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Abstract

This thesis consists of one introductory chapter and four single-authored papers written during my
PhD studies, with minor adaptations. The original contributions of the papers are mainly within the
study of pseudomonads and descent objects, including applications to descent theory, commutativity
of weighted bilimits, coherence and (presentations of) categorical structures.

In Chapter 1, we give a glance of the scope of our work and briefly describe elements of the
original contributions of each paper, including some connections between them. We also give a brief
exposition of our main setting, which is 2-dimensional category theory. In this direction: (1) we
give an exposition on the doctrinal adjunction, focusing on the Beck-Chevalley condition as used
in Chapter 3, (2) we apply the results of Chapter 5 in a generalized setting of the formal theory of
monads and (3) we apply the biadjoint triangle theorem of Chapter 4 to study (pseudo)exponentiable
pseudocoalgebras.

Chapter 2 corresponds to the paper Freely generated n-categories, coinserters and presentations of
low dimensional categories, DMUC 17-20 or arXiv:1704.04474. We introduce and study presentations
of categorical structures induced by (n+1)-computads and groupoidal computads. In this context, we
introduce the notion of deficiency and presentations of groupoids via computads. We compare the
resulting notions with those induced by monads together with a finite measure of objects. In particular,
we find our notions to generalize the usual ones. One important feature of this paper is that we show
that several freely generated structures are naturally given by coinserters. After recalling how the
category freely generated by a graph G internal to Set is given by the coinserter of G, we introduce
higher icons and present the definitions of n-computads via internal graphs of the 2-category nCat of
n-categories, n-functors and n-icons. Within this setting, we show that the n-category freely generated
by an n-computad is also given by a coinserter. Analogously, we demonstrate that the geometric
realization of a graph G consists of a left adjoint functor FTop1

: grph→ Top given objectwise by
the topological coinserter. Furthermore, as a fundamental tool to study presentation of thin and
locally thin categorical structures, we give a detailed construction of a 2-dimensional analogue of
FTop1

, denoted by FTop2
: cmp→ Top. In the case of group presentations, FTop2

formalizes the
Lyndon-van Kampen diagrams. Finally, we sketch a construction of the 3-dimensional version FTop3

which associates a 3-dimensional CW-complex to each 3-computad.

Chapter 3 corresponds to the article Pseudo-Kan Extensions and descent theory, arXiv:1606.04999
under review. We develop and employ results on idempotent pseudomonads to get theorems on the
general setting of descent theory, which, in our perspective, is the study of the image of pseudomonadic
pseudofunctors. After giving a direct approach to prove an analogue of Fubini’s Theorem for weighted
bilimits and constructing pointwise pseudo-Kan extensions, we employ the results on pseudomonadic
pseudofunctors to get theorems on commutativity of bilimits. In order to use these results as the
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main framework to deal with classical descent theory in the context of [52], we prove that the descent
category (object) of a pseudocosimplicial category (object) is its conical bilimit. We use, then, this
formal approach of commutativity of bilimits to (1) recast classical theorems of descent theory, (2)
prove generalizations of such theorems and (3) get new results of descent theory. In this direction, we
give formal proofs of transfer theorems, embedding theorems, a pseudopullback theorem, a Galois
Theorem and the Bénabou-Roubaud Theorem. We also apply the pseudopullback theorem to detect
effective descent morphisms in suitable categories of enriched categories in terms of (the embedding
in) internal categories.

Chapter 4 corresponds to the article On Biadjoint Triangles, published in Theory and Applications
of Categories, Vol 31, N. 9 (2016). The main contributions are the biadjoint triangle theorems, which
have many applications in 2-dimensional category theory. Examples of which are given in this same
paper: reproving the Pseudomonadicity characterization of [73], improving results on the 2-monadic
approach to coherence of [9, 67, 93], improving results on lifting of biadjoints of [9] and introducing
the suitable concept of pointwise pseudo-Kan extension.

Chapter 5 corresponds to the article On lifting of biadjoints and lax algebras, to appear in
Categories and General Algebraic Structures with Applications. It can be seen as a complement of the
precedent chapter, since it gives further theorems on lifting of biadjoints provided that we can describe
the categories of morphisms of a certain domain in terms of weighted (bi)limits. This approach,
together with results on lax descent objects and lax algebras, allows us to get results of lifting of
biadjoints involving (full) sub-2-categories of the 2-category of lax algebras. As a consequence, we
complete our treatment of the 2-monadic approach to coherence via biadjoint triangle theorems.



Resumo

Esta tese consiste em um capítulo introdutório e quatro artigos de autoria única, escritos durante os
meus estudos de doutoramento. As contribuições originais dos artigos estão principalmente dentro
do contexto do estudo de pseudomónadas e objetos de descida, com aplicações à teoria da descida,
comutatividade de bilimites ponderados, coerência e apresentações de estruturas categoriais.

No Capítulo 1, introduzimos aspectos do escopo do trabalho e descrevemos alguns elementos
das contribuições originais de cada artigo, incluindo interrelações entre elas. Damos também uma
exposição básica sobre o principal assunto da tese, nomeadamente, teoria das categorias de dimensão
2. Nesse sentido, (1) introduzimos adjunção doutrinal, focando na condição de Beck-Chevalley,
com a perspectiva adotada no Capítulo 3, (2) aplicamos resultados do Capítulo 5 em um contexto
generalizado da teoria formal das mónadas e (3) aplicamos o teorema de triângulos biadjuntos do
Capítulo 4 para estudar pseudocoalgebras (pseudo)exponenciáveis.

