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ABSTRACT 
While biodiesel production and consumption for use in transportation has risen considerably over 

the last decade, its competiveness in the marketplace is largely due to regulatory and fiscal support 

from governmental bodies, exceeding $25 billion in 2010 in the EU and US alone. The price of 

feedstocks represent 80-85% of the total biodiesel cost, and with over 350 different oil feedstocks 

available for blending, there is potential to optimize feedstock blends to reduce costs. This paper 

presents a chance-constrained optimization model that considers the technical constraints of 

conventional, first generation feedstocks, pricing trends, as well as the uncertainty and variation 

latent within these numbers. Further, the frequency with which a feedstock blend portfolio should 

be re-evaluated is considered through a case study. The model is then applied to a second case 

study for actual fuel constraint scenarios used in the EU and US. The results demonstrate the 

potential for substantial cost savings through targeted feedstock diversification, minimizing risks to 

producers from price fluctuations while still meeting technical fuel standards. 

1. INTRODUCTION 
Worldwide economic growth drives ever-increasing demand for energy across all economic sectors. 

For the transportation sector, this growth may translate into a rate of energy demand which nearly 

doubles by 2050 [1]. Meeting this demand securely and sustainably will require leveraging a range 

of solutions, including a shift to alternative and renewable fuels. 

Despite controversies around its lifecycle greenhouse gas (GHG) emissions and potential 

contribution to increased food and feed prices [2-5], many believe that biodiesel will play an 

important role in the alternative fuel portfolio for transportation due to widespread policy goals. In 

fact, consumption of biodiesel has increased tremendously over recent years as a result of national 

energy policies worldwide [6]. In the US, domestic production and use of biodiesel rose from 

approximately 7.5 million liters in 2000 to 4 billion in 2011 [7-9].  Globally, demand is even greater. 

In the EU, biodiesel consumption has grown to over 10 billion liters [10], and the OECD-FAO 

projects global production to exceed 45 trillion liters by 2020 [11]. Unfortunately, this commitment 

to biodiesel comes at a cost. Currently, the production of biodiesel is more expensive than 

petrodiesel, and regulatory and fiscal governmental intervention is required to sustain the biodiesel 

market [12, 13].  Steenblik [3] estimates that combined subsidies for biodiesel and bioethanol 

exceeded $25 billion in 2010 in the US and EU alone [3]. While the short-term goal of these policies 

is to meet national renewable energy targets, the long-term expectation is that the biodiesel 

industry will mature into a cost-competitive alternative to petrodiesel.  

Creating a self-sustaining biodiesel industry will require changes throughout the whole biodiesel 

supply chain: from feedstock cultivation to transport of feedstocks to biodiesel production through 

blending of these feedstocks [14]. Operational-level decision making at these production facilities, 

particularly the feedstock selection process for blending, appears to offer a significant opportunity 

to reduce production cost. For biodiesel produced by transesterification, feedstock costs represent 

between 80%-85% of the total production cost [6, 15, 16]. In addition, the individual feedstocks on 

which biodiesel depend exhibit high price volatility, threatening the long-term financial stability of 
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any producer [17]. Skillful selection of a portfolio of raw materials at the producer level can provide 

a powerful financial advantage and, as this paper will show, if that portfolio is diversified it can 

stabilize costs, reducing financial risk.  

Realizing the goal of nimble, diverse feedstock selection is challenging, however, for several 

reasons, including: 1) the number of available feedstocks (at least 350 identified to-date);[18] 2) 

the difficulty in mapping physical characteristics of the feedstocks to ultimate fuel performance; 3) 

the variation of feedstock properties (including prices) across time and location [18, 19], and 4) 

national policies that limit access to otherwise technically and/or economically attractive 

feedstocks.  

Recognizing these complexities surrounding optimal feedstock selection at the producer level, this 

paper will a) describe a basic model by which producers can identify the best feedstocks for given 

market context; b) explore whether the optimal blend changes across market contexts, and c) 

characterize the potential economic value of adopting various approaches to risk mitigation 

through batch planning. The work contributes to the understanding of how feedstock 

diversification can help control costs while maintaining fuel quality, and under what contexts the 

benefit of diversification is most valuable. To accomplish these goals, a composition-based physical 

property prediction model has been developed for four key properties. Furthermore, a chance-

constrained (CC) optimization method, which explicitly considers the inherent uncertainty present 

in feedstock properties (or quality) using performance-based constraints, has been implemented 

for a few cases to find the minimum-cost blend portfolio for a given market context. Only 

conventional vegetable oils commonly used for biodiesel production have been studied in the scope 

of the work1. While case-based work focusing on four properties and select feedstocks is limited in 

its generalizability, this demonstration provides evidence that CC optimization in biodiesel 

blending models can identify production strategies that lower average cost and that hedge against 

price volatility for producers.  

1.1 CHALLENGES IN FEEDSTOCK SELECTION FOR BIODIESEL  

Others have recognized that feedstock diversification may be an important issue for the biodiesel 

industry. For example, in an effort to control financial risks emerging from fluctuations in feedstock 

prices, some US producers have converted their facilities to multi feedstock use systems, especially 

after the price of soybean oil rose faster than diesel prices between 2007 and 2008 [7]. 

Furthermore, the US Department of Agriculture started to fund research on feedstock 

diversification. However, to date, there has been little quantitative research done on the potential 

cost implications of diversification strategies. 

Meanwhile, identifying the optimal blend of raw materials to make a final product is not a new topic 

and has been explored for decades in many industries [20, 21] including the petroleum industry 

                                                             

1 Feedstocks considered in this paper provide more than 80% of today’s global biodiesel production and this 
trend is not likely to change soon. The authors acknowledge the applicability of the methods developed here 
on the 2nd and 3rd generation raw materials including biodiesel derived from waste-cooking oil. However 
further data is needed to properly apply the model on these raw materials.  
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[22-24]. Methods have also been developed to explicitly consider uncertainty and integrate it into 

complex optimization problems [25]. To date, these models have limited treatment of biodiesel or 

employed performance-based specifications for biodiesel beyond empirical measurements of 

blends [26, 27]. A recent article explored blends of biodiesel-ethanol-diesel fuels to identify 

valuable additives as well as demonstrate profit improvements for firms using these blends 

through use of waste feedstocks [28]. Batch planning decisions in the biodiesel industry have 

primarily been based on fixed recipes derived from producer experience [18] and therefore 

previous work has extrapolated fuel prediction rules from this empirical work. The work presented 

here aims to derive these properties from building blocks of the feedstocks and then explicitly 

manage their uncertainty through chance constrained blending models. 

Producers face two key challenges related to selecting appropriate feedstocks. These are 1) 

compliance with regionally-specific technical specifications and policy requirements, often not met 

by a single feedstock and thereby requiring blending of multiple feedstocks, and 2) uncertainty in 

feedstock properties coupled with price volatility. Helping operators make decisions about 

diversification requires an approach capable of dealing with these challenges through a tool that is 

capable of designing multi-feedstock blends and predicting the final fuel properties prior to 

blending. This capability can enable producers to modify the batch composition over time as prices 

fluctuate and thereby obtain cost-effective and technically compliant biodiesel capable of 

competing with petrodiesel.  

Because feedstock cost is estimated to be a major part of the production cost [15, 16, 26, 29, 30], 

cost reduction opportunities are strongly dependent on the feedstock prices. These prices not only 

differ from each other across feedstocks, but also fluctuate to a significant extent over time. Figure 

1a shows some of these prices between January 2003 and June 2011, deflated by the FAO vegetable 

oil price index. When the relative prices among feedstocks shift based on the market conditions, a 

producer might need to modify the feedstock proportions used in the batch to remain profitable. As 

can be seen from Figure 1b, the correlations among deflated feedstock prices are either fairly weak 

and positive, or relatively strong and negative. Given that lack of strong positive correlations, the 

price behavior suggests that maintaining a diversified blend portfolio could be helpful to hedge 

against unexpected price changes in the market [31]. The ability to quickly adjust the blend 

portfolio in response to dynamics such as price fluctuations and availability in the market could 

bring substantial value to biodiesel producers.  
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Figure 1 – a) Deflated vegetable oil prices between January 2003 and June 2011, deflated by the FAO vegetable oil 
index. Raw data is taken from [17] b) Correlation factors among deflated feedstock prices, January 2003 - June 
2011. 
 

2. METHODS 

2.1 PHYSICAL PROPERTY PREDICTION MODEL 
The physical characteristics of feedstocks typically used in a biodiesel batch differ from one another 

and these differences impact the characteristics of the final fuel. In most cases, a single feedstock is 

not able to meet all the technical specifications. These specifications also vary by region, for 

example, the EU has a higher oxidative stability standard compared to the US, and also enforces a 

maximum iodine value constraint that limits the use of soybean typically imported from the 

Americas. 

Here we describe the development of the physical property prediction model to address the 

challenge of complying with four technical specifications. These four specifications were chosen 

among a larger list of specifications based on what industry indicated were most challenging to 

meet through a series of interviews with six biodiesel companies2.  

Vegetable oils can be transformed into biodiesel via a transesterification reaction using methanol 

[32]. In general, each vegetable oil is composed of a range of six to eight different types of fatty 

                                                             

2 These four specifications were identified as economically determinant parameters by the biodiesel 
producers – economic compromises in cost or operational efficiency were predominantly made to satisfy 
these four performance specifications. Nevertheless, economically determinant constraints could vary based 
on market context (specific consumer preferences, physical location, other feedstock types, etc.). When 
market context changes, other performance metrics may need to be developed and incorporated into the 
model. 
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acids (FAs).3 These FAs are transformed into fatty acid methyl esters (FAMEs) at the end of 

transesterification. The majority biodiesel physical properties can be predicted by studying the 

characteristics of constituent FAMEs in the final fuel [26, 33]. The following describes the four 

technical constraints used in the study and summarizes the property prediction models that were 

developed for this paper. In each case, property predication is based on FAME composition of the 

blend, and each property exhibits a range based on the compositional range of constituent 

feedstock FAs. More information can be found in Appendix A.  

