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Abstract

We present a computer package designed to generate and test norm-conserving pseudo-potentials within Density Functional Theory. The
generated pseudo-potentials can be either non-relativistic, scalar relativistic or fully relativistic and can explicitly include semi-core states. A wide
range of exchange—correlation functionals is included.

Pr ogram summary

Program title: Atomic Pseudo-potentials Engine (APE)

Catalogue identifier: AEAC_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEAC_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
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Distribution format: tar.gz

Programming language: Fortran 90, C
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Operating system: GNU/Linux

RAM: <5Mb

Classification: 7.3

External routines: GSL (http://www.gnu.org/software/gsl/)

Nature of problem: Determination of atomic eigenvalues and wave-functions using relativistic and nonrelativistic Density-Functional Theory.
Construction of pseudo-potentials for use in ab-initio simulations.

Solution method: Grid-based integration of the Kohn—Sham equations.

Restrictions: Relativistic spin-polarized calculations are not possible. The set of exchange—correlation functionals implemented in the code does
not include orbital-dependent functionals.

Unusual features: The program creates pseudo-potential files suitable for the most widely used ab-initio packages and, besides the standard
non-relativistic Hamann and Troullier—Martins potentials, it can generate pseudo-potentials using the relativistic and semi-core extensions to the
Troullier—Martins scheme. APE also has a very sophisticated and user-friendly input system.

Running time: The example given in this paper (Si) takes 10 s to run on a Pentium I'V machine clocked at 2 GHz.
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1. Introduction

Density-functional theory [1] (DFT) methods have become
the methods of choice to study a wide range of phenomena. At
the base of this success is the affordable computational effort
they require and one of the key ingredients contributing to this
is the pseudo-potential approximation.

In the pseudo-potential approximation the electrons in the
atom are separated into valence and inner core electrons. Since
the inner core electrons are strongly bound they do not play a
significant role in the chemical binding of atoms. This means
they can safely be ignored in a large number of cases and the
potential felt by the valence electrons can be replaced by an
effective interaction that accounts for the nuclear attraction and
all the interactions between the valence and the inert inner core
electrons. This effective interaction is the pseudo-potential.

Many different schemes have been proposed to generate
pseudo-potentials [2—7]. In recent years some new develop-
ments occurred in pseudo-potential theory: two extensions of
the Troullier—Martins scheme were proposed, one to include
semi-core states explicitly [8] and the other to obtain pseudo-
potentials from a fully relativistic all-electron calculation in a
consistent way [9].

In this article we present a computer package to generate
and test norm-conserving pseudo-potentials that include these
novel features. We wrote the code in Fortran 90/95 using mod-
ern programming concepts so that it should be easy to add new
features.

The program can output the pseudo-potentials in four dif-
ferent formats, corresponding essentially to four different
widely used ab-initio packages: SIESTA [10], FHI9SPP [11],
ABINIT [12], and PWscf [13].

2. Density Functional Theory for atoms

In this section we will take a brief overlook on density func-
tional theory for atoms, both relativistic and non-relativistic,
and/or the numerical details of our implementation.

2.1. Non-relativistic equations

Within non-relativistic Kohn—Sham DFT [14], the ground
state of a system of N electrons subject to an external potential
can be obtained by solving a set of one-particle equations, the
Kohn—Sham equations [14] (atomic units will be used through-
out):
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The Kohn-Sham potential vks[n](7), a functional of the elec-
tronic density n(7), is usually divided as:

vks[n](F) = vext (F) + vu[n](F) + vxc[n](F), 2

where vey 1S the external potential, vy is the Hartree potential
and vy, is the exchange and correlation potential. For simplicity
we will from now on omit the electronic density when referring
to the Kohn—Sham potential: vgs () = vgs[n](F).

In the case of an isolated atom, vex(¥) is just the nuclear
—% potential. Taking into account the spherical symmetry of
the problem, one normally performs a spherical averaging of
the density. This leads to a spherically symmetric Kohn—Sham
potential and thus the Kohn—Sham orbitals can be separated into
angular and radial parts:

@i (1) = Ru (1Ym0, ). 3)

Yim (0, @) are spherical harmonics and R (r) are the solutions
of a “simple” one-dimensional second-order differential equa-

tion:
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Because of the spherical symmetry of the system, states with
the same n and / quantum numbers are degenerate and therefore
equally occupied. As a consequence, the radial electron density
can be written as:

n—1 2
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with ©@,; denoting the occupation of each nl sub-shell.

When dealing with atoms with net spin it is necessary to use
spin density functional theory [15]. In that case the exchange—
correlation potential depends not only on the density n(r) =
n(r,o =1) 4+ n(r,o0 =) but also on the magnetization den-
sity m(r) = n(r,0 =1) — n(r,o0 =) and the spin-up and
spin-down electrons feel a different Kohn—Sham potential. This
means there are two sets of one-particle equations to be solved.