O Capítulo 2 corresponde ao artigo Freely generated n-categories, coinserters and presentations
of low dimensional categories, DMUC 17-20 ou arXiv:1704.04474. Neste trabalho, introduzimos e
estudamos apresentações de estruturas categoriais induzidas por (n+1)-computadas e computadas
grupoidais. Introduzimos a noção de deficiência de grupóides via computadas. Comparamos, então,
as noções resultantes com as noções induzidas por mónadas junto com medidas finitas de objetos. Em
particular, concluimos que nossas noções generalizam as noções clássicas. Outras contribuições do
artigo consistiram em mostrar que as propriedades universais de várias estuturas livremente geradas
podem ser descritas por coinserções. Começamos por relembrar que as categorias livremente geradas
são dadas por coinserções de grafos e, então, introduzimos icons de dimensão alta e apresentamos
as definições de n-computadas via grafos internos da 2-categoria nCat de n-categorias, n-functores
e n-icons. Nesse caso, mostramos que a n-categoria livremente gerada por uma n-computada é a
sua coinserção. Analogamente, demonstramos que a realização geométrica de um grafo G é parte
de um functor adjunto à esquerda FTop1

: grph→ Top definido objeto a objeto pela coinserção
topológica. Além disso, como uma ferramenta fundamental para o estudo de estruturas categoriais
finas e localmente finas, apresentamos uma construção detalhada de um análogo de dimensão 2
de FTop1

: grph→ Top, denotado por FTop2
: cmp→ Top. No caso de grupos, FTop2

formaliza
e, portanto, generaliza o diagrama de Lyndon-van Kampen. Finalizamos o capítulo dando uma
construção de uma versão em dimensão 3, denotada por FTop3

, que associa um CW-complexo de
dimensão 3 para cada 3-computada.

O Capítulo 3 corresponde ao artigo Pseudo-Kan Extensions and descent theory, em revisão para
publicação. Desenvolvemos e aplicamos resultados sobre pseudomónadas idempotentes, obtendo
teoremas no contexto geral da teoria da descida que, em nossa perspectiva, é o estudo da imagem
de pseudofunctores pseudomonádicos. Depois de apresentar uma prova direta do teorema de Fubini
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para bilimites ponderados e de construir pseudo-extensões de Kan, aplicamos os resultados sobre
pseudomónadas para provar teoremas sobre comutatividade de bilimites ponderados. Com o objetivo
de usar tais resultados como base para lidar com a teoria da descida clássica no contexto de [52],
provamos que a categoria (objeto) de descida de uma categoria (objeto) pseudocosimplicial é seu
bilimite cónico. Usamos, então, esse tratamento formal de comutatividade de bilimites para (1)
recuperar teoremas clássicos da teoria da descida, (2) provar generalizações desses teoremas e
(3) obter novos resultados de teoria da descida. Nesse sentido, apresentamos provas formais (de
generalizações) de teoremas de transferência, de teoremas de mergulho, do teorema de Galois e do
teorema de Bénabou-Roubaud. Provamos também um resultado sobre morfismos de descida efetiva
em pseudoprodutos fibrados de categorias e o aplicamos para obter morfismos de descida efetiva em
algumas categorias de categorias enriquecidas.

O Capítulo 4 corresponde ao artigo On Biadjoint Triangles, publicado no Theory and Applications
of Categories, Vol 31, N. 9 (2016). As contribuções principais são os teoremas de triângulos biadjuntos,
os quais possuem muitas aplicações em teoria de categorias de dimensão 2. Apresentamos exemplos
de aplicações no próprio artigo: provamos explicitamente o teorema de pseudomonadicidade [73],
melhoramos resultados sobre o tratamento 2-monádico do problema de coerência de [9, 67, 93],
generalizamos resultados de levantamentos de biadjuntos e introduzimos o conceito de pseudo-
extensões de Kan para, então, construir as pseudo-extensões de Kan via bilimites ponderados.

O Capítulo 5 corresponde ao artigo On lifting of biadjoints and lax algebras, a ser publicado no
Categories and General Algebraic Structures with Applications. O principal tema deste artigo é a
demonstração de teoremas de levantamento de biadjuntos, ao assumir que conseguimos descrever a
categoria de morfismos de um domínio em termos de (bi)limites ponderados. Esse tratamento, junto
com resultados sobre objetos de descida lassos e álgebras lassas, nos permite obter resultados sobre
levantamento de biadjuntos envolvendo sub-2-categorias (plenas) da 2-categoria de álgebras lassas.
Como conseqüencia, concluímos nossos resultados de caracterização sobre o tratamento 2-monádico
do problema de coerência, via teoremas de triângulos biadjuntos.
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Chapter 1

Introduction

The aim of this chapter is to introduce our main setting, which is 2-dimensional universal algebra,
and to give a glimpse of the contributions of this thesis. We start by roughly explaining aspects of
the interrelation between pseudomonads and descent objects in Section 1.1. Then, in Section 1.2,
we introduce basic notions of 2-dimensional category theory. We take this opportunity to introduce,
among other concepts, the notion of colax T -morphisms of lax T -algebras, which is not introduced
elsewhere in this thesis. The notion of colax T -morphisms are, then, used in Section 1.7 to relate the
formal theory of monads with the problem of lifting of biadjoints studied in Chapter 5. We also use
the concept of colax T -morphisms to talk about doctrinal adjuntion in Section 1.4, which is a brief
exposition of the main theorem of [57] focusing on the Beck-Chevalley condition as used in our work
on the Bénabou-Roubaud Theorem in Chapter 3.

Sections 1.3, 1.5 and 1.6 are dedicated to briefly describe elements of the contributions of the
Chapters 2, 3, 4 and 5, which are respectively the papers [80], [79], [77] and [78]. Finally, the
last section is an application of the biadjoint triangles of Chapter 4 in the context of exponentiable
objects within bicategory theory: we prove that, under suitable hypothesis, a pseudocoalgebra is
(pseudo)exponentiable whenever the underlying object is (pseudo)exponentiable.