2.1.1 IODINE VALUE (IV) 

Iodine value is the mass of iodine (in grams) consumed by 100 grams of FAME. It is a direct 

indication of the degree of unsaturation in the carbon chain, as a result of iodine’s extreme 

reactivity with sp2 and sp hybridized carbons. A high degree of unsaturation is known to result in 

polymerization reactions in diesel engines under combustion conditions, and therefore is not 

desired [34]. Iodine value of a FAME can be calculated as in Eqn 1: 

 

 
𝐼𝑉𝐹𝐴𝑀𝐸 =

100 ∗ 𝑀𝑊𝐼2
∗ #𝑑𝑏

𝑀𝑊𝐹𝐴𝑀𝐸
 (1) 

where 𝑀𝑊𝐼2
 is the molecular weight of an iodine molecule, #𝑑𝑏 is the number of double bonds in 

the FAME and 𝑀𝑊𝐹𝐴𝑀𝐸 is the molecular weight of the FAME molecule. Based on the IV of 

constituent FAMEs present, the property, QIV, of biodiesel can be calculated as in Eqn 2: 

 
𝑄𝐼𝑉𝐵𝐷

= ∑ 𝑎𝑗 ∗ 𝐼𝑉𝐹𝐴𝑀𝐸𝑗

 

𝑖

 (2) 

where 𝑎𝑗 is the volume proportion of 𝐹𝐴𝑀𝐸𝑗  in biodiesel and 𝐼𝑉𝐹𝐴𝑀𝐸𝑗
 is the IV of 𝐹𝐴𝑀𝐸𝑗 . The 

constraint for IV is a maximum constraint. 𝑎𝑗 can be calculated as in Eqn 3 based on the volume 

proportions of feedstocks in the blend: 

 𝑎𝑗 = 𝐴𝑖 ∗ 𝐶𝑗𝑖 (3) 
where 𝐴𝑖  is the volume proportion of feedstock i, and 𝐶𝑗𝑖 is the percent composition of 𝐹𝐴𝑀𝐸𝑗  in 

feedstock i.  

2.1.2 CETANE NUMBER (CN)  
CN of biodiesel is analogous to the octane rating in gasoline and is an indication of ignition quality. 

Similar to octane rating, it is a dimensionless descriptor. CN is generally not a concern for biodiesel 

when current feedstocks in the market are considered [35]. However, with the potential of 

increased feedstock diversification over the coming years, inclusion of new species might make this 

constraint binding. CN has been shown to map proportionally by volume, to the CNs of the 

constituent FAMEs. As such the property, RCN, of biodiesel can be predicted using Eqn 4  [36]: 

                                                             

3 Most common FAs found in vegetable oils are myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid 
and eruric acid.  
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𝑅𝐶𝑁𝐵𝐷

= ∑ 𝑎𝑗 ∗ 𝐶𝑁𝐹𝐴𝑀𝐸𝑗

 

𝑖

 (4) 

The constraint for CN is a minimum constraint. 

2.1.3 COLD FILTER PLUGGING POINT (CFPP) 
Cold flow properties of biodiesel are of central concern, especially if the final fuel will be used in 

colder climates and the feedstock is highly saturated [35, 37]. In fact, cold flow performance is one 

of the main reasons to blend various types of vegetable oils. There are a few different standards 

that constrain the cold flow quality of biodiesel. These are cloud point (CP), freezing point (FP), 

low-temperature flow test (LTFT), pour point (PP) and cold filter plugging point (CFPP). This paper 

considers CFPP only, as a representative parameter for all the other cold flow parameters. Based on 

the proportionality between the CFPP and the percentage of saturated FAMEs, previous research 

shows that the property, QCFPP, of biodiesel can be predicted as follows: 

 𝑄𝐶𝐹𝑃𝑃𝐵𝐷
= 𝑎 ∗ [𝑆𝑎𝑡𝑠]𝐹𝐴𝑀𝐸 − 𝑏 (5) 

The constraint for CFPP is a maximum constraint. Where 𝑎 is the regression coefficient, [Sats]FAME, is 

the percentage of saturated FAMEs in the fuel and 𝑏 is the intercept [38]. Regression parameters 

(R2 = 0.86) used in this work are taken from [26]. 

The specific level of the CFPP constraint varies with the climate region and operation conditions. 

2.1.4 OXIDATIVE STABILITY (OS) 
Biodiesel might be transported over long distances and/or stored for significant durations. As such, 

fuel degradation due to oxidation is a major concern for the industry. The most common method to 

determine OS is the so-called Rancimat test. The Rancimat test determines the OS of biodiesel by 

measuring a metric called induction period, which is a direct indication of oxidizability of biodiesel. 

This work considers two major factors that influence oxidizability of biodiesel: 1) characteristics of 

unsaturation [39, 40], and 2) presence of natural antioxidants [41-43]. Based on an extensive 

survey of literature values concerning these considerations, a multiple regression model that 

predicts the induction period, and therefore the OS or the property ROS, of biodiesel is developed as 

in Eqn 6: 

 𝑅𝑂𝑆𝐵𝐷
= 𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 = 𝑎 + 𝑏 ∗ 𝐵𝐴𝑃𝐸 + 𝑐 ∗ 𝛾𝑇 + 𝑑 ∗ 𝑇𝑇 (6) 

where 𝐵𝐴𝑃𝐸 is bis-allylic position equivalent4, 𝛾𝑇 is the amount of 𝛾 − tocopherol, 𝑇𝑇 is the amount 

of tocotrienol5 and 𝑎, 𝑏, 𝑐, 𝑑 are regression parameters. The constraint for OS is a minimum 

constraint. The regression model resulted in R2 = 0.84 with p-value less than 0.001 for all the 

parameters. 

As mentioned above, the physical characteristics of feedstocks investigated in the property 

prediction model exhibit uncertainty. This uncertainty arises mostly from the specific genetics of a 
                                                             

4 BAPE is proportional to the amount of double or triple bonds in a particular FA.  

5 The units of tocopherol and tocotrienol levels are dimensionless because literature reported values were 
converted into dummy variables prior to running the regression model. More details can be found in 
Appendix B.  
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crop that determine the chemical composition, from environmental conditions during crop growth, 

and from handling and storage conditions along the supply chain [19, 43, 44]. In an attempt to 

capture the compositional uncertainty, several literature values of FA compositions for each 

vegetable oil have been collected as part of this study [35 and references therein]. Assuming a 

normal distribution around the mean values of each FA in each vegetable oil, composition profiles 

have been modeled. This normal distribution assumption presents some limitations to the 

extensibility of these results. Based on the equations described above and the range of FA 

compositions within a given vegetable oil type, 10,000 Monte Carlo simulations were run for 

biodiesel obtained from canola (or rapeseed), soybean, sunflower and palm oil, individually, and 

the prediction models were applied on every simulation to estimate the physical characteristics of 

the corresponding biodiesel. The 5th and 95th percentile values resulting from the models developed 

here were found to be within published literature values where ranges were reported for all four 

feedstocks with the exception of sunflower for CFPP and OS [35] and references therein. Details of 

these comparisons are provided in Appendix A. The prediction model results should be compared 

with a larger data set before use by the industry. These performance-property relationships along 

with their uncertainty were integrated into a batch planning algorithm as described in the next 

section. 

2.2 CHANCE-CONSTRAINED (CC) OPTIMIZATION MODEL TO MANAGE UNCERTAINTY 
To address the challenges of uncertainty and feedstock blending complexities, a chance-constrained 

(CC) optimization model was developed to inform decision making around blending on the 

producer level given feedstock price volatility and uncertainty in feedstock quality. Conventional 

approaches to incorporating uncertainty information into an optimal blending problem are known 

to result in overestimation of uncertainty, and therefore can lead to lower profitability [45-47]. 

Optimization under uncertainty has been extensively studied over recent years, and the methods 

developed constitute promising solutions to increase performance of decisions under uncertainty 

[25, 48]. CC optimization, first formulated by Charnes and Cooper [49], is one such method that has 

been implemented in various optimization problems governed by compositional uncertainty.  

These models have investigated metal production of both steel and aluminum, coal blending, and 

animal feed [45, 50-54]. Owing to its capability to explicitly consider, propagate and control 

uncertainty in a mix of uncertain constituents, CC optimization offers a great potential for an 

optimal multi-feedstock biodiesel problem. In addition, one key characteristic of the CC method is 

the increased diversification of the solution portfolio compared to conventional optimization 

methods, which can benefit the producers by diversifying supply chain and reducing risk to price 

volatility.  

The objective is to minimize the total feedstock cost, P(x), through optimal allocation of feedstock 

volumes, Ai (Eqn 7). This optimization is subject to constraints around total normalized demand, D, 

as shown in Eqn 8. Supply constraints were formulated for completeness but not considered in the 

analysis. Finally for each feedstock property (IV, CN, CFPP, OS) the composition of the final fuel 

must not exceed the technical specifications (Eqn 9 and 10).  

𝑀𝑖𝑛: 𝑃(𝑥) = ∑ 𝑃𝑖𝐴𝑖

𝑖

 (7) 
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𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝐴𝑖

𝑖

= 𝐷 (8) 

   

 𝑄̅𝐵 +  Χ(𝛼)𝜎𝑄𝐵
≤ 𝑄𝑐𝑜𝑛𝑠 (9) 

 
𝑅̅𝐵 −  Χ(𝛼)𝜎𝑅𝐵

≥ 𝑅𝑐𝑜𝑛𝑠 (10) 

where; 

𝑃𝑖  : feedstock i, price 

𝐴𝑖  : feedstock i, volume proportion  

𝐷 : normalized total demand 

𝑋(𝛼): normal distribution test coefficient, one-tailed 

𝑄̅𝐵 (𝑜𝑟 𝑅̅𝐵): property Q (or property R), mean value  

𝑄𝑐𝑜𝑛𝑠, (𝑜𝑟 𝑅𝑐𝑜𝑛𝑠): property Q (or property R),constraint level  

 𝜎𝑄𝐵 ,𝜎𝑅𝐵
: property Q (or property R) standard deviation in blend 

 

Standard deviations on the blend are derived based on the generalized equation as shown in Eqn 

12:  

 𝜎𝑄𝐵,𝜎𝑅𝐵
= √∑ ∑ 𝜌𝑖𝑗𝜎𝑖𝜎𝑗𝐴𝑖𝐴𝑗

𝑗𝑖

 
(12) 

 

where 𝜌𝑖𝑗  is the correlation coefficient between i and j. By definition 𝜌𝑖𝑗 = 1  when 𝑖 = 𝑗. Because 

we assume no correlation between feedstocks,  𝜌𝑖𝑗 = 0  when 𝑖 ≠ 𝑗. In other words, all feedstock 

scenarios considered in the model are regarded to be statistically independent from each other, 

whether or not they belong to the same crop species. 