2.2. Relativistic equations

When relativistic effects become important one needs to in-
corporate them into the Kohn—Sham equations. One possible
way is to use the scalar-relativistic scheme of Koelling and Har-
mon [16] which omits the spin—orbit interaction but includes
all other relativistic kinematic effects. In that case the R,;(r)
are the solutions of the following one-dimensional second-order

differential equation:
1 d? 1 dM@)d 2d Id+1)
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+ vks(F) Ry (r) = ep1 Ry (r), (6)
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with the relativistic electron mass M (r) given by M(r) =1+

(en1 — vKs(r)) /2%

Another way to incorporate relativistic effects is to use the
relativistic extension of DFT [17] (RDFT). In RDFT the Kohn—
Sham equations are replaced by the Dirac—-Kohn—Sham equa-
tions:

[—icd -V + B + vks(P)]oi (F) = £ (P), (7a)
occ

n@ =y ¢ ®ei ). (7b)

In a similar way as for the non-relativistic case, if vex; is just the
nuclear —% potential then the Dirac—Kohn—Sham spinors ¢; (F)
can be separated into angular and radial parts:

o 8 ()2 (0, @)
= <—fnlj(r)9jl/m(9,¢)>’ ®)

Qjim0,¢) and 2y, (0,¢) are the spherical spinors and
gnij(r) and fy;(r) are the solutions of a set of two coupled
first-order differential equations (with &; — &,;; + c2):

dgnj(r) 14k
c[% + —gnz‘/(r)}
dr r

— [entj +2¢% — vks(M)] fuj (r) =0, (9a)

dfuj(r) | 1—k
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+ [entj — vks(r) ] guij (r) = 0. (9b)

The quantum numbers k, [ and [’ are related to each other in the
following way:

I'=1—k/lkl.
P ) for j=1+1,
! for j=1— 3.
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Taking into account the degeneracy of states with the same n,
J, and [ quantum numbers the radial electron density can be
written as:
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2.3. Numerical details

2.3.1. Solution of the single-particle equations

Eqgs. (9) for the fully relativistic case are of first order.
Second-order equations (4) and (6) for the non-relativistic and
scalar-relativistic cases can be trivially transformed into a set
of coupled first-order equations. Then, whatever formulation of
DFT used, one is left with two coupled one-dimensional first-
order differential equations and the same numerical method can
be used to solve them. One should note that the eigenvalues ¢,;
must be obtained simultaneously with the eigenfunctions.

The solutions of the single-particle equations, for a given,
fixed, electronic density, are obtained in the following way:

(1) Let f(r) and g(r) be the functions to be determined when
solving the set of differential equations.

(2) For a given energy &,; choose two arbitrary values f(ro)
and f(r») where rq is a point close to the origin and r is
a point very far away.

(3) Compute g(rp) and g(roo) using boundary conditions de-
termined from the equations to solve when r — 0 and
r— 00.

(4) Knowing f(rg) and g(ro) and using a suitable algorithm to
solve ordinary differential equations it is possible to obtain
the values of f and g at a point r, lying between rp and 7.
A good choice for ry, is the classical turning point.

(5) Repeat the previous step, but starting the integration from
“practical infinity” roo.

(6) Let f1(r) and g1(r) be the functions obtained at step (3)
and f>(r) and g»(r) the functions obtained at step (4). Mul-
tiply £1(r) and g1 (r) by fo(rm)/fi(rm). This makes f(r)
continuous at ry,.

(7) &y is an eigenvalue when g1 (r,,) = g2(rm), so the problem
of finding the eigenvalues can be reduced to the problem of
finding the roots of the function g1 (r,) — g2(rm).

There are several methods that can be used at steps (4)
and (5). We have chosen to rely on the methods available in the
GNU Scientific Library [18] (GSL) that provide the solutions
on an adaptive grid. As for the root finding problem (step (7)),
since it is easy enough to bracket the eigenvalues, APE uses
Brent’s method [19] to find the roots within a given tolerance.

2.3.2. Self-consistent cycle

The eigenfunctions obtained with the procedure outlined in
the previous section are used to rebuild the electronic density
(Egs. (5) or (11)). As the Kohn—Sham potential depends on
the density, a new density corresponds to a new potential, and
the differential equations have to be solved again, in a self-
consistent manner. The self-consistency cycle ends when some
stopping criterion is met. In APE, the stopping criterion is based
on the difference between the new and the old Kohn—Sham po-
tential.

2.3.3. Grids

All the quantities that need to be kept in memory are stored
on a radial logarithmic grid. This is the most suitable kind of
grid for this purpose since a higher density of points is needed
near the origin. Unfortunately there is more than one way to
define a logarithmic grid, so we implemented two commonly
used ways to construct it. In both cases, two parameters a and b
are required. The ith point of the grid is defined as r; = be® in
one case and as 7; = be“’ in the other case. The parameters
a and b are determined by specifying the number of grid points
and the starting and ending points.