1.1 Overview: Pseudomonads and the Descent Object

In 2-dimensional category theory, by replacing strict conditions (involving commutativity of diagrams)
with pseudo or lax ones (involving a 2-cell plus coherence) we get important notions and problems.
We briefly describe two examples of these notions below: namely, descent object and pseudomonad.

Firstly, to give an idea of the role of the descent object in 2-dimensional universal algebra, it
is useful to make an analogy with the equalizer: while the equalizer encompasses equality and
commutativity of diagrams in 1-dimensional category theory, the descent object and its variations
encompass 2-dimensional coherence: structure (2-cell) plus coherence.

One obvious example of the importance of the descent object is within descent theory, as intro-
duced by Grothendieck, initially motivated by the problem of understanding the image of functors
induced by fibrations. This theory features a 2-dimensional analogue of the sheaf condition: the
(strict) gluing condition, given by an equalizer of sets, is replaced by the descent condition, given by a
descent object of a diagram of categories.

1



2 Introduction

Secondly, analogously to the case of monad theory in 1-dimensional universal algebra, pseu-
domonad theory encompasses aspects of 2-dimensional universal algebra, being useful to study many
important aspects of 2-dimensional category theory. Again, in the definition of pseudomonad, the
commutative diagrams of the definition of monad are replaced by invertible 2-cells plus coherence.
In this theory, then, we have 2-dimensional versions of the features of monad theory. For instance,
adjunctions are replaced by biadjunctions, and we have an Eilenberg-Moore Factorization provided
that we consider the 2-category of pseudoalgebras, pseudomorphisms and algebra transformations, as
it is shown in Section 4.5.

The main topic of this thesis is the study of 2-dimensional categorical structures, mostly related
with descent theory and pseudomonad theory, with applications to 1-dimensional category theory. For
instance:

– The contributions of Chapter 2 in this context are within the study of freely generated and
finitely presented categorical structures. In particular, for instance, we deal with presentations
of domain 2-categories related to the universal property of descent objects. More precisely,
presentations of the inclusion of the 2-categories such that Kan extensions along such inclusion
gives the (strict) descent object;

– In Chapter 3, we develop an abstract perspective of descent theory in which the fundamental
problem is the existence of pseudoalgebra structures over objects: more precisely, the image of
pseudomonadic pseudofunctors that induce idempotent pseudomonads. Having this goal, we
develop some aspects of biadjoint triangles and lifting of pseudoalgebra structures involving
pseudofunctors that induce idempotent pseudomonads and apply it to get results on commuta-
tivity of bilimits. We finish the article, then, applying our perspective to the classical context of
[51, 52];

– As a (strict) morphism of algebras is given by a morphism plus the commutativity of a diagram,
a pseudomorphism between pseudoalgebras is given by a morphism, an invertible 2-cell plus
coherence. In Chapters 4, 5, we show that the coherence aspects of pseudomonad theory
are encompassed by descent objects and their variations. More precisely, we show that the
category of (lax-)(pseudo)morphisms between (lax-)(pseudo)algebras is given by (lax-)descent
objects. As it is proven and explained in Chapter 5, with these results on the category of
(lax-)(pseudo)morphisms, we can prove biadjoint triangle theorems and results on lifting of
biadjoints.

1.2 2-Dimensional Categorical Structures

Two of the most fundamental notions of 2-dimensional categorical structures are those of double
category and 2-category, both introduced by Ehresmann [34]. The former is an example of an internal
category (introduced in [34]), while the latter is an example of enriched category (as introduced in
[35]).

The study of the dichotomy between the theory of enriched categories and internal categories,
including unification theories, is still of much interest. For instance, within the more general setting of
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generalized multicategories, we have the introduction of (T,V )-categories [22] (which generalizes
enriched categories), T -categories [14, 45] (which generalizes internal categories) and possible
unification theories [16, 24].

Since there is no definitive general framework and the approaches mentioned above are focused on
the examples related to multicategories, we do not follow any of them. Instead, we follow the basic idea
that internal categories and enriched categories can be seen as monads in suitable bicategories [5, 7].

For simplicity, we use the concept of enriched graphs. This is given in Definition 2.7.1, but we
only need to recall that, given a category V , a V -enriched graph G is a collection of objects G(0) = G0

endowed with one object G(A,B) of V for each ordered pair of objects (A,B) of G0.

Definition 1.2.1. [Bicategory [5]] A bicategory is a CAT-enriched graph B endowed with:

– Identities: a functor IA : 1→B(A,A) for each object A of B;

– Composition: a functor, called composition, ◦= ◦ABC : B(B,C)×B(A,B)→B(A,C) for each
ordered triple (A,B,C) of objects of B;

– Associativity: natural isomorphisms

aABCD : ◦ABD
(
◦BCD× IdB(A,B)

)
⇒◦ACD

(
IdB(C,D)×◦ABC

)
;

for every quadruplet (A,B,C,D) of objects of B;

– Action of Identity: natural isomorphisms

eAB : ◦ABB
(
IB× IdB(A,B)

)
⇒ proeB(A,B),

dAB : ◦AAB
(
IdB(A,B)×IA

)
⇒ prodB(A,B),

in which prodB(A,B) : B(A,B)× 1→B(A,B) and proeB(A,B) : 1×B(A,B)→B(A,B) are the
invertible projections, for each pair (A,B) of objects in B;

such that the diagrams

◦ABE
(
◦BCE × IdB(A,B)

)(
◦CDE × IdB(A,B,C)

)aABCE∗id//

id◦ABE
∗
(
aABCE×idIdB(A,B)

)

��

◦ACE
(
IdB(C,E)×◦ABC

)(
◦CDE × IdB(A,B,C)

)
aACDE∗id

(IdB(C,D,E)×◦ABC)

��
◦ABE

(
◦BDE × IdB(A,B)

)
(Id×◦BCD× Id)

aABCE∗id

))