The volume proportions of each feedstock to be blended, namely Ai, constitute the decision 

variables of the optimization problem. Choosing a set of Ai values determines the amount of each 

FAME, aj, in the blend as was shown in Eqn 3. Because FAMEs are the building blocks that define all 

the physical parameters, we can derive IV, CN, OS and CFPP based on the FAME profile of the blend 

using the prediction model relations. The properties that are captured by Q above are IV and CFPP 

while R captures OS and CN. The derivation of these properties and the details of standard 

deviation estimations can be found in Appendix B. Finally, Χ(𝛼) is a user input that determines the 

maximum accepted non-compliance rate based on the value of α. For all the physical properties 

considered in the model, α was chosen as 95%, allowing a maximum 5% probability of non-

compliance rate for each property. The integration of the property prediction models into the CC 

optimization enables the derivation of critical performance metrics from FAME compositional 

characteristics of the optimized blend.  
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3. RESULTS AND DISCUSSION 
Because the optimal blend portfolio is strongly dependent on the level of fuel constraints, two cases 

are designed to study the impact of different constraint levels. In the first case, constraint levels are 

selected such that no specific feedstock among canola, soybean, sunflower and palm is favored 

based on chemical properties. For example, OS was chosen as an average of the US and the EU 

limits, while the EU IV limit and the US CN limit were used to obtain a set of constraints that lower 

selection biases in the model for certain feedstocks. The goal of the first case study is to investigate 

the model behavior and the relevance of the CC optimization for biodiesel blending. In the second 

case, the constraint levels represent the specific technical standards applied in the US and the EU 

which favor domestic feedstocks. The second case study thereby investigates the application of this 

formulation to the specific regional contexts of the US and the EU. The monthly price data of each 

feedstock is obtained from [17] over a period from January 2003 to June 2011.  

3.1 CASE STUDY #1: 
The first case study examines the feasibility of CC blending models in the biodiesel industry for a 

hypothetical set of fuel constraints. In the following, optimal blend results are reported for an 

arbitrarily chosen single period price followed by multiple period price data covering the months 

between January 2003 and June 2011.6 The fuel constraint levels are as follows: iodine value (IV): 

max 120; cetane number (CN): min 47; cold filter plugging point (CFPP): max -1˚C; and oxidation 

stability (OS): min 4.5 hour. 

In order to investigate the impact of feedstock diversification on the final fuel cost, eight different 

scenarios were run in which different sets of feedstocks were available for blending purposes.7 

Figure 2 shows these eight availability scenarios on the x-axis and the resulting optimal blend 

feedstock costs on the y-axis for April 2007 deflated prices. As the figure suggests, moving left to 

right the total feedstock cost decreases with increasing diversification. The single feedstock 

biodiesel costs $567/ton whereas the four-blended feedstock biodiesel costs $485/ton, 

corresponding to a 14% savings with no investment.  

                                                             

6 The latest available price data point at www.indexmundi.com at the time of the inquiry. 

7 Although there are a total of 15 different combinations for a 4-feedstock system, 7 of these combinations do 
not lead to technically feasible fuels and therefore are not considered.  
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Figure 2 – Feedstock costs and optimal blend portfolios with respect to blend diversification.  

In order to analyze the physical property distribution of each optimal blend and to assess how the 

blends perform with respect to the constraint levels, 10,000 Monte Carlo simulations were applied 

to each of the eight optimal blends. Simulation results show that diversification enables the proper 

control of the non-compliance rate of the final fuel as pre-determined by the model user. To give an 

example, the four-feedstock biodiesel complies with the -1˚ C CFPP constraint with 95% probability 

having a mean value of -1.3˚C and a standard deviation of 0.19; however, the single feedstock 

biodiesel over-performs this constraint with a mean value of -6˚C and a standard deviation of 0.22. 

In other words, 100% canola biodiesel possesses a very low CFPP level which the producers cannot 

transform into additional market value. Another conclusion drawn from the simulation 

distributions is the consistently lower standard deviations observed in more diversified blends. 

This observation is a manifestation of the risk-pooling capability of the model and implies that the 

level of uncertainty can be mitigated through feedstock diversification.  

3.1.1 MODEL APPLIED TO MULTIPLE PERIOD PRICE DATA 
Feedstock prices are one of the major input parameters that impact the optimal portfolio calculated 

by the CC model. The previous analysis demonstrated the model behavior for a single month.  

Figure 3 shows the same eight scenarios of availability in the previous analysis produced by the 

optimization model; but here based on monthly prices observed between January 2003 and June 

2011. The only feedstock that is feasible by itself is canola; however, the risk of price fluctuations, 

as well as the dependence on what could become an unreliable supply, make canola a less desirable 

choice. In fact, the optimal blend is often composed of at least three feedstocks, when those 

feedstocks are made available, given fluctuations in prices. Figure 3c shows the variation in 

feedstock costs for the eight scenarios grouped by number of available feedstocks. The lowest and 

highest points for each blend set represent the 5th and 95th percentile and the black dots represent 

the medians. 
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Overall, the trend demonstrated in Figure 3a reflects the trend found in Figure 2, indicating that as 

more feedstocks are available, the feedstock costs decrease. Additionally, the overall uncertainty 

tends to decrease. Consider the four-feedstock blend over this time period, CAN-SYB-SNF-PLM: it 

demonstrates a small degree of variation over time, but not the smallest among the blend sets. The 

exception to this trend in decreasing uncertainty is found in the CAN-SYB-PLM blend as compared 

to CAN-SYB-SNF-PLM. CAN-SYB-PLM has a tighter range, and hence smaller degree of cost 

uncertainty associated with it. However, the increased uncertainty in the four-feedstock blend 

emerges from the particular price behavior of sunflower and the resulting feedstock cost reduction 

opportunities manifested at certain points in time, particularly between January 2006 and February 

2008 when sunflower prices were low as shown in Figure 1. More importantly, the upside risk of 

high prices is diminished in the four feedstock scenario. 

The optimal blends over the study period for the CAN-SNF two-feedstock and the four-feedstock 

blends are highlighted in Figure 3b and 3c. The figures demonstrate how temporal fluctuations in 

price can lead to alterations in the final biodiesel composition given that the producers are flexible 

to blend multiple feedstocks based on prices. This flexibility has significant implications on the 

feedstock cost of biodiesel. For example, the CAN-SNF blend is primarily reliant on canola for the 

majority of the time, only incorporating sunflower during the sunflower price trough. This creates a 

consistently higher and more variable cost over time. On the other hand, the four-feedstock blend’s 

inclusion of more feedstock options enables the producer to be flexible and vary the portfolio 

monthly according to the market prices to minimize the feedstock cost. 

 

Figure 3-  a) Range of feedstock costs for biodiesel blends optimized monthly between January 2003 and June 
2011. The lowest and highest points for each blend set represent the 5th and 95th percentile and the black dots 
represent the medians. b) The optimal blend portfolios for the CAN-SNF two-feedstock biodiesel and c) the four-
feedstock biodiesel.  

 

3.1.2 DIFFERENT BLENDING STRATEGIES FOR COST CONTROL 
Lower feedstock costs can be achieved through optimized blending for each batch, monthly in this 

model, leading to cumulative savings over time. However, the operational challenges of optimizing 

the biodiesel batch over short time periods are not insignificant. For this reason, from the 

perspective of the producer, a trade-off exists between a strategy of achieving the lowest feedstock 

costs possible in each monthly period and the logistical benefits of maintaining a more consistent 
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blend portfolio over a longer period of time to avoid switching. In the context of this model, an 

extreme case for the latter strategy would be using 100% canola oil for all batches, since it is the 

only feedstock that can individually satisfy technical requirements. However, as was shown in 

Figure 3, only using canola leads to higher costs and more significant risk to the producer; 

therefore, the producer should develop a strategy that leverages diversification while remaining 

logistically feasible8. Because of these operational challenges, we investigate the cost implications 

associated with three stationary blending strategies that can partially incorporate different 

advantages of the competing options mentioned above. The three potential blending strategies are:  

3.1.2.1 Max Diversified Strategy:  
Maintaining a diversified portfolio provides the producer protection from price fluctuations for 

individual crops. Therefore, choosing the most diversified portfolio possible and maintaining it over 

the entire time period could be a more simple approach over optimizing every batch in every 

period. The most significant advantage of this strategy is that it does not require any past, current, 

or future price knowledge. Determining the most diversified blend can be achieved by modifying 

the optimization formulation such that the objective is to maximize diversification. To find the most 

diversified blend possible within the technical constraints, the Herfindahl-Hirschmann Index (HHI) 

is used calculate the level of diversification [55]. Diversification in a system is maximized when the 

HHI is minimized. For modeling this strategy, the objective of the CC optimization was modified as 

in Eqn. 13 and all the constraints were kept the same.  

 𝑀𝑖𝑛 𝐻𝐻𝐼 =  ∑ 𝐴𝑖
2

𝑖

 (13) 

3.1.2.2 Stationary Strategy, Complete Price Informed: 
In the second scenario, a hypothetical situation is considered in which a producer sets a stationary 

blending rule throughout the period of interest and has complete information about the future 

prices ex ante. In this case, the optimal stationary portfolio would be the one that minimizes total 

costs integrated over time.9 While this strategy is not feasible to implement, it provides an idealized 

reference point to which the performance of other strategies can be compared. For modeling this 

strategy, the objective of the CC optimization was modified as in Eqn 14 and all the constraints were 

kept the same.  

 𝑀𝑖𝑛: ∑ 𝑃𝑖,𝑡𝐴𝑖,𝑡

𝑖,𝑡

 (14) 

where 𝑃𝑖,𝑡 is deflated price of feedstock i in time period t, and 𝐴𝑖,𝑡 is the volume proportion of 

feedstock i in the blend in time period t. 

3.1.2.3 Semi-stationary, Historic Price Informed: 

                                                             

8 A future study could explore the optimal frequency of recipe change for batches provided that there is 
access to detailed operational cost information. 

9 Note that we use deflated prices to find the optimal portfolio. Otherwise, because the nominal prices are 
larger in magnitude in the more recent years due to inflation, the optimal blend portfolio would be biased by 
the latest prices observed in the market. 
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Recognizing the real-world impossibility of the Stationary Strategy, the Semi-stationary blending 

rule uses the blend portfolio which minimizes the previous year’s total feedstock costs. 

Optimization is performed on an annual basis using this strategy. Because consecutive years’ prices 

are expected to be similar, adjusting the blend annually using this method could provide a limited 

degree of cost certainty to the producer. 

Figure 4 shows the cumulative feedstock costs for an average annual production volume of 100,000 

tons for the three Blending Strategies alongside the optimized blend portfolios discussed above 

(shown as green bars). The y-axis represents the total cost of the feedstock over the period of 2003-

2011 for each strategy. 

Based on these results, the four-feedstock blend optimized monthly has the greatest cost advantage 

with approximately $8.8 million less than the next best performer over period 2003-2011.  