Since some of the quantities are determined on an adap-
tive grid, cubic splines are used to extrapolate their values on
the logarithmic grid. The numerical calculation of integrals and
derivatives is also done using cubic splines. All the spline oper-
ations are handled by the GSL.
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2.3.4. Hartree and exchange—correlation potential
The evaluation of the Hartree potential is straightforward in
the case of a spherically symmetric density:

r o0

4
VHartree () = —n/dr’r’zn(r’) +47t/dr/r/n(r/). (12)

r

0 r

For the evaluation of the exchange and correlation potential, in
order to provide as many functionals as possible, we use a li-
brary of functionals written in C for the Octopus project [20].
This library provides a great number of LDA and GGA func-
tionals as well as their relativistic extensions.

2.3.5. Mixing

In order to avoid instabilities during the self-consistent cycle,
the input density for the next iteration is built using the densities
of the previous iterations. Both linear mixing and the general-
ized Broyden algorithm of Johnson [21] are implemented in the
code.

3. Pseudo-potential generation and testing

In this section we will briefly introduce norm-conserving
pseudo-potentials and the different schemes implemented in
APE to generate them. We will then present the Kleinman—
Bylander form of the pseudo-potentials and finalize with some
considerations on pseudo-potential transferability.

3.1. Norm-conserving pseudo-potentials

Modern pseudo-potentials are obtained from all-electron
atomic calculations and are able to describe accurately the
chemically relevant part of the valence wave-functions and
charge density [22]. The procedure to obtain many of them, the
so-called norm-conserving pseudo-potentials, is the following:

(1) The radial Kohn—Sham equations for the free atom are
solved, using the methods expounded in the previous sec-
tion, for a given reference configuration. We thus obtain the
all-electron wave-functions RIAE(r) and potential vfég.

(2) The pseudo wave-functions RlPP(r) are determined using a
suitable scheme that obeys several pgeneric conditions.

(3) The screened pseudo-potential vlP S (r) results from the
inversion of a radial Schrodinger-like Kohn—Sham equation
for the pseudo wave-function and the valence electronic
density

(+1) 1
— —r
2r2 2rRlPP(r) dr?

PP,scr PP PP
v (r)=¢ Ry (r).

(13)

(4) The Hartree and the exchange—correlation screening con-

tributions from the valence electrons are subtracted to

the screened pseudo-potentials in order to obtain the final
pseudo-potentials

oPP(r) = 0,75 () — v Haree [T 1) — vxe [nTF1().
(14)

The conditions imposed on the pseudo wave-functions are
the following:

(1) The pseudo wave-functions coincide with the all-electron
valence wave-functions beyond a certain radius r; known
as the core cutoff radius
RIP(r) =RAF(r), ifr>n. (15)

Also, the pseudo wave-functions are normalized. These
conditions impose the following norm-conservation con-

straint:
/dr|R{’P(r)|2r2:/dr|R,¢lE(r)|2r2, ifr' >r.  (16)
0 0

(2) The pseudo energy-eigenvalues match the all-electron
eigenvalues
P = hE, (17)

(3) The pseudo wave-functions should not have nodal surfaces.

As a consequence of the previous conditions it comes that
the logarithmic derivatives of the pseudo wave-functions agree
with the all-electron wave-functions beyond the core cutoff ra-
dius:

C% In R (r) = c% In RAE(r). (18)
As it can be seen above, the norm-conserving pseudo-potentials
are spherically symmetric and /-dependent. Because of that, the
pseudo-potential operator is non-local in the angular variables
and local in the radial variable and it can be written in the fol-
lowing semi-local form:

Ds = D 1Yo F () (Y. (19)
Im

Up to here we assumed the wave-functions and wave-equations
to be non-relativistic. Nevertheless it is possible to include rel-
ativistic effects in the pseudo-potentials. To do that one starts
from a relativistic all-electron calculation and generates the
pseudo-potentials for both j =14 1/2 and j =1 — 1/2. One
may use directly these j-dependent pseudo-potentials, but it
may be convenient to remove this dependency by separating
the scalar-relativistic effects from the spin—orbit coupling term.
This is done by defining:

A l PP PP
v o= 01 [+ Dv ) + 107 0], (20a)
1
SO PP PP
Sy = 2I—+I[U’“/2 — v ] (20b)

leVg can be used directly in Eq. (19), thus neglecting the spin—
orbit coupling term. When including spin—orbit effects Eq. (19)
becomes:

BsL= Y Yim) [0 () + 80POL - S](y. @1
Im
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3.2. Spin polarization

If the atomic reference configuration is spin-polarized, the
resulting pseudo-potentials will be spin-dependent. But the
pseudo-potentials represent the effect of the inert ionic core.
Therefore, this spin-dependence can be interpreted as a net
magnetization of the core. However, in most cases, spin polar-
ization of the core is negligible. The most usual way to deal with
this side-effect is to perform a spin-averaging of the pseudo-
potential:

SA _ NJ N ei 2

T
v = Evl + Vevl (22)

(N, denotes the total number of valence electrons and Nﬁ and
Ni represent the number of electrons with spin up and down,
respectively). This spin-averaging is in fact an approximation,
as we assume that all spin-polarization comes from the valence
electrons. The approximation breaks down for, e.g., transition-
metal atoms like Fe, Ni, and Cr. In these cases one can recover
core polarization by explicitly including semi-core states in the
pseudo-potential or by the generation of a perturbative correc-
tion to the spin-independent pseudo-potential [23]. In the latter
case, the spin-dependent potential is constructed only at the mo-
ment of its application, as the local magnetization density is
required. APE only performs the spin-averaging, dealing with
core polarization through the MRPP scheme (see below).