◦ADE
(
IdB(D,E)×◦ACD

)(
IdB(C,D,E)×◦ABC

)

◦ADE
(
IdB(D,E)×◦ABD

)
(Id×◦BCD× Id)

id◦ADE
∗
(

idIdB(D,E)
×aABCE

)
OO
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◦ABC
(
◦BBC× IdB(A,B)

)
(Id×IB× Id)

aABBC∗id//

id◦ABC
∗(dBC×id)

((

◦ABC
(
IdB(B,C)×◦ABB

)
(Id×IB× Id)

id◦ABC
∗(id×eAB)

��

◦ABC

(
pro(A,B,C)

)
commute for every quintuple (A,B,C,D,E) of objects in B, in which IdB(A,B,C) := IdB(B,C)×B(A,B),
pro(A,B,C) : B(B,C)×1×B(A,B)→B(B,C)×B(A,B) is the invertible projection and the omitted
subscripts of the identities are the obvious ones.

For simplicity, assuming that the structures are implicit, we denote such a bicategory by (B,◦,I,a,e,d)
or just by B. For each pair (A,B) of objects of a bicategory B, if f is an object of the category
B(A,B), f is called an 1-cell of B and it is denoted by f : A→ B. A morphism α : f ⇒ g of B(A,B)
is called a 2-cell of B.

Remark 1.2.2. In order to take advantage of the context of introducing monads, internal categories,
double categories and enriched categories, we define 2-categories via enriched categories below.
However, a brief and obvious definition of 2-category is that of a strict bicategory. More precisely, a
2-category is a bicategory such that its natural isomorphisms are identities. We assume this definition
herein.

Remark 1.2.3. Since the work of this thesis is mainly within the tricategory 2-CAT of 2-categories,
pseudofunctors and pseudonatural transformations (as defined in Section 4.2), the results and defini-
tions on 2-dimensional category theory of this thesis are within the general setting of bicategories up
to minor trivial adaptations. Specially in this section, since we should consider the bicategories of
Definitions 1.2.9 and 1.2.10, we freely assume these adaptations.

Remark 1.2.4. In this chapter, we do not give any further comment on size issues. In this direction,
when necessary, we implicitly make similar assumptions to those given in Section 2.1 or Section 5.1.

Given a bicategory B, there are two main duals of B which give rise to four duals, including
B itself. The first dual, denoted by Bop, comes from getting the dual of the underlying category of
B (that is to say, the opposite w.r.t. 1-cells), while the other dual, denoted by Bco, is obtained from
getting the duals of the hom-categories (that is to say, the opposite w.r.t. 2-cells). Then, we have B

itself and Bcoop := (Bop)co ∼= (Bco)op.

Remark 1.2.5. We do not define tricategories [40], but we give some independent remarks. For
instance, as observed in Section 4.2, 2-CAT is a tricategory and, specially in the present section, we
consider the tricategory BICAT of bicategories, pseudofunctors, pseudonatural transformations and
modifications as well. The dualizations mentioned above define invertible trifunctors:

(−)op : BICAT∼= BICATco, (−)co : BICAT∼= BICATtco, (−)coop : BICAT∼= BICATcotco,

(−)op : 2-CAT∼= 2-CATco, (−)co : 2-CAT∼= 2-CATtco, (−)coop : 2-CAT∼= 2-CATcotco,
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in which Ttco denotes the dual of the tricategory T obtained from reversing the 3-cells, and Tcotco :=
(Ttco)

co. These isomorphisms are 2-dimensional analogues of the invertible 2-functor (−)op : CAT∼=
CATco.

Given a bicategory B, we can consider the bicategory of monads of B. This was introduced in
[100, 101] taking the point of [5] that monads in B are given by lax functors between the terminal
bicategory 1 and B. Herein, we introduce monads via lax algebras of the identity pseudomonad.
This perspective takes advantage of the concepts introduced in Chapter 5 and it gives a shortcut
to understand the role of lifting of biadjoints in the formal theory of monads, which is sketched in
Section 1.7. It should be observed that our viewpoint also has connections with the approach of [22]
to introduce (T,V )-categories.

We assume the definition of pseudomonads of Section 5.4 (or Definition 4.5.1 of pseudocomonads)
and Definition 5.4.1 of the bicategory of lax algebras and lax morphisms. Within this context, it is
easy to verify that:

Lemma 1.2.6. The identity pseudofunctor Id
B

: B→B, with identities 2-natural transformations
and modifications, gives a 2-monad and a 2-comonad on B.

Definition 1.2.7. [Bicategory of Monads] The bicategory of monads of a bicategory B, denoted by
Mnd(B), is the bicategory of lax Id

B
-algebras Lax-Id

B
-Algℓ.

Following the notation of lax algebras of Definition 5.4.1, we have that a monad in a 2-category B

is defined by a quadruplet z= (Z,alg
z
,z,z0) satisfying the condition of lax Id

B
-algebra, in which Z

is an object of B, alg
z

: Z→ Z is an endomorphism of B, z : alg
z
alg

z
⇒ alg

z
is a 2-cell of B, called

the multiplication of z, and z0 : idZ ⇒ alg
z

is a 2-cell of B, called the unit of the monad z. In this
case, we say that z is a monad on Z.

In order to introduce enriched categories and internal categories as monads, we define bicategories
constructed from a suitable categorical structure V . These are the bicategory of matrices and the
bicategory of spans, denoted respectively by V -Mat and Span(V ).

Remark 1.2.8. The bicategory of matrices V -Mat is constructed from a monoidal category V . A
monoidal category is a bicategory (B,◦,I,a,e,d) which has only one object△. The composition is
called, in this case, the monoidal product/tensor. The underlying category of a monoidal category is
the hom-category B(△,△). The objects and morphisms of a monoidal category are the objects and
morphisms of its underlying category.