However, the stationary blends show some potential for cost savings. The Stationary Strategy 

exhibits the lowest cost of the potential blending approaches, at $647.9 million, representing the 

lower bound of the stationary blends. Diversified strategy, with its high but fixed level of 

diversification, has the highest cost, $727 million, with a price similar to that of the three-feedstock 

blends. Finally, the Semi-stationary falls between Diversified and Stationary at $679 million, but is 

still higher than the two cheapest monthly-optimized portfolios. Comparison of Diversified and 

Semi-stationary with the monthly optimization scenarios indicates that a well-designed stationary 

blending rule can approximately achieve the cost performance equivalent to that of two or three-

feedstock blend sets over time, however a four-feedstock blend optimized monthly will outperform 

others over time. 

 

Figure 4 – Cumulative feedstock costs for optimal blends. Blend components are limited to the feedstocks on the 
x axis. Figures are in nominal dollars.  

While this model only addresses four feedstocks for biodiesel, there is a wide range of other 

feedstocks not considered that have the potential to increase the diversity of portfolios and further 

spread the risk associated with lower quality materials across multiple feedstocks. For example, a 

new oil seed, camelina has gained approval by the US EPA in 2012 [56], and other oil seeds have 
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become prominent in the world market, thereby providing a wider feedstock selection. The 

inclusion of additional biodiesel types depends on the technical constraints of new feedstock.  

Assuming emerging crop types are compatible with technical specifications, the addition of new 

feedstocks will likely serve to reduce the cumulative portfolio costs and minimize variability over 

time. It is also possible that lower quality fuels, such as waste cooking oils, can be more significantly 

incorporated into more diverse biodiesel blends, further decreasing costs [57].   

3.2 CASE STUDY #2: US AND EU  
The first case study examined the diversification behavior of the CC optimization under a 

hypothetical set of constraints. We now investigate the performance of the model under actual fuel 

constraint levels used in the EU and US markets. As mentioned above, EN 14214 enforced in the EU 

and ASTM D6751 enforced in the US require compliance with a set of fuel specifications. These 

specifications tend to favor domestic feedstocks within each of these regions. IV has no requirement 

within the US, while in the EU the maximum IV is 120. For CN, the minimum values within the US 

and EU are 47 and 51, respectively.  OS for the US and EU is a minimum of 3 and 6 hours, 

respectively.10 CFPP is typically determined regionally based on climate and customer 

requirements. For this model the maximum limit was chosen as -1˚C.  

Figure 5 shows the feedstock cost based on monthly prices between January 2003 and June 2011 

for three different scenarios each for the EU (left hand side of the figure) and the US contexts (right 

hand side). The lowest and highest points for each blend set represent the 5th and 95th percentile 

and the black dots represent the average. Note that the disparity in the different regional contexts 

suggests that regulators have latitude in specifications to achieve policy goals. 

The first scenario for the EU, using only canola as a feedstock, is as shown in Figure 4, and repeated 

here for comparison purposes. The two-feedstock case for the EU includes canola, as before, and 

palm. Palm was chosen as the second available feedstock because sunflower is a minor feedstock 

worldwide and soybean oil is not typically used within the EU. When soybean and sunflower are 

made available in the EU, the overall feedstock cost decreases because the producer can take 

advantage of price fluctuations and adjust the blend rule accordingly in each period. More 

importantly, the overall cost uncertainty decreases, demonstrating robustness to price fluctuation.  

The US biodiesel industry is dominated by soybean oil because of the high production of soybean 

crop in the US; in 2011, US-produced soybeans represented 56% of world oilseed production[9]. 

Therefore, soybean is included in the blend for the three US scenarios shown on the right in Figure 

5. Similarly, the US Environmental Protection Agency (EPA) recently declared that the oil obtained 

from palm, which is mostly cultivated in Indonesia and Malaysia, does not comply with its GHG 

emission reduction criteria and therefore cannot be used towards the production of renewable 

biodiesel [58] .  Contrary to the EU scenario described above, palm is excluded from the two-

feedstock blend due to the above mentioned ruling by the EPA on palm [58].  It must be noted that 

100% soybean biodiesel is actually not an optimal solution for the CC model, because its 

                                                             

10 8 hour pending for the EU.  
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compliance rate with respect to the 3-hour OS limit is less than 70%. Indeed, as Figure 5 shows, this 

is why soybean scenario costs less than the scenario in which two feedstocks are made available. As 

Figure 5 demonstrates, when four feedstocks are made available to the producer, the producer pays 

lower feedstock costs compared to using 100% soybean oil, in addition to obtaining a feasible blend 

in each period with respect to the technical constraints specified. The minimum cost that can be 

achieved within the given time period is $384/ton when four feedstocks are available as opposed to 

$445/ton when the supply is restricted to soybean. The average prices observed are $486/ton and 

$494/ton, respectively.  

 

Figure 5 – Box plots of feedstock costs of biodiesel blends optimized monthly between January 2003 and June 
2011 for the EU (left) and US context (right). The lowest and highest points for each blend set represent the 5th 
and 95th percentile and the black dots represent the average.  

4. CONCLUSIONS 
Through this model development and case investigation the benefits of a CC optimization to blend 

conventional biodiesel feedstocks have been shown. This study confirmed that feedstock 

diversification can help control costs while maintaining fuel quality by spreading the risk of price 

volatility across multiple feedstocks. Producers should attempt to select a diverse set of raw 

materials to reduce their exposure to price volatility risk by hedging against price variations over 

time. With the availability of new feedstock options and continued price volatility, the complexity of 

the decision space emphasizes the value of analytical decision making tools in the biodiesel 

industry that could minimize costs while ensuring fuel quality [59, 60]. Emerging GHG emissions 

regulations on biodiesel feedstocks, which the authors wish to address in future work, will further 

differentiate within crops and therefore provide further variety in the type of feedstocks available. 

Future work should also include investigation of other properties beyond the four examined here, 

explore implementation of non-normal characteristics for the feedstock property distributions as 

well as including more than the four feedstocks explored in this paper. Particularly, studying 2nd 

and 3rd generation biodiesel feedstocks with the methods developed here could contribute to faster 

adoption of more sustainable biodiesel production in the industry due to the potential to reduce 

costs [61-63].  Including lower quality feedstocks such as waste cooking oil would be of particular 

interest for the CC formulation. With increasing feedstock options emerging in the market, there is a 
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significant opportunity for cost-effective biodiesel that can be obtained by increasing the feedstock 

selection capability for producers via analytical decision making tools.  
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 APPENDIX A: CHEMICAL COMPOSITIONS OF BIODIESEL FEEDSTOCKS 
The constituent components of biodiesel feedstocks are mainly triglycerides—esters of glycerol and 
fatty acids (FAs) that undergo transesterification. During transesterification, triglycerides react 
with methanol11, and methyl esters of FAs (FAMEs) are obtained as the final fuel. Glycerol is a 
byproduct of the reaction. Assuming that there is no contamination during transesterification, and 
the byproducts and catalysts are completely removed from the system, physical characteristics of 
biodiesel are directly related to the inherent FAs within vegetable oils. A number of structural 
manifestations of these FAs have direct or indirect impact on biodiesel characteristics. These 
manifestations include, but not limited to; 

 Length of the carbon chain, 
 Presence, number and location of double bonds, 
 Cis vs. trans isomerism, etc. 

As an example, the presence of double bonds leads to higher oxidation rates, or longer carbon 
chains tend to possess higher melting points. FA compositions of most common feedstocks have 
been analyzed in the literature by chromatographic measurements. Table A1 provides the details of 
reported compositions [1]. Although a rough differentiation can be made across vegetable oil types 
based on compositional information, significantly wide compositional ranges are reported within 
vegetable oil types.  

Table A1 – FA composition profiles in percentages [1]. Numbers in brackets represent minimum and maximum 
percentage of the FA in the feedstock. 

FA Composition (wt %) 

 12:0 14:0 16:0 18:0 18:1 18:2 18:3 22:1 
Canola  [0.1, 0.2] [3.3, 6] [1.1, 2.5] [52, 67] [16, 25] [6.5, 14] [0, 0.2] 
Palm [0, 0.4] [0.5, 2] [40, 47.5] [3.5, 6] [36, 44] [6.5, 12] [0, 0.5]  

Sunflower [0, 0.1] [0, 0.2] [5.6, 7.6] [2.7, 6.5] [14, 40] [48, 74] [0, 0.2] [0, 0.2] 
Soybean  [0, 0.2] [8, 13] [2.5, 5.5] [18, 26] [50, 57] [5.5, 9.5]  

  

We use the compositional information given in Table A1 as a building block to derive physical 
characteristics of individual feedstocks. Moreover, because blends of these individual feedstocks 
are essentially mixtures of the tabulated FAs, it could be possible to model any blend property 
based on the proportions of the FAs in the mix. We assign the average of the reported compositions 
in Table A1 as the mean value of the distribution, and estimate a standard deviation for a normal 
distribution assuming that the reported ranges cover 6 standard deviations of the whole 
distribution12. Figure A1 shows the information given in Table A1 graphically with the addition of 
the error bars representing compositional standard deviations.  

                                                             

11 Other alcohol derivatives can be used, however methanol is commonly preferred due to cost and processing 
considerations.  

12 Approximately 99% of all the possible values of a normally distributed random variable fall within the 6 
standard deviations range. 
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Figure A1- Compositions of FAs in each feedstock. In the x-axis, the first number represents the number of carbon 
atoms and the second number represents the number of double bonds. 

VERIFICATION OF FEEDSTOCK PHYSICAL PROPERTY PREDICTION 

IODINE VALUE (IV) 
IV is enforced as a technical constraint under EN 14214, with maximum allowed value being 120. 
This constraint particularly limits the amount of soybean and sunflower oil used in biodiesel, due to 
their higher linoleic and linolenic content.  We modeled IVs of canola, palm, soybean and sunflower 
based on the compositional information shown in Figure A1. Then, we ran Monte Carlo simulations 
to reflect the potential IV range for each feedstock. 

Table A2 compares the literature reported IV ranges with the ranges predicted by the model. The 
model and the reported values are in good agreement with each other.  

Table A2 – Comparison of 5th and 95th percentile IV values predicted by the model and the ranges reported in the 
literature. 

 Model IV Prediction Reported IV in Literature 

Canola [101, 116] [94, 120] 
Palm [45, 52] [50, 55] 

Sunflower [110, 136] [110, 143] 
Soybean [120, 129] [120, 143] 

Model results indicate that IV does not become a binding constraint most of the time, because the 
optimal blend is never primarily composed of soybean and/or sunflower. Both canola and palm, 
having lower IVs, can offset their impact in the final fuel. 