3.3. Unbound states

In order to generate the pseudo-potential for channels as-
sociated to unbound states, the code offers two options for
the pseudo-state reference energy. The first option is the one
used in José Luis Martins’ code [24], i.e., the reference en-
ergy is assumed to be zero. The other option is the one used
in the FHI98PP code [11] which consists in considering that
all pseudo-states corresponding to unbound all-electron levels
have the same energy as the least bound state.

3.4. Pseudo-potential generation schemes

3.4.1. Hamann potential

One of the most used pseudo wave-functions parametriza-
tions is the one proposed in 1979 by Hamann, Schliiter, and
Chiang [25] and later improved by Bachelet, Hamann and
Schliiter [26] and Hamann [3].

The method they proposed consists in using an intermediate
pseudo-potential, ﬁfp(r), given by

PP (r) = vféE[nAE](r)[l - f(fl)] +czf<§l), (23)

where f(x) = e and A =4.0 [25] or A = 3.5 [3,26].

The Kohn—Sham equations are solved using this intermedi-
ate pseudo-potential, and the constants ¢; are adjusted in order
to obey (17). This results in a set of intermediate wave-func-
tions R;(r). Notice that the form of the wave-functions implies
that norm-conservation (Eq. (16)) is verified for some 7; > r;.

As the two effective potentials are identical for r > 7, and given
the fast decay of f(x), the intermediate pseudo wave-functions
coincide, up to a constant, with the true wave-functions in that
region.

In the method proposed by Hamann [3], the parameters c¢;
are adjusted so that

d AE d 5
L[ RO, = Sl R)]
This way, the method is not restricted to bound states.

To impose norm-conservation (Eq. (16)), the final pseudo
wave-functions, R})P (r), are defined as a correction to the inter-
mediate wave-functions

(24)

r=r;’

RP(r) = y[Rir) +8i21(0)], (25)

where y; is the ratio Rr’l\lE(r) /R;(r) in the region where r > r;
and g;(r) = r'*! f(r/r;). The constants 8; are adjusted to con-
serve the norm.

Following the suggestions in the original papers by D. Ha-
mann et al., the position of the outermost maximum, rlMaX, of
the radial wave-function is used to choose convenient cutoff
radii. In APE, 7; is adjusted, by default, to be O.6rlMax if there
are core states present with the same angular momentum and
0.4rlMax otherwise.

3.4.2. Troullier—Martins potential

A different method for the construction of the pseudo wave-
functions was proposed by Troullier and Martins [2,27], based
on earlier work by Kerker [28]. This method is much simpler
than Hamann’s and emphasizes the desired smoothness of the
pseudo-potential (although it introduces additional constraints
to obtain it). It achieves softer pseudo-potentials for the 2p
valence states of the first row and for the d valence states of
the transition metals. For other elements both methods produce
equivalent potentials.

The pseudo wave-functions are defined as

AE :
PP _JR ] r), ifr>r,
Rim )= { rl’;p(’), ifr <y, (26)

with

p(r)=co+ C2r2 + C4r4 + 66r6 + Cgr8 + clorlo + clzrlz.
(27)

The screened pseudo-potential is obtained by inserting the ra-
dial pseudo wave-function (26) into Eq. (13):

UIPP,scr(r) — :

CARN

et + LELp/(r) 4 LOHPOE,
The coefficients of p(r) are adjusted imposing norm-

conservation, the continuity of the pseudo wave-functions and

of their first four derivatives at » = r;, and that the screened

pseudo-potential has null curvature at the origin. This last con-

dition implies that

5+ a2l +5) =0, (29)
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Fig. 1. Chromium pseudo-potentials and pseudo wave-functions generated using the MRPP scheme. The following cutoff radii were used: 2% = 1.61, r{ ; =2.80,
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and is at the origin of the enhanced smoothness of the Troullier
and Martins pseudo-potentials. The resulting set of seven equa-
tions includes two non-linear equations, and is solved using the
derivative-free Hybrid algorithm provided by the GSL.

3.4.3. Troullier—Martins potential with explicit incorporation
of semi-core states

The Troullier—Martins scheme presented in the previous
section usually allows the generation of very accurate pseudo-
potentials for most elements. Nevertheless there are cases
where the separation between valence and inner core electrons
is not well verified, i.e., some core states are not strongly bound
or have a large extension. Those core states are known as semi-
core states. Because of them the TM pseudo-potentials may
fail to predict accurately some physical properties like the bond
lengths of several 3d transition metal clusters. Reis et al. [8]
suggested an extension of the TM scheme to explicitly include
the semi-core states into the valence space. This scheme is
known as multi-reference pseudo-potentials (MRPP).