Since we are talking about a bicategory with only one object△, we actually have only one natural
isomorphism of associativity, one identity and two natural isomorphisms of action of identity. That
is to say, given a monoidal category (B,◦,I,a,e,d), we denote a := a△△△, d := d△△, e := e△△

and I := I△. Therefore such a monoidal category is given by a sextuple (V,⊗, I,a,e,d) in which
V :=B(△,△) is the underlying category, ⊗ is the monoidal product, I is the identity and

a : (−⊗−)⊗−−→−⊗ (−⊗−), e : (I⊗−)−→ idV , d : (−⊗ I)−→ idV

are the respective natural isomorphisms satisfying the axioms of a bicategory with the only object△.
For simplicity, letting the natural isomorphisms implicit, a monoidal category is usually denoted

by (V,⊗, I), while (⊗, I) together with the natural isomorphisms a, e, d is called a monoidal structure
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for V . When the monoidal structure is implicit in the context, we denote the monoidal category
(V,⊗, I) by V .

A symmetric monoidal category is a monoidal category (V,⊗, I) endowed with a natural isomor-
phism, called braiding, b :−⊗−→−⊗op− in which ⊗op is the composition of the opposite of the
bicategory that corresponds to (V,⊗, I), such that

(A⊗B)⊗C

b(A,B)⊗idC

��

a(A,B,C) // A⊗ (B⊗C) b(A,B⊗C) // (B⊗C)⊗A

a(B,C,A)

��
(B⊗A)⊗C a(B,A,C) // B⊗ (A⊗C) idB⊗bA,C // B⊗ (C⊗A)

(A⊗B) b(A,B) // (B⊗A)

b(B,A)

{{
A⊗B

commute for every triple (A,B,C) of objects of V . A symmetric monoidal closed category (V,⊗, I)
is a symmetric monoidal category such that every object of V is exponentiable w.r.t. the monoidal
product ⊗. In other words, this means that the representable functor A⊗− : V →V has a right adjoint
for every A of V .

If a category V has finite products, it has a natural symmetric monoidal structure called cartesian
monoidal structure. That is to say ⊗ :=× and the unit is given by the terminal object 1 of V . The
natural isomorphisms for associativity, actions of the identity and braiding are given by the universal
property of the product. A category with finite products endowed with this monoidal structure is
called a monoidal cartesian category or just a cartesian category, and it is denoted by (V,×,1).

It would be appropriate to define monoidal categories via 2-dimensional monad theory, as, for
instance, it is shown in Remark 5.4.3. But our interest herein is mostly restricted to the case of
cartesian closed categories. Even our result on effective descent morphisms of enriched categories,
which is Theorem 3.9.11, is given within the context of cartesian closed categories. For this reason,
we avoid giving further comments on general aspects of monoidal categories. We refer to [75, 76, 81]
for the basics on such general aspects.

Definition 1.2.9. [Bicategory of Matrices] Let (V,⊗, I) be a symmetric monoidal closed category
with finite coproducts. We define V -Mat as follows:

– The objects are the sets;

– A morphism M : A→ B in V -Mat is a matrix of objects in V , that is to say, a functor A×B→V ,
considering A,B as discrete categories;

– The 2-cells are natural transformations. In other words, the category of morphisms for a ordered
pair (A,B) of sets is the category of functors and natural transformations CAT [A×B,Set];
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– The composition is given by the usual formula of product of matrices. More precisely, given
matrices M : A×B→V and N : B×C→V , the composition is defined by

N ◦M : A×C →V

(i, j) 7→ ∑
k∈B

M(i,k)⊗N(k, j)

in which ∑ denotes the coproduct;

– For each set A, the identity on A is the matrix

idA : A×A →V

(i, j) 7→

I, if i = j

0, otherwise

in which 0 is the initial object;

– The natural isomorphisms for associativity and actions of identities are given by the universal
property of coproducts, the isomorphisms of the preservation of the coproducts by ⊗ and the
isomorphisms of the monoidal structure.

In order to define the bicategory of spans Span(V ) of a category with pullbacks V , we denote by
span the category with 3 objects (0, 1 and 2) whose nontrivial morphisms are given by

0 2d1
oo d0

// 1.

Definition 1.2.10. [Bicategory of Spans] Let V be a category with pullbacks. The bicategory Span(V )

is defined by

– The objects are the objects of V ;

– A morphism M : A→ B in Span(V ) is a span in V between A and B, that is to say, a functor
M : span→V , such that M(0) = A and M(1) = B;

– A 2-cell f between two morphisms M,K : A→ B is a natural transformation f : M −→ K such
that f0 = idA and f1 = idB . That is to say, it is a morphism f : M(2)→ K(2) such that

M(2)

M(d1)

}}

M(d0)

!!
f

��

A B

K(2)

K(d1)

aa

K(d0)

==
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commutes in V .

– The composition is given by the pullback. More precisely, given a span M : span→V between
A and B and a span N : span→V between B and C, the composition is defined by the span

P(M,N)

{{ ##
M(2)

M(d1)

}}

M(d0)

$$

N(2)

N(d1)

zz

N(d0)

!!
A B C

between the objects A and C, in which P(M,N) is the pullback M(2)×(M(d1),N(D0)) N(2) of
M(d1) along N(D0) and the unlabeled arrows are the morphisms induced by the pullback;

– For each set A, the identity on A is the span span→ V constantly equal to A, taking the
morphisms of the domain to the identity on A;

– The natural isomorphisms for associativity and actions of identities are given by the universal
property of pullbacks.

Assuming that V is a symmetric monoidal closed category with coproducts, a (small) category
enriched in V is a monad of the bicategory V -Mat, while, if V ′ has pullbacks, an internal category
of V ′ is a monad of Span(V ′). But 1-cells and 2-cells of Mnd(V -Mat) and Mnd(Span(V ′)) do not
respectively coincide with what should be 1-cells and 2-cells of the 2-category of enriched categories
and the 2-category of internal categories. In order to get the appropriate notion of 1-cells, firstly we
need to consider co-morphisms of monads and, secondly, we need to consider proarrow equipments.