CETANE NUMBER (CN) 
CN is determined based on the ignition performance of the fuel relative to a straight chain 
hydrocarbon, hexadecane (C16H34) and a highly branched hydrocarbon, 2,2,4,4,6,8,8-
heptamethylnoane (C16H34). Both substances are considered to be the primary reference fuels and 
assigned CNs of 100 and 15 respectively. Minimum CN requirement is 51 under EN 14214, and 47 
under ASTM D6751. An Ignition Quality Tester (IQT) or a cetane engine can be used to determine 
the CN of biodiesel. It is not trivial to predict the CN of a hydrocarbon blend. Both gasoline and 
diesel industry have historically relied on empirical studies and experience to assess octane rating 
or CN of blends [2-7,8].  
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Table A3 lists measured CN of various FAMEs that used in the model. Note that it is possible to find 
slightly different CN data concerning these FAMEs in the literature. We believe the differences in 
measurements emerge from several factors pertaining to the complications in measurement 
procedures.  

Table A3 – CNs of various neat FAMEs. 

  12:0 14:0 16:0 18:0 18:1 18:2 18:3 22:1  

 CN 61.4a 66.2a 74.5a 86.9a 59.3b 38.2b 22.7a 74.2a,*  
a Taken from [1];  b Taken from [9];   c Taken from [6];   * Ethyl ester 

As listed in Table A4, agreement between the modeled CNs and literature reported values is 
promising.  

Table A4 - Comparison of 5th and 95th percentile model estimates and literature reported values of CN. 

 FAME Model CN Estimate CN Reported [1]   

 Canola [48.6, 54.1] 47.9a, 56a  
 Palm [62.8, 67.2] 62b  
 Sunflower [43.3, 53.6] 54a, 58a  
 Soybean [44.6, 48.5] 49.6a, 55.9a  

        a Taken from [1];   b Taken from [10]. 
 

COLD FILTER PLUGGING POINT (CFPP)  
A thermodynamic modeling study found that the amount of saturation was the main determinant 
for CP of biodiesel regardless of composition of unsaturated esters [11]. Likewise, a recent study 
[10] concluded that CFPP is linearly related to the proportion of saturated fats in the compound, 
and this relation can be expressed as in Eqn A1 (R2=0.86): 

 𝐶𝐹𝑃𝑃 = 0.438 ∗ [𝑆𝑎𝑡𝑠] − 8.93 (A1) 
where [Sats] is the percentage of saturated compounds in the fuel.  

We modeled CFPP values of the most common biodiesel feedstocks based on their FA composition, 
and performed Monte Carlo analysis to explore potential ranges. Table A5 compares our model 
results with the literature reported values, which are in close agreement with each other.  

Table A5 – Comparison of 5th and 95th percentile model predictions and the literature reported values for CFPP. 

 FAME Model CFPP Estimate, ºC Literature CFPP Reported*, ºC  
 Canola [-6.4, -5.7] [-7,-4]  
 Palm [11.9, 13.8] [10, 16]  
 Sunflower [-4.5, -3.5] [-4,-1]  
 Soybean [-3.2, -1.9] [-5,-2]  

                                * Data taken from [1]. 

Note that the model does not consider the presence of any minor constituents present naturally or 
artificially in the feedstock. For example, it is known that vegetable oils naturally contain steryl 
glucosides (StG) which turn into free StG (FStG) upon transesterification. FStG are known to 
possess very high melting points (~240 ºC) that could have a considerable effect on cold flow 
properties [1]. Similarly, trace amounts of monoacylglycerol (MAG), diacylglycerol (DAG) and 
triacylglycerol (TAG) that may remain after partial transesterification are known to negatively 
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impact the low temperature operability performance. Consideration of these other factors requires 
more specific data along with more detailed models. 

OXIDATIVE STABILITY (OS) 
We have considered two major factors that influence oxidizability of biodiesel: 1) characteristics of 
unsaturation, and 2) presence of natural antioxidants. 

1) Characteristics of Unsaturation  
The presence of unsaturation in FAs facilitates higher rates of oxidation, and FAs have varying 
susceptibility for oxidation depending on the relative location of unsaturation in the carbon chain 
and the nature of unsaturation, such as hybridization of carbon atoms [12,13]. Due to the 
delocalization of the double bonds adjacent to the allylic and bis-allylic carbon atoms, C-H bonds in 
the allylic and bis-allylic positions are weaker and easier to break. As a result, these atoms are 
highly prone to oxidation, with bis-allylic position possessing even a higher reactivation rate. 
Knothe defines two indices, allylic position equivalent (APE) and bis-allylic position equivalent 
(BAPE), in order to represent these positions in a carbon chain; and shows that compounds having 
very similar IVs might have distinctively different APE and BAPE indices [14]. Table A6 lists the 
calculated APE and BAPE indices for some neat FAMEs. 

Table A6– Calculated APE and BAPE indices of FAMEs commonly found in biodiesel. 

FAME APE BAPE 

Methyl Oleate 18:1 200 0 

Methyl Linoleate 18:2 200 100 

Methyl Linoleneate 18:3 200 200 

Methyl Erucate 22:1 200 0 

2) Presence of Natural Antioxidants in the Vegetable Oil  
It is well known that most unrefined vegetable oils contain natural antioxidants such as tocopherols 
or tocotrienols, yet these naturally-occurring constituents are usually removed or deactivated by 
refining, distillation or transesterification processes [15-17]. Table A7 tabulates the distribution of 
the two most common antioxidants in the major feedstocks.  

Table A7 – Tocopherol and tocotrienol values found in the literature (ppm). 

 α-T* β-T γ-T δ-T α-TT** β-TT γ-TT δ-TT 

Canola 

179a 

202b 
314c 

180d 

b 

18c 

409a 

490b 

420c 

340d 

9b 

14c - - - - 

Palm 
89b 

122c 

377d 

7c 

 

1d 

18b 

39c 

4d 
6c 128b 

52d 
- 

4d 323b 72b 

Soybean 

93a 

100b 

62c 

116d 

11a 

8b 

11c 

17d 

1046a 

1021b 

537c 

578d 

374a 

421b 

147c 

263d 

- - - - 

Sunflower 981a 27b 11b 1b - - - - 
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670b 

497c 

671d 

21c 

23d 

118c 

4d 

19c 

*Tocopherol ;  ** Tocotrienol 
a Averages of reported values in [18];    b Taken from [19];    c  Taken from [10];    d Taken from [13]. 

As can be seen in Table A7, although each feedstock has more or less of a characteristic distribution 
of antioxidants, absolute tocopherol or tocotrienol levels could be quite different across different 
samples of the same feedstock type.  It should be reiterated that on top of all the complexities listed, 
the possible variation in the storage time of the samples might introduce another degree of bias to 
the collected data as antioxidants tend to degrade over time. Even more, the vessel that transports 
the vegetable oil might have an impact on the resulting oxidative stability of the biodiesel, because 
it is shown that the presence of copper, iron and nickel reduces OS as a result of catalytic effect [20]. 
Despite all these factors, controlled experiments have shown that natural antioxidants stabilize 
methyl esters by reducing the rate of peroxide formation considerably [15]. Therefore, we 
attempted to capture the impact of naturally occurring antioxidants in our model. With few data 
points regarding the tocopherol and tocotrienol levels, we decided to represent the antioxidant 
levels with dummy variables; 0 representing absence, and 1 representing presence of the 
antioxidant in consideration. Furthermore, we considered only γ-tocopherol and tocotrienols, 
because α-tocopherols are found to be the least effective stabilizers [15,21], and β- and δ-
tocopherols are found in very small amounts in all the seed oils.  Table A8 summarizes the dummy 
variable selection for the model. Note that sunflower oil possesses no major natural antioxidant in 
our model. 

Table A8– Selected dummy variables for γ tocopherol and tocotrienol levels in feedstocks. 

 γ-T TT (α + β + γ + δ) 

Canola 1 0 
Palm 0 1 

Soybean 1 0 
Sunflower 0 0 

Lastly, we assumed a linear blending model for the dummy variables when feedstocks are mixed 
with each other.  

Multiple Regression Analysis on Unsaturation and Natural Antioxidants 
Given the strong dependence of OS on unsaturation and natural antioxidant levels, we performed a 
multiple regression analysis of induction period on these two factors. Table A9 tabulates the 
induction period data used. Some measurements are based on blends of feedstocks and the blend 
ratios are indicated in the table. Total number of samples is 69. 

Table A9 - Reported induction periods of several feedstocks and their blends. Rancimat method was used in all 
experiments. Total number of samples is 69. 

FEEDSTOCKS Blend 
Ratio 

Induction 
Period (h) 

FEEDSTOCKS Blend 
Ratio 

Induction 
Period (h) 

 CAN - 6.4a CAN/SNF 1:1 6.5a 

 - 6.9b  1:3 6.8a 

  - 6.9g  3:1 6.2a 

 - 9.1h PLM/SYB 1:1 6.2a 

  - 7.8i  1:3 5.5a 

PLM - 10.3a   3:1 7.7a 
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  - 11.0b  1:9 5.2a 

 - 14.2c   1:4 5.4a; 4.2b 

  - 11.1d  3:7 5.6a 

 - 15.4i   2:3 5.9a 

  - 13.4f  3:2 6.9a 

SYB - 5.0a   7:3 7.4a 

  - 3.9b  4:1 8.2a; 7.4b 

 - 3.9c   9:1 9.2a 

  - 3.5d  2:3 5.0b 

 - 6.6e   3:2 6.2b 

  - 3.8f PLM/SNF 1:1 8.1a 

SNF - 6.2a,*   1:3 7.1a 

  - 1.8c  3:1 9.2a 

 - 3.4h SYB/SNF 1:1 5.8a 

  - 1.7f  1:03 6.4a 

CAN/PLM 1:1 7.6a   3:1 5.4a 

  1:3 9.6a CAN/PLM/SYB 1:1:1 5.4a 

 3:1 6.5a   1:1:3 5.0b 

  4:1 7.8b  2:1:2 5.7b 

 3:2 9.3b   3:1:1 6.6b 

  2:3 10.6b  1:2:2 6.3b 

CAN/SYB 1:1 5.3a   2:2:1 7.7b 

  1:3 5.1a  1:3:1 8.0b 

 3:1 5.9a CAN/PLM/SNF 1:1:1 7.8a 

  4:1 4.2b CAN/SYB/SNF 1:1:1 5.0a 

 2:3 4.7b SYB/SNF/PLM 1:1:1 6.7a 

  3:2 5.2b CAN/PLM/SYB/SNF 1:1:1:1 5.7a 

 4:1 5.9b    

           a [10]; b [22]; c [17]; d [23]; e [24]; f [25]; g [26]; h [21]; i [15]  

Table A10 details the antioxidant levels, chemical compositions and the resultant APE and BAPE 
indices corresponding to the samples listed in Table A9:   
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Table A10– Antioxidant levels (dummy variables), chemical composition (%) and resulting APE and BAPE indices 
of several feedstocks and their blends. The data is taken from the same resources as in Table 9. Total number of 
samples is 69. 