Usually it is not necessary to include semi-core states for all
the values of the angular momentum /. The pseudo-potentials
for those values of / should be generated by applying the usual
TM scheme.

In the MRPP scheme both the nodeless pseudo wave-
functions for the semi-core states and the single-node pseudo
wave-functions for the valence states are required to match the
all-electron wave-functions beyond a chosen cutoff radius. This
cutoff radius does not need to be the same for the semi-core and
the valence states.

As in the normal TM scheme, the pseudo wave-functions
for the semi-core states are defined as in Eq. (26) but p(r) is a
polynomial of order 9 in r2:

p(r)=co+ czr2 + C4r4 + c6r6 + Cgr8 + clorm

+ cior? + cpar' + 11! + c1r18. (30)

In order to adjust seven of the ten coefficients of p(r) the
same conditions as the ones used for the normal TM scheme are
applied to the semi-core pseudo wave-functions. The conditions
needed to adjust the three remaining coefficients are applied to
the valence pseudo wave-functions. Those conditions are the

=3.70, and r} ; = 0.80. All distances are in Bohr. 7 denotes the cutoff radii of the semi-core states and r the cutoff radii of the valence states.

continuity of the pseudo wave-functions, norm-conservation,
and the requirement that the eigenvalues of the valence pseudo-
states are the same as the all-electron ones.

Because of these extra conditions this set of non-linear equa-
tions is difficult to solve numerically and a careful choice of
the cutoff radii is essential to obtain a solution. Typically one
should choose the cutoff radii for the semi-core states to be
greater than the outermost maximum of the all-electron wave-
function.

We have observed that the numerical solution of the set of
non-linear equations is more stable if instead of imposing the
condition on the eigenvalue of the valence pseudo-states one
uses the continuity of the first derivative of the valence pseudo
wave-functions. The reason for this is that the value of the first
derivative of the pseudo wave-functions at the cut-off radius is
more sensitive to changes in the values of the coefficients than
the eigenvalues. It is also computationally less demanding to
determine the derivative at a certain radius than to determine the
eigenvalue. Note that both conditions are perfectly equivalent.

In Fig. 1 we plot pseudo wave-functions and pseudo-
potentials for chromium. Those were generated using the
MRPP scheme starting from scalar-relativistic all-electron cal-
culations. Semi-core states were included for the s and p com-
ponents. The d component was generated using the normal TM
scheme.

3.4.4. Relativistic extension of the Troullier—Martins potential

In the normal TM scheme the pseudo-potential is obtained
by inverting a radial Schrodinger-like Kohn—Sham equation
(Eq. (13)). When the radial all-electron wave-functions are so-
lutions of the radial Dirac—Kohn—Sham equations (9) the usual
procedure is to completely neglect the small component g(r)
and to use the large component f(r) as if it were a non-
relativistic wave-function. Even if this procedure is justifiable,
it introduces inconsistencies. Indeed the pseudo wave-functions
obtained this way are not eigenstates of the Dirac—Kohn—Sham
equations for the pseudo-potential. Also, completely neglect-
ing the small component implies that its norm contribution has
to be absorbed by the large component. This leads to an error
during the unscreening procedure.
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Fig. 2. Gold pseudo-potential and pseudo wave-functions generated using the relativistic extension of the TM scheme. The following cutoff radii were used:

re,s =2.20, re,p = 3.00, and r. 4 = 1.20. All distances are in Bohr.

Engel et al. [9] introduced an extension of the TM scheme
(RTM) to solve these inconsistencies. In their scheme the two
components of the pseudo wave-functions are defined as:

fAE@G), forr >,
fit )= { i ’ 3D
rieP' - Aforr < ryj,
AE
“(r), forr > ryj,
GHOE f[n(ll]wL(I:k)/r+p/(r)]fpp(r) ’ (32)
el v , forr <.
The screened pseudo-potential is in turn given by:
AE
UP_P,scr(r)= vy (r), for r > ryj, (33)
lj vlsjcr’nr(r) +8y(r), forr <.

v;"" (r) is the pseudo-potential resulting from the inversion of
Eq. (13) and is the same as for the normal TM scheme (see
Eq. (28)). 8v;;(r) is the following relativistic correction:

Wi = e P (D k1
2¢2 + 4c? i + r ) >
J

Finally, the conditions to determine the coefficients of p(r)
make use of the Dirac—Kohn—Sham equations.