We introduce co-morphisms between monads via colax morphisms between lax algebras. For
short, we use the notation introduced in Definition 5.4.1 and we define the 2-category of lax algebras
and colax morphisms w.r.t. a pseudomonad on a 2-category, assuming, then, the minor adaptations to
BICAT when necessary.

Definition 1.2.11. [Colax morphisms of lax algebras] Let T = (T ,m,η ,µ, ι ,τ) be a pseudomonad
on a 2-category B. We define the 2-category of lax T -algebras and colax T -morphisms, denoted by
Lax-T -Algcℓ, as follows:

1. Objects: lax T -algebras as in Definition 5.4.1.

2. Morphisms: colax T -morphisms f : y→ z between lax T -algebras

y= (Y,alg
y
,y,y

0
),z= (Z,alg

z
,z,z0)

are pairs f= ( f ,
〈
f
〉
) in which f : Y → Z is a morphism in B and〈

f
〉

: falg
y
⇒ alg

z
T ( f )
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is a 2-cell of B such that, defining T̂ (
〈
f
〉
) := t−1

(algz )(T ( f ))
T (
〈
f
〉
)t

( f )(algy )
, the equations

T 2Y

T̂ (⟨f⟩)
====⇒

T (algy )

��

T 2( f ) // T 2Z

mZ

��

T (algz )

��
z
=⇒ =

T Z
algz //

m f⇐=

Z

⟨f⟩⇐=

T Y
T ( f )

//

algy
��

T Z

algz

��

⟨f⟩
=⇒

T Z

algz
��

T 2Z

mZ

??

T Y

T ( f )

^^

algy //

y⇐=

Y

f

\\

Y
f

// Z T 2Y

mY

@@

T (algy )
//

T 2( f )

__

T Y

algy

BB

Z

ηZ

��

η f⇐=

Y

ηY

��
=

foo Z
ηZ

��
T Z

algz

��

⟨f⟩⇐=

T Y y0⇐=
algy

��

T ( f )
oo T Z z0⇐=

algz
��

Z Y
f

oo Z Y
foo

hold. The composition of colax T -morphisms f : y→ z and g : x→ y of lax T -algebras is
denoted by fg and it is defined by the pair ( f g,

〈
fg
〉
) in which

〈
fg
〉

is the 2-cell defined by

X

g

��

⟨g⟩
=⇒

T X
algxoo

T (g)

��
T ( f g)

zz

t
( f )(g)
===⇒

〈
fg
〉

:= Y

f

��

⟨f⟩
=⇒

T Yalgyoo

T ( f )

��
Z T Z

algz

oo

3. 2-cells: a T -transformation m : f⇒ h between lax T -morphisms f= ( f ,
〈
f
〉
), h= (h,

〈
h
〉
) is

a 2-cell m : f ⇒ h in B such that the equation below holds.

T Y

T (h)

��

T (m)⇐=== T ( f )

��

algy // Y

f

��

T Y
algy //

T (h)

��

Y

h

  

m⇐= f

~~

⟨f⟩⇐== = ⟨h⟩⇐==

T Z
algz

// Z T Z
algz

// Z
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The compositions of T -transformations are defined in the obvious way and these definitions
make Lax-T -Algcℓ a 2-category.

Remark 1.2.12. [Identity on a lax T -algebra] The identities on a lax T -algebra y= (Y,alg
y
,y,y

0
)

in Lax-T -Algcℓ and in Lax-T -Algℓ are respectively given by
idY ,

T Y

T (idY )

��

id
T Y

��

tY⇐= =

algy // Y

idY

��
T Y algy // Y


and


idY ,

T Y

T (idY )

��

id
T Y

��

t−1
Y=⇒ =

algy // Y

idY

��
T Y algy // Y


.

Remark 1.2.13. [Colax algebras and coalgebras] By dualizing, we get below the notions of colax
algebras, lax coalgebras and colax coalgebras. The dualization (−)co preserves pseudomonads and
pseudocomonads, while (−)op takes pseudomonads to pseudocomonads and pseudocomonads to
pseudomonads. In particular, given a pseudomonad T on a bicategory B and a pseudocomonad S

on a bicategory C, we have that T co is a pseudomonad on Bco and S op,S coop are pseudomonads
respectively on Cop and Ccoop. Therefore we can define:

– The bicategories of colax T -algebras of the pseudomonad T (respectively with colax T -
morphisms and lax T -morphisms):

Colax-T -Algcℓ := (Lax-T co-Algℓ)
co and Colax-T -Algℓ := (Lax-T co-Algcℓ)

co ;

– The bicategories of lax S -coalgebras:

Lax-S -CoAlgℓ := (Lax-S op-Algℓ)
op and Lax-S -CoAlgcℓ := (Lax-S op-Algcℓ)

op ;

– The bicategory of colax S -coalgebras:

Colax-S -CoAlgcℓ :=(Lax-S coop-Algℓ)
coop and Colax-S -CoAlgℓ :=(Lax-S coop-Algcℓ)

coop .

Remark 1.2.14. A colax T -morphism f= ( f ,
〈
f
〉
) is a T -pseudomorphism if

〈
f
〉

is an invertible 2-
cell. In particular, we have an inclusion 2-functor Lax-T -Alg→ Lax-T -Algcℓ, in which Lax-T -Alg
denotes the 2-category of lax T -algebras and T -pseudomorphisms as introduced in Section 5.4.

Definition 1.2.15. [Co-bicategory of monads] The bicategory of monads and co-morphisms of a
bicategory B, called herein the co-bicategory of monads and denoted by Mndco(B), is the bicategory
of lax Id

B
-algebras and colax Id

B
-morphisms, that is to say: Mndco(B) := Lax-Id

B
-Algcℓ.