 *High oleic sunflower. 

 

 

 

 

 

 

 

 

FEEDSTOCK
Blend 

Ratio
γ-T TT 12:0 14:0 16:0 16:1 18:0 18:1 18:2 18:3 20:0 20:1 22:0 22:1 APE BAPE

Canola - 1 - - - 4.6 0.2 2.1 64.3 20.2 7.6 0.7 - 0.3 - 184.6 35.4

Canola - 1 - - 0.1 4.4 - 1.7 62.4 19.7 9.5 0.6 1.3 - - 185.76 38.67

Canola - 1 - - - 4.8 - 1.4 66.8 19.7 7.2 - - - - 187.4 34.1

Canola - 1 - - - 6.0 - 2.1 60.3 20.9 8.2 0.6 1.3 0.3 0.2 181.64 37.17

Canola - 1 - - - 4.0 - - 60.5 20.3 9.4 - - - - 180.4 39.1

Palm - 0 1 0.3 1.1 41.9 0.2 4.6 41.2 10.3 0.1 0.3 - - - 103.6 10.5

Palm - 0 1 - 1.0 40.1 - 4.1 43.0 11.0 0.2 0.3 - - - 108.52 11.44

Palm - 0 1 - - 41.3 - 3.5 43.1 12.1 - - - - - 110.4 12.1

Palm - 0 1 - 0.6 47.2 - 3 40.8 8.2 0.2 - - - - 98.4 8.6

Palm - 0 1 - - 43.3 - - 40.5 9.6 0.3 - - - - 100.8 10.2

Palm - 0 1 - - 40.3 - 3.1 43.4 13.2 - - - - - 113.2 13.2

Soybean - 1 - - 0.1 11.0 - 4.3 23.1 53.3 6.8 0.3 - - - 166.32 66.81

Soybean - 1 - - 0.1 10.8 - 4 23.4 53.9 7.8 - - - - 170.2 69.5

Soybean - 1 - - - 14.1 0.7 5.2 25.3 48.7 6.1 - - - - 161.6 60.9

Soybean - 1 - - - 10.5 - 4.1 24.1 53.6 7.7 - - - - 170.8 69

Soybean - 1 - - 0.1 11.0 0.1 4 23.4 53.2 7.8 0.3 - 0.1 - 169 68.8

Sunflower* - - - - - 4.5 - 4 82.0 8.0 0.2 0.3 - 1.0 - 180.4 8.4

Sunflower - - - - 0.2 5.3 - 5.7 20.6 67.4 0.8 - - - - 177.6 69

Sunflower - - - - - 6.0 - 4.7 24.0 63.7 - 0.3 0.2 0.8 - 175.84 63.74

Sunflower - - - 0.5 0.2 4.8 0.8 5.7 20.6 66.2 0.8 0.3 - - - 176.8 67.8

Canola/Palm 3:1 0.75 0.25 0.1 0.3 13.9 0.2 2.7 58.5 17.7 5.7 0.6 - 0.2 - 164.35 29.18

Canola/Palm 1:3 0.25 0.75 0.2 0.8 32.6 0.2 4.0 47.0 12.8 2.0 0.4 - 0.1 - 123.85 16.73

Canola/Palm 1:1 0.5 0.5 0.2 0.6 23.3 0.2 3.4 52.8 15.3 3.9 0.5 - 0.2 - 144.1 22.95

Canola/Palm 2:3 0.4 0.6 - 0.6 25.8 - 3.1 50.8 14.5 3.9 0.4 0.5 - - 139.42 22.33

Canola/Palm 3:2 0.6 0.4 - 0.4 18.7 - 2.6 54.6 16.3 5.8 0.5 0.8 - - 154.86 27.78

Canola/Palm 4:1 0.8 0.2 - 0.2 11.6 - 2.2 58.5 18.0 7.6 0.5 1.0 - - 170.31 33.22

Canola/Soybean 4:1 1 - - 0.1 5.7 - 2.2 54.5 26.4 8.9 0.5 1.0 - - 181.87 44.3

Canola/Soybean 3:2 1 - - 0.1 7.0 - 2.7 46.7 33.1 8.4 0.4 0.8 - - 177.98 49.93

Canola/Soybean 2:3 1 - - 0.1 8.3 - 3.3 38.8 39.9 7.9 0.4 0.5 - - 174.1 55.55

Canola/Soybean 1:4 1 - - 0.1 9.6 - 3.8 31.0 46.6 7.3 0.3 0.3 - - 170.21 61.18

Canola/Soybean 1:3 1 - - - 9.0 0.1 3.6 34.2 45.3 7.7 0.2 - 0.1 - 174.25 60.6

Canola/Soybean 3:1 1 - - - 6.1 0.2 2.6 54.3 28.6 7.6 0.5 - 0.2 - 181.15 43.8

Canola/Soybean 1:1 1 - - - 7.6 0.1 3.1 44.2 36.9 7.7 0.4 - 0.2 - 177.7 52.2

Canola/Sunflower* 3:1 0.5 - - - 4.6 0.2 2.6 68.7 17.2 5.8 0.6 - 0.5 - 183.55 28.65

Canola/Sunflower* 1:3 0.75 - - - 4.5 0.1 3.5 77.6 11.1 2.1 0.4 - 0.8 - 181.45 15.15

Canola/Sunflower* 1:1 0.5 - - - 4.6 0.1 3.1 73.2 14.1 3.9 0.5 - 0.7 - 182.5 21.9
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(Table 10 continued.) 

*High oleic sunflower. 

Because regression analysis assumes that there exists a linear relationship between the dependent 
and the explanatory variables, it is necessary to investigate if there are any nonlinear 
relationships13. As can be seen in Figure A2, scatter plots of induction periods vs. BAPE and APE 
indices demonstrate a significant degree of linearity, with R2 values of 0.6085 and 0.4582 
respectively14. As expected, FAMEs with higher BAPE and APE values have shorter induction 
periods. 

                                                             

13 If they exist, nonlinear to linear transformations might still enable regression analysis. 

14 Because we represent the γ-tocopherol and tocotrienol levels with dummy variables in the model, scatter 
plots for those variables are not included in this part.  

FEEDSTOCK
Blend 

Ratio
γ-T TT 12:0 14:0 16:0 16:1 18:0 18:1 18:2 18:3 20:0 20:1 22:0 22:1 APE BAPE

Palm/Soybean 9:1 0.1 0.9 0.3 1.0 38.8 0.2 4.6 39.5 14.6 0.9 0.3 - - - 110.32 16.35

Palm/Soybean 4:1 0.2 0.8 - 0.8 34.3 - 4.1 39.0 19.5 1.5 0.3 - - - 120.08 22.51

Palm/Soybean 4:1 0.2 0.8 0.2 0.9 35.6 0.2 4.5 37.8 19.0 1.6 0.2 - - - 117.04 22.2

Palm/Soybean 7:3 0.3 0.7 0.2 0.8 32.5 0.1 4.5 36.1 23.3 2.4 0.2 - - - 123.76 28.05

Palm/Soybean 3:2 0.4 0.6 - 0.6 28.4 - 4.2 35.1 27.9 2.8 0.3 - - - 131.64 33.59

Palm/Soybean 3:2 0.4 0.6 0.2 0.7 29.3 0.1 4.4 34.4 27.6 3.1 0.2 - - - 130.48 33.9

Palm/Soybean 1:1 0.5 0.5 0.2 0.6 26.2 0.1 4.4 32.7 32.0 3.9 0.2 - - - 137.2 39.75

Palm/Soybean 2:3 0.6 0.4 - 0.4 22.6 - 4.2 31.1 36.4 4.1 0.3 - - - 143.2 44.66

Palm/Soybean 2:3 0.6 0.4 0.1 0.4 23.1 0.1 4.3 30.9 36.3 4.7 0.1 - - - 143.92 45.6

Palm/Soybean 3:7 0.7 0.3 0.1 0.3 19.9 0.1 4.3 29.2 40.6 5.4 0.1 - - - 150.64 51.45

Palm/Soybean 1:4 0.8 0.2 - 0.3 16.8 - 4.3 27.1 44.8 5.5 0.3 - - - 154.76 55.74

Palm/Soybean 1:4 0.8 0.2 0.1 0.2 16.8 0.0 4.2 27.5 44.9 6.2 0.1 - - - 157.36 57.3

Palm/Soybean 1:9 0.9 0.1 0.0 0.1 13.6 0.0 4.2 25.8 49.3 6.9 0.0 - - - 164.08 63.15

Palm/Soybean 1:3 0.75 0.25 0.1 0.3 18.4 0.1 4.2 28.4 42.8 5.8 0.1 - - - 154 54.38

Palm/Soybean 3:1 0.25 0.75 0.2 0.8 34.1 0.2 4.5 36.9 21.1 2.0 0.2 - - - 120.4 25.13

Palm/Soybean 1:1 0.5 0.5 0.2 0.6 26.2 0.1 4.4 32.7 32.0 3.9 0.2 - - - 137.2 39.75

Palm/Sunflower* 3:1 - 0.75 0.2 0.8 32.6 0.2 4.5 51.4 9.7 0.1 0.3 - 0.3 - 122.8 9.975

Palm/Sunflower* 1:3 - 0.25 0.1 0.3 13.9 0.1 4.2 71.8 8.6 0.2 0.3 - 0.8 - 161.2 8.925

Palm/Sunflower* 1:1 - 0.5 0.2 0.6 23.2 0.1 4.3 61.6 9.2 0.2 0.3 - 0.5 - 142 9.45

Soybean/Sunflower* 3:1 0.75 - - - 9.0 - 4.1 38.6 42.2 5.8 0.1 - 0.3 - 173.2 53.85

Soybean/Sunflower* 1:3 0.25 - - - 6.0 - 4.0 67.5 19.4 2.1 0.2 - 0.8 - 178 23.55

Soybean/Sunflower* 1:1 0.5 - - - 7.5 - 4.1 53.1 30.8 4.0 0.2 - 0.5 - 175.6 38.7

Palm/Canola/Soybean 1:1:1 0.666 0.333 0.1 0.4 18.8 0.1 3.6 42.8 27.8 5.1 0.3 - 0.1 - 151.47 37.92