In Fig. 2 we plot pseudo wave-functions and pseudo-
potentials for gold. Those were generated using the scheme
presented in this section.

dvjj =

3.5. Non-linear core corrections

In Eq. (14) a linear dependence of the potential on the
density was assumed. Unfortunately, that assumption is only
valid for the Hartree contribution and not for the exchange—
correlation part

Uxe[RPE](r) # ke [1°C1(r) + vy [nPF1(r). 35)

For many systems this is not a problem and the linearization
of the dependence is an adequate approximation. For other sys-
tems though, like elements with few valence electrons or with
core orbitals extending into the tail of the valence density, it
may be necessary to use a nonlinear core-valence exchange—
correlation scheme. In the scheme suggested by Louie et al. [29]

the unscreened pseudo-potential is redefined as:

() = 0" () — VHarree [ 1) — vk + 1Y),
(36)
where a partial core density 7°°™ is used instead of the core den-
sity in order to avoid spoiling the smoothness of the potential.
This partial core density is built by replacing the core density
inside some radius r,;. by an arbitrary function. In APE it is
possible to build this arbitrary function by using a sixth order
polynomial as suggested by Fuchs et al. [30] or by using the
method used in the Martins pseudo-potential code [24].

3.6. Kleinman and Bylander form of the pseudo-potential

The semi-local form (Eq. (19)) of the pseudo-potential oper-
ator leads to a complicated evaluation of its action on a wave-
function. However the semi-local form can be rewritten in a
form that alleviates this computational burden by separating
the long and short range components. The long range compo-
nent is local, and corresponds to the Coulomb tail. Choosing
an arbitrary angular momentum component (usually the most
repulsive one) and defining

PP PP
501 =7V;  — Vlocal, (37)

the pseudo-potential operator can be written as

USL. = Vlocal + Z |Ylm)5U}DP<Ylm |
Im

Kleinman and Bylander [31] suggested that the non-local

part of Eq. (38) were written as a separable potential, thus trans-

forming the semi-local potential into a truly non-local pseudo-

potential. If (pfnf ) = RIPP(r)Ylm (7) denotes the pseudo wave-

functions obtained with the semi-local pseudo-potential, the
Kleinman and Bylander (KB) form is given by

|01 80 ) (Pl 8] |
(@i 189" L)

(38)

(39)

UKB = Vlocal + Z
Im
Using the KB form the action of the potential on a wave-

function becomes much easier to evaluate.
The KB separable form has, however, some disadvantages,
leading sometimes to solutions with nodal surfaces that are
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lower in energy than solutions with no nodes [32,33]. These
(ghost) states are an artifact of the KB procedure. To eliminate
them one can use a different component of the pseudo-potential
as the local part of the KB form or choose a different set of core
radii for the pseudo-potential generation. As a rule of thumb,
the local component of the KB form should be the most repul-
sive pseudo-potential component.

It is possible to generalize the KB form to deal with fully-
relativistic j-dependent pseudo-potentials vflp(?) [34]. In this
case the KB form is simply given by:
g, B, 07

PP PP, PP
<§0/jmj |8vlj |(pljm_/-)

UKB = Vlocal + Z (40)

Ljm;
Note that in this case the angular part of the pseudo wave-
functions w}ﬁ, are spherical spinors. This implies that the ac-
tion of this potential on a wave-function, which should also be
a complex spinor, is more complicated to evaluate than for a

non-relativistic potential.
3.7. Pseudo-potential transferability

The pseudo-potential is able, by construction, to fully re-
produce the valence eigenvalues and wave-functions (beyond
the core radii) of a single isolated atom. However, when this
same atom is embedded in a more complex environment, its
wave-functions and eigenvalues differ from those of the isolated
atom and one needs to assure that the pseudo-potential will be
able to mimic the effect of the true potential in the new chemi-
cal environment. In other words, a test of the pseudo-potential
transferability is required.

Several transferability tests can be performed, the most ob-
vious one being the comparison of all-electron and pseudo-
potential results in diverse chemical environments. This test
can be preceded by a series of simpler tests on the isolated
atom pseudo wave-functions and eigenvalues that immediately
identify ill-constructed pseudo-potentials. Nevertheless, even if
the pseudo-potential passes all these simpler tests, a true as-
sessment of its transferability still requires a comparison of
pseudo-potential and all-electron results in different chemical
environments.

One way to force the pseudo-potential to act on a given elec-
tron in the same way as the true potential is to require it to have
the same scattering phase shifts as the all-electron potential.
The (energy-dependent) phase shifts at some distance r from
the atom can be shown to depend only on the logarithmic deriv-
ative of the wave-function at that distance (and, obviously, on
the energy). The norm-conserving pseudo-potentials are con-
structed in a way that ensures that, for any r > r; (Eq. (18)), the
logarithmic derivatives of the pseudo and true wave-functions
coincide. But this is true only for the reference energy €; and
the eigenvalues depend on the chemical environment. A sup-
plementary condition must then be introduced: the energy-
dependence of the logarithmic derivatives (for » > r;) should
be the same in the pseudo-potential and all-electron atoms. This
constraint can be alleviated by restricting it to energies close to
the reference energy or, in other words, by requiring only that

the first energy derivatives of the logarithmic derivatives co-
incide. This ensures that the pseudo-potential will reproduce
the changes in the eigenvalues due to small changes in the
self-consistent potential. This condition seems daunting, but a
closer look at the norm-conservation constraint (Eq. (16)) re-
veals that [35]

r

/dr’|R}°P(r’) P2, @)

IR O)Pr )

d d
— 1 RPP —
dg; dr n R )

which indicates that, for any r > r;, the energy derivatives of
the pseudo and true logarithmic derivatives should coincide.
In fact, it is not necessary to impose this supplementary con-
dition, since norm-conservation ensures, as a bonus, that the
condition is always satisfied. One should simply check that the
condition is indeed obeyed. In APE this check is done by com-
puting the logarithmic derivatives of the wave-functions as a
function of the eigenvalue for both the all-electron potential
and the pseudo-potential at some diagnostic radius outside the
core region. A suitable choice for this radius is half the typical
inter-atomic distance. The range of eigenvalues to be consid-
ered should be the one where the valence states are expected to
form molecular orbitals or Bloch bands.