The duals of the bicategories of monads are the bicategories of comonads. More precisely, the
bicategories are defined by CoMnd(B) := (Mnd(Bco))co and CoMndco(B) := (Mndco(B

co))co.

Lemma 1.2.16. Given a bicategory B,

Mndco(B)∼= Lax-Id
B

-CoAlgℓ ∼= (Mnd(Bop))op and Mnd(B)∼= Lax-Id
B

-CoAlgcℓ.
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Herein, we actually do not need to give the full definition of proarrow equipment introduced in
[112, 113]. Instead, we can give a much less structured version:

Definition 1.2.17. [Proarrow equipment] A proarrow equipment on a 2-category B0 is a pseudofunc-
tor P : B0→B1 which is the identity on objects and locally fully faithful.

Clearly, the category of proarrow equipments is a subcategory of the category of morphisms of
the category of bicategories and pseudofunctors. Similarly, in the context of Remark 1.2.5, there
is a tricategory of proarrow equipments which is a sub-tricategory of the tricategory of morphisms
of BICAT. Thereby, it is natural to consider pseudomonads on pseudofunctors and on proarrow
equipments.

Definition 1.2.18. [Pseudomonad on proarrow equipments] A pseudomonad T on a pseudofunctor
P : B0→B1 is a pair (T0,T1) in which T0 = (T 0,m0,η0,µ0, ι0,τ0) is a pseudomonad on B0 and
T1 = (T 1,m1,η1,µ1, ι1,τ1) is a pseudomonad on B1 such that this pair of pseudomonads agrees
with P, which means that:

T 1P = PT 0, m1P = Pm0, η
1P = Pη

0, µ
1P = Pµ

0, ι
1P = Pι

0, τ
1P = Pτ

0.

For our purposes, we could define a simpler version of pseudomonads on proarrow equipments on
2-categories. That is to say, we could say that a pseudomonad on P : B0→B1 is just a pseudomonad
on B1.

Definition 1.2.19. Given a pseudomonad T = (T0,T1) on a proarrow equipment P : B0→B1 on a
2-category B0, the bicategory of lax (T ,P)-algebras, denoted herein by Lax-(T ,P)-CoAlgcℓ, is the
pullback of P along the forgetful pseudofunctor Lax-T1-Algcℓ→B1 in the category of bicategories
and pseudofunctors.

The category of bicategories and pseudofunctors does not have all pullbacks (or equalizers). How-
ever, in the context of Definition 1.2.19, the pullbacks always exist. Moreover, Lax-(T ,P)-CoAlgcℓ
is always a 2-category. Explicitly, the objects of Lax-(T ,P)-CoAlgcℓ are lax T -algebras z =

(Z,alg
z
,z,z0) and the morphisms between two objects in Lax-(T ,P)-CoAlgcℓ are colax T -morphisms

g= (g,⟨g⟩) between lax T -algebras such that P(ġ) = g for some morphism ġ of B0. The composition
of morphisms f = (P( ḟ ),

〈
f
〉
),g = (P(ġ),⟨g⟩) is defined by f ·g := (P( ḟ ġ),

〈
fg
〉
) such that

〈
fg
〉

is
defined by

X

g=P(ġ)

��
P( ḟ ġ)

((

p−1
( ḟ )(ġ)

===⇒

T X

T ( f g)

��

algxoo

T P( ḟ ġ)

vv

T

(
p
( ḟ )(ġ)

)
======⇒Y

f=P( ḟ )

��

⟨fg⟩
==⇒

Z T Z
algz

oo
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in which
〈
fg
〉

denotes the 2-cell component of the usual composition of the colax T -morphisms of f
and g.

The 2-category of monads and co-morphisms in a proarrow equipment P : B0→B1 is defined,
then, by Mndco(P) := Lax-(IdP,P)-Algcℓ.

Definition 1.2.20. [Proarrows of Matrices] Given a symmetric closed monoidal category (V,⊗, I)
with coproducts, the bicategory V -Mat gives a natural proarrow equipment Set→ V -Mat on the
locally discrete bicategory Set in which a function f : A→ B is taken to f̆ : A×B→V defined by

f̆ (i, j) =

I, if f (i) = j

0, otherwise

in which 0 is the initial object.

Definition 1.2.21. [Proarrows of Spans] Given a category V with pullbacks, the bicategory Span(V )

gives a natural proarrow equipment V → Span(V ) on the locally discrete bicategory V in which a
morphism f : A→ B is taken to the span

A A
idAoo f // B.

Definition 1.2.22. [Enriched Categories and Internal Categories] Given a symmetric closed monoidal
category (V,⊗, I) with coproducts, the category of small V -enriched categories V -cat is the underlying
category of Mndco(Set→V -Mat).

Given a category with pullbacks V ′, the category of V ′-internal categories Cat(V ′) is the underlying
category of Mndco(V ′→ Span(V ′)).

Remark 1.2.23. The introduction of enriched categories via monads of V -Mat does not work well
for large enriched categories, unless we make tiresome considerations about enlargements of uni-
verses/completions. For our setting, however, it is enough to observe that, if V is a large symmetric
monoidal closed category that has large coproducts (indexed by discrete categories), one can consider
the bicategory as in Definition 1.2.9 but with discrete categories (objects of SET) instead of sets, and
matrices indexed by them. By abuse of language, denoting this bicategory as V -Mat, it is clear that
we can consider the category of large V -enriched categories V -Cat defined by the underlying (large)
category Mndco(SET→V -Mat).