Palm/Canola/Soybean 3:1:1 0.4 0.6 - 0.6 27.1 - 3.7 42.9 21.2 3.4 0.4 0.3 - - 135.53 27.96

Palm/Canola/Soybean 2:2:1 0.6 0.4 - 0.4 20.0 - 3.2 46.8 23.0 5.2 0.4 0.5 - - 150.98 33.41

Palm/Canola/Soybean 2:1:2 0.6 0.4 - 0.4 21.3 - 3.7 38.9 29.7 4.7 0.3 0.3 - - 147.09 39.03

Palm/Canola/Soybean 1:3:1 0.8 0.2 - 0.2 12.9 - 2.7 50.7 24.7 7.1 0.5 0.8 - - 166.42 38.85

Palm/Canola/Soybean 1:2:2 0.8 0.2 - 0.2 12.9 - 2.7 50.7 24.7 7.1 0.5 0.8 - - 166.42 38.85

Palm/Canola/Soybean 1:1:3 0.8 0.2 - 0.3 15.5 - 3.7 35.0 38.1 6.0 0.3 0.3 - - 158.65 50.11

Canola/Palm/Sunflower* 1:1:1 0.333 0.333 0.1 0.4 16.8 0.1 3.5 61.9 12.7 2.6 0.4 - 0.4 - 154.64 17.92

Soybean/Canola/Sunflower* 1:1:1 0.666 - - - 6.5 0.1 3.4 56.2 27.0 5.1 0.3 - 0.4 - 176.81 37.22

Soybean/Sunflower*/Palm 1:1:1 0.333 0.3 0.1 0.4 18.8 0.1 4.2 48.6 23.7 2.6 0.2 - 0.3 - 150.08 29.01

Soybean/Canola/

Palm/Sunflower* 1:1:1:1 0.5 0.25 0.1 0.3 15.4 0.1 3.7 52.9 23.0 3.9 0.3 - 0.3 - 159.85 30.83
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Figure A2 – Scatter plots of induction period vs. BAPE and APE indices of the FAMEs in Table 8. 

Prior to running the multiple regression, we randomly selected 35 out of the 69 available data 
points as the training set, and used the remaining 34 points as the validation set later on. Multiple 
regression analysis on the training set resulted in R2 =0.84, with BAPE, γ-tocopherol and tocotrienol 
as the explanatory variables. These variables are statistically significant at the 95% confidence 
level. Detailed parameters of the regression analysis are listed in Table A11: 

Table A11 – Multiple regression analysis results for OS. 

 Term Estimate Std Error t Ratio Prob >|t| Lower 95% Upper 95%  

 Intercept 7.41 0.702 10.54 <0.0001 5.98 8.84  
 BAPE -0.092 0.014 -6.40 <0.0001 -0.12 -0.06  
 γ-T 2.76 0.732 3.78 0.0007 1.27 4.25  
 TT 4.12 0.738 5.59 <0.0001 2.62 5.63  

Thus, the regression equation for the induction period can be expressed as in Eqn A2: 

 𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 = 7.41 − 0.092 ∗ 𝐵𝐴𝑃𝐸 + 2.76 ∗ 𝛾_𝑇 + 4.12 ∗ 𝑇𝑇 (A2) 
The model was validated on the validation set, and a reasonable fit was found with a root-mean-
square error of 1.23. We then performed Monte Carlo simulations to demonstrate potential range of 
induction periods for each feedstock. The results are listed in Table A12. The numbers in bracket 
represent 5th and 95th percentile estimates. Modeled induction period ranges follow the general 
trend reported in the literature with palm oil having the highest OS among others. However, the 
upper bounds of measured values are considerably higher than the model prediction. We think that 
those values are outliers, and therefore are not captured by the regression equation. It is also 
possible that those outlier samples contained some sort of antioxidant additives in their 
composition.  

Table A12 – Monte Carlo simulation results of induction periods (IPs) predicted by the regression model. The 
numbers in bracket represent the 5th and 95th percentile estimates.  

 FAME Model IP Estimate (h) Measured IP in Literature (h)  

 Canola [6.0, 6.8] [6.4, 9.1]  
 Soybean [3.6, 4.1] [3.5, 6.6]  
 Sunflower [1.1, 2.4] [1.8, 3.4]  
 Palm [10.5, 10.8] [10.3, 15.4]  

 

APPENDIX B: CHANCE-CONSTRAINED OPTIMIZATION APPLIED TO BIODIESEL FEEDSTOCK 

BLENDING 
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We begin by describing the theory behind CC optimization. Let Xi be a normally distributed random 
variable with mean 𝑋̅𝑖 and standard deviation 𝜎𝑥𝑖

; Ai a corresponding weighing coefficient; and Y 

and Z constants representing deterministic constraints. We define α and β as confidence levels of 
meeting the specified constraint. Thus, the probability of meeting the constraint can be expressed 
as in Eqns B1&B2: 

 

𝑃𝑟 {∑ 𝐴𝑖 𝑋𝑖 ≤ 𝑌

 

𝑖

} ≥ 𝛼 (B1) 

 
𝑃𝑟 {∑ 𝐴𝑖 𝑋𝑖 ≥ 𝑍

 

𝑖

} ≥ 𝛽 (B2) 

Because we assume Gaussian distributions for the random variables in this model, we can 
transform Eqns B3 and B4 to obtain the standard normal distribution with mean µ=0, and variance 
σ2=1, and then use standard test coefficients corresponding to the chosen confidence levels. The 
test coefficient for Gaussian distribution is usually denoted by z-value. At the limit of meeting the 
constraint, ∑ 𝐴𝑖 𝑋𝑖

 
𝑖  approaches to Y or Z. Thus: 

 

𝑌 − ∑ 𝐴𝑖𝑋̅𝑖
 
𝑖

𝜎𝑀𝑖𝑥
 ≥ 𝑧_𝑣𝑎𝑙𝛼 →  ∑ 𝐴𝑖𝑋̅𝑖

 

𝑖

+  𝑧_𝑣𝑎𝑙𝛼𝜎𝑀𝑖𝑥 ≤ 𝑌 (B3) 

 −𝑍 +  ∑ 𝐴𝑖𝑋̅ 
𝑖

𝜎𝑀𝑖𝑥
 ≥ 𝑧_𝑣𝑎𝑙𝛽 →  ∑ 𝐴𝑖𝑋̅𝑖

 

𝑖

−  𝑧_𝑣𝑎𝑙𝛼𝜎𝑀𝑖𝑥 ≥ 𝑍 (B4) 

where 𝜎𝑀𝑖𝑥 refers to the pooled standard deviation of the mix. 

CC optimization for the biodiesel blending problem can be formulated as in Eqns B5-B12. The 
objective is to minimize the total feedstock cost.  

𝑀𝑖𝑛: ∑ 𝑃𝑖𝐴𝑖

𝑖

 (B5) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝐴𝑖

𝑖

= 𝐷 (B6) 

 ∑ 𝐴𝑖

𝑖

≤ 𝑆𝑖 (B7) 

 𝐼𝑉̅̅
𝐵̅ +  𝑋(𝛼)𝜎𝐼𝑉𝐵

≤ 𝐼𝑉𝑐𝑜𝑛𝑠 (B8) 

 

𝑂𝑆̅̅̅̅
𝐵 − 𝑋(𝛼)𝜎𝑂𝑆𝐵

≥ 𝑂𝑆𝑐𝑜𝑛𝑠 (B9) 

 

𝐶𝑁̅̅ ̅̅
𝐵 −  𝑋(𝛼)𝜎𝐶𝑁𝐵

≥ 𝐶𝑁𝑐𝑜𝑛𝑠 (B10) 

 

𝐶𝐹𝑃𝑃̅̅ ̅̅ ̅̅ ̅̅
𝐵 +  𝑋(𝛼)𝜎𝐶𝐹𝑃𝑃𝐵

≤ 𝐶𝐹𝑃𝑃𝑐𝑜𝑛𝑠 (B11) 



30 

 

 

𝐺𝐻𝐺̅̅ ̅̅ ̅̅
𝐵 +  𝑋(𝛼)𝜎𝐺𝐻𝐺𝐵

≤ 𝐺𝐻𝐺𝑐𝑜𝑛𝑠 (B12) 

where; 

𝑃𝑖  : unit price of feedstock i 
𝐴𝑖  : volume proportion of feedstock i in the blend 
𝐷 : total demand 
𝑆𝑖 : supply of feedstock i 
𝑋(𝛼): test coefficient for normal distribution, one-tailed 
𝐼𝑉̅̅

𝐵̅ : mean iodine value of the blend 
𝐼𝑉𝑐𝑜𝑛𝑠 : iodine value constraint 
 𝜎𝐼𝑉𝐵

: standard deviation of iodine value in the blend 

𝑂𝑆̅̅̅̅
𝐵 : mean oxidation stability of the blend 

𝑂𝑆𝑐𝑜𝑛𝑠 : oxidation stability constraint 
 𝜎𝑂𝑆𝐵

: standard deviation of oxidation stability in the blend 

𝐶𝑁̅̅ ̅̅
𝐵 : mean cetane number of the blend 

𝐶𝑁𝑐𝑜𝑛𝑠 : cetane number constraint 
 𝜎𝐶𝑁𝐵

: standard deviation of cetane number in the blend 

𝐶𝐹𝑃𝑃̅̅ ̅̅ ̅̅ ̅̅
𝐵 : mean cold filter plugging point of the blend 

𝐶𝐹𝑃𝑃𝑐𝑜𝑛𝑠 : cold filter plugging point constraint 
 𝜎𝐶𝐹𝑃𝑃𝐵

: standard deviation of cold filter plugging point in the blend 

𝐺𝐻𝐺̅̅ ̅̅ ̅̅
𝐵: mean GHG of the blend 

𝐺𝐻𝐺𝑐𝑜𝑛𝑠 : GHG constraint 
 𝜎𝐺𝐻𝐺𝐵

: standard deviation of GHG in the blend 

The amounts of each feedstock to be blended, namely Ai, constitute the decision variables of the 
optimization problem. Choosing a set of Ai values determines the amount of each FA, aj, in the blend. 
Because FAs are the building blocks that define all the physical parameters, we can derive IV, CN, OS 
and CFPP based on the FA profile of the blend. The following equations outline how this derivation 
is performed.  