Another easy test of transferability involves the comparison
of excitation energies in the pseudo-atom and in the all-electron
atom. Due to the implicit inclusion of the reference configura-
tion core states in the pseudo-potential, this comparison should
be performed keeping the all-electron core states frozen. This
methodology can be extended to the analysis of the change in
valence eigenvalues induced by a variation in valence orbital
occupancies, giving information on the accuracy of the descrip-
tion of the chemical hardness.

As mentioned above, the transformation of the pseudo-
potentials to the Kleinman and Bylander form can introduce
unphysical states. If this form is to be used, further transfer-
ability tests are required, namely the inspection of the bound
state spectrum in order to rule out the existence of such states.
This analysis is done automatically by APE using the method
proposed by Gonze et al. [33] whenever the KB projectors are
computed.

If a pseudo-potential is found to be poorly transferable, the
most obvious method to render it more transferable involves at
least one of these modifications in its construction procedure:
changing the core radii, including more valence states, incorpo-
rating non-local core corrections, or including different angular
momentum projectors.

4. Program structure

In order to make the compilation and installation of the code
user friendly APE uses the GNU autotools. This means that, on
most machines, issuing the following commands:

./configure
make
make install
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run_ape
[
| |
atom ps_atom
scf pseudostates
states
|
| | | |
eigensolver hamann tm mrpp
1 | I |
|
wave_equations
wave_equations_integrator
mesh potentials

Fig. 3. Simplified schematic chart of the program. Here are depicted the relationships between the most important modules. The modules below the dashed line are

used by most of the other modules.

will compile and install the code, as long as there are C and For-
tran 90/95 compilers available and the GSL library is installed
in some standard directory. More information about compila-
tion and installation can be found in the code manual.

For the program structure an effort was made to use, when-
ever possible, object-oriented programming concepts and solu-
tions. The basic structure of almost all the modules is the same:
one data structure followed by routines to initialize, to use and
to end that structure.

In Fig. 3 it is possible to see how the most important modules
are connected to each other. Here follows a brief description of
their contents:

e run_ape: executes the necessary tasks for each run mode.

e ps_atom: contains the routines to deal with the pseudo-
atom (the pseudo-states and the corresponding pseudo-
potentials).

atom: performs operations on the set of atomic orbitals, like
computing the total energy or the atomic density.

scf: performs the self-consistent cycle procedure in order to
obtain the ground-state of the system from the Kohn—Sham
equations.

pseudostates: a pseudo-state includes all the information
necessary to generate a given pseudo-potential component.
states: this module contains routines to deal with orbitals.
An orbital is defined as a set of quantum numbers, an en-
ergy and the corresponding wave-function.

eigensolver: given a potential and a set of quantum num-
bers, it finds the eigenvalue and eigenstate.

hamann: given an all-electron potential and wave-functions,
generates the corresponding pseudo-potentials using the
Hamann scheme.

tm: given an all-electron potential and wave-functions,
generates the corresponding pseudo-potentials using the
Troullier—-Martins scheme or its relativistic extension.
mrpp: given an all-electron potential and wave-functions,
generates the corresponding pseudo-potentials using the
Troullie—Martins scheme with explicit incorporation of
semi-core states.

wave_equation: for a given set of quantum numbers, an
energy, and a potential it returns the wave-function or the
logarithmic derivative of the wave-function at a given point.
wave_equation_integrator: performs the integration of the
ordinary differential equations.

potentials: handles the all-electron potentials and pseudo-
potentials.

mesh: defines the mesh date type and contains the routines
to generate the grids.

The input files are read using a parser that was originally
written for the Octopus project [20]. A the beginning of a run,
the parser reads the input file, parses it, and generates a list of
variables. The list is then available to the other parts of the code.
There are two types of variables: scalars and blocks. A scalar
variable is defined by:
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var = exp

var is the name of the variable and exp is the value that should
be assigned to the variable. Blocks are collections of values
arranged in row and column format:

%block
exp | exp | exp |...
exp | exp | exp |...

Q
)

More information about the parser and the input variables can
be found in the code manual.

