be determined

from the curves Y=f(s ) (Fig. 6) or alternatively as

schematically shown in Fig. 8. The results obtained

in this way are also shown in Table 2.

To our knowledge there are no written results

that concern the in¯uence of the grain size on the

annihilation rate of dislocation, through the value

of k. This value can be determined by taking M as

a constant. The present results show that, in this

approach, k (or more precisely Mk ) is only slightly

in¯uenced by the grain size, when compared with

the in¯uence of the strain rate on the range 10ÿ4 to

1/s. This is probably due to a similar internal struc-

ture of the cell boundaries, which must be of the

same type [24]. Moreover, existing di�erences in the

Table 1. Results for the case of large grain size (350 mm), for all the strain rates studied �_e=10ÿ4, 10ÿ2 and 1/s), showing the experimental
stress �sV

n � and strain �eV
n � values at necking and the parameters of the Voce equation MkV, sV

sat and Y0

Grain size
(mm)

Strain rate
(sÿ1)

sn
(MPa)

en MkV [equation
(18)]

sV
sat [equation

(18)]
(MPa)

MkV [equation
(30)]

sV
sat [equation

(28)]
(MPa)

Y0

(MPa)

350 10ÿ4 266 0.360 10.01 320 9.93 320 1600
10ÿ2 285 0.374 9.28 345 9.24 347

1 302 0.387 8.65 370 8.64 372

Table 2. Results for the case of smaller grain sizes (15, 40, 70 and 175 mm), for all the strain rates studied �_e=10ÿ4, 10ÿ2 and 1/s), show-
ing: the experimental stress (sn) and strain (en) values at necking and the other parameters of equations (24), (25) and (26) such as x and

kV/k. The values of s(Y=Y0), ssat and Mk are also shown

Grain size (mm) Strain rate (sÿ1) sn (MPa) en s (Y=Y0) (MPa) xa xb x/kc ssat (MPa) Mk

15 10ÿ4 324 0.361 106 0.106 0.109 0.032 357 9.81
10ÿ2 349 0.390 109 0.096 0.093 0.032 383 9.10

1 352 0.393 112 0.088 0.097 0.031 407 8.50

40 10ÿ4 305 0.392 78 0.059 0.061 0.018 341 9.92
10ÿ2 326 0.395 81 0.055 0.056 0.018 366 9.19

1 336 0.381 84 0.050 0.055 0.018 393 8.54

70 10ÿ4 295 0.388 64 0.039 0.042 0.012 335 9.92
10ÿ2 321 0.405 66 0.036 0.037 0.012 360 9.21

1 325 0.395 69 0.034 0.039 0.012 387 8.55

175 10ÿ4 277 0.364 41 0.016 0.018 0.005 327 9.94
10ÿ2 300 0.383 44 0.016 0.018 0.005 353 9.21

1 314 0.387 45 0.015 0.017 0.005 378 8.59

a Values deduced from equation (33).
b Values corresponding to the best ®t of the analytical curves, deduced from equation (24), to the experimental curves.
c Values deduced considering M=3.06.
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k value can be hidden by changes in the M par-
ameter value. Nevertheless, the grain growth

annealing treatment can slightly change this par-
ameter, which will re¯ect on the value of the an-
nihilation parameter. However, it is not the purpose

of this paper to discuss the in¯uence of the type of
dislocation microstructure on the annihilation rate.
The values of x/k increase with the decreasing

grain size and they do not depend on the strain rate
(Table 2). This is an expected result, as x/k rep-
resents in some way a measurement of the geometri-

cal dislocation density, which, for a given material,
is solely dependent on the grain size, as follows:

x

k
� k2

k21
� cbb2

D
: �35�

In Fig. 9 the evolution of x/k values as a function
of the grain size is shown. The relationship between

x/k and (1/D ) corroborates the ability of the geo-
metrical necessary dislocation (as proposed by
Ashby) to take into account the grain size in poly-

crystalline copper, in the range of grain sizes con-
sidered in this work. The slope of the linear ®tting
to the mean experimental points is in agreement

with the values indicated in the literature for c and
b.

Fig. 7. Examples of ®tting of the experimental results for all the grain sizes studied (15, 40, 70, 175 and
350 mm), by using equation (24) for: (a) _e=10ÿ4/s; (b) _e=10ÿ2/s; and (c) _e=1/s.
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4. CONCLUSION

Further development of the hybrid model was

carried out in order to get a better understanding of

the relative in¯uence of statistically stored r S and

geometrical rG dislocations (introduced by Ashby)

on the stress±strain curves. The evolution of the

ratio between the cumulated production of both

types of dislocation densities with deformation g is

as follows:

log

 
rG

rS

!
� ÿlog g� log�4k2=k21�

� ÿlog g� log�4x=k�

where

x � kk2

k21
:

The values k1 and k2 de®ne the rate of dislocation
production r S and rG, respectively, and k is a
value that de®nes the rate of dislocation annihil-

ation at each temperature, strain rate and grain
size. The parameter x relates the values of k, k1 and
k2, the de®nition of which is made by the equation

that characterises the evolution of the total dislo-
cation density r with deformation g as follows:

dr
dg
� k1

���
r
p � k2 ÿ kr:

By integrating the above equation, it was possible
to conclude that the geometrical dislocation density
shows its importance long after the respective den-
sity becomes much less than the statistical dislo-

cation.
The analysis performed leads to an equation

which is able to describe the work-hardening beha-

viour of large and small grain size samples:

Y
Y0
� 1� x

s
sV

sat

kV

k
ÿ s

sV
sat

k

kV

where Y=ds/de (s and e are the macroscopic stress
and strain, respectively), Y0 is the athermal strain

hardening rate related to stage II of monocrystal
deformation, and sV

sat and kV concern the case with-
out geometrical dislocations (i.e. monocrystal or

large grain size polycrystal).
The analytical description of the resulting ¯ow

law was used to analyse the tensile behaviour of

copper sheets with four di�erent grain sizes
deformed at three di�erent strain rates. It could be
concluded that the value of x is dependent on the
grain size, and almost does not depend on the strain

rate.
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