Mean physical parameter values are derived as in Eqns B13-B19: 
 𝑎̅𝑗 = ∑ 𝐴𝑖 𝐶𝑗̅𝑖

𝑖,𝑗

 (B13) 

 𝐼𝑉̅̅
𝐵̅ = ∑ 𝑎̅𝑗𝐼𝑉𝑗

𝑗

 (B14) 

 

𝐵𝐴𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅
𝐵 =  100 ∗ (∑ 𝑎̅𝑗

𝑗

∶ 𝑗 ℎ𝑎𝑠 𝑡𝑤𝑜 𝑑𝑜𝑢𝑏𝑙𝑒 𝑏𝑜𝑛𝑑𝑠) + 200

∗ (∑ 𝑎̅𝑗

𝑗

∶ 𝑗 ℎ𝑎𝑠 𝑡ℎ𝑟𝑒𝑒 𝑑𝑜𝑢𝑏𝑙𝑒 𝑏𝑜𝑛𝑑𝑠 ) 

(B15) 

 𝑂𝑆̅̅̅̅
𝐵 =  𝐼𝑛𝑡𝑒𝑟𝑐𝑂𝑆 + 𝐶𝐵𝐴𝑃𝐸 ∗ 𝐵𝐴𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅

𝐵 + 𝐶𝛾𝑇 ∗ 𝛾𝑇 + 𝐶𝑇𝑇 ∗ 𝑇𝑇 (B16) 

 𝐶𝑁̅̅ ̅̅
𝐵 =  ∑ 𝑎̅𝑗𝐶𝑁𝑗

𝑗

 (B17) 
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𝐶𝐹𝑃𝑃̅̅ ̅̅ ̅̅ ̅̅
𝐵 =  𝐼𝑛𝑡𝑒𝑟𝑐𝐶𝐹𝑃𝑃 +∗ 𝐶𝐶𝐹𝑃𝑃 (∑ 𝑎̅𝑗 ∶ 𝑗 𝑖𝑠 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑

𝑗

) (B18) 

 𝐺𝐻𝐺̅̅ ̅̅ ̅̅
𝐵 =  ∑ 𝐺𝐻𝐺̅̅ ̅̅ ̅̅

𝑖

𝑖

∗  𝐴𝑖 (B19) 

where; 
𝑎̅𝑗 : mean composition of FA j in the blend 

 𝐶𝑗̅𝑖: mean composition of FA j in feedstock i 

𝐼𝑉𝑗 : iodine value of FA j 

𝐵𝐴𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅
𝐵 : mean BAPE of the blend 

𝐼𝑛𝑡𝑒𝑟𝑐𝑂𝑆: intercept in the oxidation stability regression equation 
𝐶𝐵𝐴𝑃𝐸: coefficient of BAPE in the oxidation stability regression equation 
𝐶𝛾𝑇: coefficient of γ-tocopherol in the oxidation stability regression equation 

𝛾𝑇: amount of γ-tocopherol in the blend 
𝐶𝑇𝑇: coefficient of tocotrienol in the oxidation stability regression equation 
𝑇𝑇: amount of tocotrienol in the blend 
𝐶𝑁𝑗 : cetane number of FA j 

𝐶𝐹𝑃𝑃𝑗 :  cold filter plugging point of FA j 

𝐼𝑛𝑡𝑒𝑟𝑐𝐶𝐹𝑃𝑃: intercept in the cold filter plugging point regression equation 
𝐶𝐶𝐹𝑃𝑃: coefficient of total saturation in the cold filter plugging point regression equation 
𝐺𝐻𝐺̅̅ ̅̅ ̅̅

𝑖: mean GHG of feedstock i 
Standard deviations are derived as in Eqns B20-B25: 
 

𝜎𝑗 = √∑ 𝐴𝑖
2 𝜎𝑗𝑖

2

𝑖,𝑗

 (B20) 

 
𝜎𝐼𝑉𝐵

= √∑ 𝐼𝑉𝑗
2 𝜎𝑗𝑖

2

𝑖,𝑗

 (B21) 

 
𝜎𝐶𝑁𝐵

= √∑ 𝐶𝑁𝐽
2 𝜎𝑗𝑖

2

𝑖,𝑗

 (B22) 

 

𝜎𝑂𝑆𝐵
=   √𝐶𝐵𝐴𝑃𝐸

2 ( ∑ 𝜎𝑗𝑖
2

𝑖,𝑗=18:2

+  22 ∑ 𝜎𝑗𝑖
2

𝑖,𝑗=18:3

) (B23) 

 
𝜎𝐶𝐹𝑃𝑃𝐵

=   √𝐶𝐶𝐹𝑃𝑃
2 ∑ 𝜎𝑗𝑖

2

𝑖,𝑗=12:0,14:0,16:0,18:0

 (B24) 

 
 𝜎𝐺𝐻𝐺𝐵

=  √∑ 𝐴𝑖
2 𝜎𝐺𝐻𝐺𝑖

2

𝑖

 (B25) 

where; 
𝜎𝑗: standard deviation of composition of FA j in the blend 

𝜎𝑗𝑖: standard deviation of composition of FA j in feedstock i 

𝜎𝐺𝐻𝐺𝑖
: standard deviation of GHG emissions of feedstock i 

Finally, it must be noted that there is another layer of U&V factor for the predicted properties OS 
and CFPP. This U&V stems from the standard errors in their prediction coefficients, and should be 
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propagated similar to the compositional U&V. Yet, because the prediction coefficients are multiplied 
by the relevant FA compositions, estimating the variance of the product becomes nontrivial. The 
exact variance of a product of two random variables was derived by Goodman in 1960 [27]. In Eqn. 
B26 we refer to an approximation to estimate the variance of two random variables that are 
independent from each other: 

 𝑣𝑎𝑟(𝑋𝑌) = 𝑋̅2 ∗ 𝑣𝑎𝑟(𝑌) + 𝑌̅2 ∗ 𝑣𝑎𝑟(𝑋) + 𝑣𝑎𝑟(𝑋) ∗ 𝑣𝑎𝑟(𝑌) (B26) 

In Eqns B27&B28, we outline the set of statements that would be used if the standard error in the 
BAPE coefficient for OS prediction, and the standard error in the total saturation coefficient for 
CFPP were taken into account.15 However, note that these complex estimates have not been used to 
obtain the results reported in the subsequent chapters.  

 

𝜎𝑂𝑆𝐵
= [ 𝐶𝐵𝐴𝑃𝐸

2 ( ∑ 𝜎𝑗𝑖
2

𝑖,𝑗=18:2

+  22 ∑ 𝜎𝑗𝑖
2

𝑖,𝑗=18:3

) + 𝐵𝐴𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅
𝐵

2
𝜎𝐶𝐵𝐴𝑃𝐸

2

+ ( ∑ 𝜎𝑗𝑖
2

𝑖,𝑗=18:2

+ 22 ∑ 𝜎𝑗𝑖
2

𝑖,𝑗=18:3

) 𝜎𝐶𝐵𝐴𝑃𝐸
2]

1/2

 

(B27) 

 

 

𝜎𝐶𝐹𝑃𝑃𝐵
= [   𝐶𝐶𝐹𝑃𝑃

2 ∑ 𝜎𝑗𝑖
2

𝑖,𝑗=12:0,14:0,16:0,18:0

+ 𝐶𝐹𝑃𝑃̅̅ ̅̅ ̅̅ ̅̅
𝐵

2
𝜎𝐶𝐶𝐹𝑃𝑃

2

+ ∑ 𝜎𝑗𝑖
2𝜎𝐶𝐶𝐹𝑃𝑃

2

𝑖,𝑗=12:0,14:0,16:0,18:0

]

1/2

 

(B28) 

where;  

𝜎𝐶𝐵𝐴𝑃𝐸
: standard deviation of BAPE coefficient in the OS regression equation 

𝜎𝐶𝐶𝐹𝑃𝑃
∶ standard deviation of CFPP coefficient in the CFPP regression equation 

 

SENSITIVITY ANALYSIS ON CONSTRAINT LEVELS 
In order to observe how the historical blend portfolios and costs would differ with respect to 
changing constraint levels in CFPP, OS and GHG, we ran the CC optimization model on the monthly 
data between January 2003 and June 2011. Because CN and IV rarely become binding, we excluded 
them from the analyses in this section.  

SENSITIVITY ON THE CFPP CONSTRAINT 
Figure B1 shows how the historical optimal portfolios change when the maximum CFPP limit is (a) -
2˚C, (b) -1˚C and (c) 0˚C. We see a reduction in the overall use of canola and an increase in palm and 
sunflower as the constraint is relaxed.   

                                                             

15 In fact, OS prediction has two more coefficients, g-tocopherol and tocotrienol coefficients, that possess 
standard errors. For simplicity of illustration, we did not include them here.  
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Figure B1 – Historical optimal blend portfolios when the CFPP constraint is (a) -2 ˚C, (b) -1˚C and (c) 0˚C. 

Figure B2 shows the resulting feedstock cost of biodiesel over time. The differences between the 
curves reflect the marginal cost of tightening the constraint from 0˚C to -1˚C, and from -1˚C to -2 ˚C. 
Depending on the relative prices of feedstocks, some months demonstrate a relatively high cost 
difference, whereas in other months, feedstock cost of biodiesel almost converges to a single point.  

 

Figure B2  – Feedstock cost of biodiesel subject to different CFPP limits. 

SENSITIVITY ON THE OS CONSTRAINT  
Figure B3 shows how the historical optimal portfolios change when the minimum OS limit is (a) 6 
hours, (b) 4.5 hours, and (c) 3 hours. A reduction in the overall use of canola and an increase in 
soybean are observed as the constraint is relaxed from 6 hours to 3 hours. The particular increase 
in the use of soybean explains why the US industry standard for OS is only 3 hours. Soybean is the 
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most common domestic biodiesel feedstock in the US and can be a very attractive option for the 
producer when the OS limit is low.  

  
  

  

Figure B3 – Historical optimal blend portfolios when the OS constraint is (a) 6 hours, (b) 4.5 hours, and (c) 3 hours. 

Figure B4 shows the resulting feedstock cost of biodiesel. As expected, a relaxation of the constraint 
results in lower costs overall. Although correlated fluctuations can be observed in general, the 
period between August 2007 and January 2008 demonstrates an interesting trend: there is a cost 
peak for the 6-hour constraint in contrast to the apparent cost decrease for the 4.5-hour and 3-hour 
constraints. This happens due to the fact that canola is needed in high proportions to achieve at 
least 6 hours of induction period. The deflated price of canola increased compared to the other 
vegetable oils during August 2007-January 2008. A closer look at December 2007 results in Figure 
B4 reveals the significance of constraint levels on the cost competitiveness of biodiesel: Feedstock 
cost is about $525/ton when the OS limit is 6 hours and $348/ton when the OS limit is 3 hours-- a 
cost increase by more than 65%.  
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Figure B4 - Feedstock cost of biodiesel subject to different OS limits. 
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