Besides the code itself the APE package includes some use-
ful extra bits in the following sub-directories:

e doc: A comprehensive manual with a complete description
of the input file variables.

e sample: Input files to be used as examples.

e testsuite: A set of tests to verify the compilation of the code
and to validate changes introduced in the code.
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Appendix A. Input and selected output files for Silicon

Below we present an input file for the generation of a Silicon
pseudo-potential. This potential was generated by firstly solv-
ing the all-electron non-relativistic equation (Eq. (4)) using the
local density approximation for exchange and correlation. The
pseudo-potential was created in the same run, as Calcula-
tionMode has been setto ae + pp.

# Generalities

Title = "Silicium"
CalculationMode = ae + pp
Verbose = 40

# Hamiltonian

WaveEquation = schrodinger
SpinMode = unpolarized
ExchangeFunctional = lda_x
CorrelationFuncional = lda_c_pw
# Specie
NuclearCharge = 14
$0rbitals
"Ne"

3| o | 2 | o©

533

o

# PseudoPotentials
PPScheme = tm

$PPComponents
|
|
|

1.8
1.8
1.8

o NP O

PPCalculationTolerance = le-6
# Wave-equations solver
EigenSolverTolerance =
ODEIntTolerance = le-6

le-6

The result of the all-electron calculation outlined above is the
set of 5 occupied orbitals plus an unoccupied 3d orbital. All
the orbitals are saved in the files ae /wf-*. The file ae/info
contains the information printed below.

General Information about the atom:
Non relativistic spin-unpolarized calculations for Si
Nuclear charge 14.00
Total charge 0.00
Correlation model: Perdew & Wang
Exchage model : Slater exchange

Configuration : State Occupation
1s 2.00
2s 2.00
2p 6.00
3s 2.00
3p 2.00
3d 0.00

Mesh information:

Type: logarithmic [ri = b*exp(a*i)]
Mesh starting point: 3.74E-05 b
Mesh outmost point: 112.250 b
Mesh parameters (a, b): 2.48984E-02, 3.64965E-05
SCF cycle information:
Number of iterations: 11
Convergence:
ConvAbsDens = 4.88E-07 ( 1.00E-05)
ConvRelDens = 3.49E-08 ( 0.00E+00)
ConvAbsEvsum = 5.12E-05 ( 0.00E+00)
ConvRelEvsum = 3.15E-07 ( 0.00E+00)
Energies [H]
Total energy: -288.193522
Kinetic energy: 287.485478
Electron-electron interaction energy: 131.764587
Electron-nucleus interaction energy: -687.895227
Exchange-correlation energy: -19.548360
Eigenvalues [H]
State Occupation Eigenvalue
1s 2.00 -65.18421
2s 2.00 -5.07481
2p 6.00 -3.51470
3s 2.00 -0.39812
3p 2.00 -0.15331
3d 0.00 0.00000

At the end of the all-electron calculation, APE automatically
generated a Troullier—Martins pseudo-potential. The contents
of pp/info are printed below. The pseudo wave-functions
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were stored in the files pp/wf-*, while the files pp/pp-
* contain the associated pseudo-potential components. The
pseudo-potential operator is saved in the file Si.UPF, in the
default output format (PWscf).

Pseudo atom information:

Valence Configuration: State Occupation
3s 2.00
3p 2.00
3d 0.00

Wavefunction info:

State Node radius Peak radius Default core radius
3s 0.734 1.800 0.000
3p 0.734 2.142 0.000
3d 0.000 0.000 0.000

Pseudopotential Generation:
State: 3s
Core radius: 1.800
Troullier-Martins coefficients:

c0 = -1.3850522891 c2 = 0.7045467804
cd = -0.0992708171 c6 = -0.1348636664
c8 = 0.0634685063 cl0 = -0.0112093575
cl2 = 0.0007312070
State: 3p
Core radius: 1.800

Troullier-Martins coefficients:

c0 = -0.9453831429 c2 = -0.2344523824
cd = -0.0078494606 c6 = 0.0196226051
c8 = -0.0114309093 cl0 = 0.0025841177
cl2 = -0.0002045390
State: 3d
Core radius: 1.800

Troullier-Martins coefficients:

c0 = -10.5012326009 c2 = -0.8807489113
cd = -0.0861909605 c6 = 0.1932224236
c8 = -0.0729920410 cl0 = 0.0121132995
cl2 = -0.0007729155
Pseudopotentials Self-Consistency:
State Eigenvalue [H ] Norm Test Slope Test
3s -0.39812 0.9999972 1.0000000
3p -0.15331 0.9999914 0.9999802
3d 0.00000 1.0044126 1.0022401
Kleinman & Bylander Atom
l-component used as local: 1 =0
Non-local components:
State KB Energy [H ] KB Cosine
3p -2.3704 -0.1219
3d -3.7294 0.0000
Ghost state analysis:
State: 3p
KB energy < 0; Eref < EO => No ghost states
Local potential eigenvalues: -0.1335 (EO0) 0.0000 (E1)
Reference energy: -0.1533 (Eref)
State: 3d
KB energy < 0; Eref = E0O = 0 => Unable to determine
Local potential eigenvalues: 0.0000 (EO) 0.0000 (E1)
Reference energy: 0.0000 (Eref)
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