Explicitly, an internal category of a category with pullbacks V ′ is a span A1
d1

←− A2
d0

−→ A1, which
we denote by a, together with the multiplication and identity, 2-cells a ◦ a⇒ a and idA ⇒ a of
Span(V ′), satisfying the conditions of monad/lax Id

Cat
-algebra of associativity and action of identity

described in Definition 5.4.1. Recall that, by definition, the 2-cells a◦a⇒ a and idA⇒ a are just
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morphisms a : A2×(d0,d1) A2→ A1 and a0 : A1→ A2 of V ′ such that

A1 A1

A2

d0
__

A2

d1

��

d0

GG

A1a0oo A2

d0

GG

d1

��

A2×(d0,d1) A2

D0

kk

D1

ss

aoo

ff

xx
A2

d1
��

A1 A1

commute. In this case, the object A1 is called the object of objects, the object A2 is called the object
of morphisms, d1 is the domain morphism, d0 is the codomain morphism, the morphism a is the
composition and a0 : A1→ A2 is the identity assigning.

Definition 1.2.24. [Double Category] The category of double categories is the category of internal
categories of Cat, that is to say Cat(Cat).

A double category X is, then, a span X1
d1

←− X2
d0

−→ X1 of Cat with the composition and identity
satisfying the usual conditions. Given such a double category, the objects of X0 are called the
objects of the double category, while the morphisms of X0 are called vertical arrows. The objects
f of X2 are called horizontal arrows (or morphisms) of the double category X and we denote it by
f : d1( f )→ d0( f ) in which d1( f ) is called the domain of f and d0( f ) is the codomain of f . Finally,
if α : f → g is a morphism of X2, we denote it by

d1( f )

α

f //

d1(α)

��

d0( f )

d0(α)

��
d1(g) g // d0(g)

and we say that α is a 2-cell (or a square) of X.

A 2-category is just a Cat-enriched category. Clearly, if the category of objects of a double
category D is discrete, then it is a 2-category. More generally, the full subcategory of Cat(Cat)
consisting of the double categories without nontrivial vertical arrows is isomorphic to the category
of 2-categories and 2-functors Cat-Cat. For suitable categories V instead of Cat, a similar property
holds. This generalization is given by Lemma 3.9.10.

1.3 Freely generated n-categories, coinserters and presentations of low
dimensional categories

Chapter 2 corresponds to the paper Freely generated n-categories, coinserters and presentations of
low dimensional categories [80], DMUC 17-20 or arXiv:1704.04474. As the title suggests, the main
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subjects of this paper are related to development of a theory towards the study of presentations of low
dimensional categories and freely generated categorical structures. Although it was the last paper to
be written, it introduces some basic aspects of 2-category theory.

The chapter starts by giving basic aspects of 2-dimensional (weighted) colimits, focusing on coin-
serters, coequifiers and coinverters. These are the 2-dimensional colimits that have direct applications
respectively in the study of adding free morphisms to a category, forcing relations between morphisms
and categories of fractions [59, 61]. We are, however, interested in particular cases: freely generated
categories, the left adjoint of the inclusion of thin categories and the left adjoint of the inclusion of
groupoids.

The category of thin categories Prd and the category of groupoids Gr, as defined in 2.1.1, are
replete reflective subcategories of Cat, with inclusions M1 : Prd→ Cat and U1 : Gr→ Cat. Hence
there is an easy way of characterizing the images of M1 and U1 via universal properties. More
precisely, if we denote the reflectors by M1 : Cat→ Prd and L1 : Cat→ Gr, we have that, given
a category X of Cat, there is Y of Prd (Y of Gr) such that M1(Y ) ∼= X (U1(Y ) ∼= X ) if and only
if M1M1(X) ∼= X (U1L1(X) ∼= X). Since U1L1(X) and M1M1(X) are given, respectively, by a
coinverter and a coequifier, we get Proposition 2.1.4 and Theorem 2.1.7. Actually, within the context
of Chapter 2, the most important fact in this direction is that we can get the category freely generated
by a graph G : Gop→ Set, denoted by F1(G), via the coinserter of G composed with the inclusion
Set→ Cat. This is Lemma 2.2.3. It motivates one of the main points of the paper: to give freely
generated categorical structures via coinserters.

After showing these facts, we give further background in Section 2.2. We study basic aspects of
freely generated categories. We introduce basic notions of graphs (trees, forests and connectedness)
relating with the groupoids and categories freely generated by them. We study reflexive graphs as
well. The main importance of reflexive graphs within our context is the fact that the terminal category
is freely generated by the terminal reflexive graph, while F1 does not preserve the terminal object.
Finally, we also characterize the totally ordered sets that are free categories and show that freeness of
groupoids is a property preserved by equivalences.

Then, we give the basic notions of presentations of this paper. On one hand, we show how every
monad T induces a natural notion of presentation of T -algebras in Section 2.3. In particular, we
have that the free category monad induces a notion of presentation of categories. On the other hand,
in Section 2.4 we define computads and show how it induces a notion of presentation of categories
(and groupoids) with equations between morphisms. We compare both notions of presentations in
Theorems 2.4.5 and 2.4.6.

Since we can see computads as free categories together with relations between morphisms, we
introduce the suitable variation of the concept of computad to deal with presentation of groupoids:
groupoidal computads. This has particular interest in Section 2.5 which deals with the relation between
topology and computads. Moreover, the notion of presentations of groups via groupoidal computads
coincides with the usual notion, as explained in Remark 2.4.19.

Section 2.5 establishes fundamental connections between topology and computads. We start by
showing that the usual association of a topological graph to each graph, usually called geometric
realization, consists of a left adjoint functor FTop1

: grph→ Top given objectwise by the topological
coinserter introduced therein. In this context, we show that there is a distributive law between the
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monads induced by F1 and FTop1
which is constructed from the usual notion of concatenation of

continuous paths. As a fundamental tool to study presentation of thin and locally thin categorical struc-
tures, using the distributive law mentioned above, we give a detailed construction of a 2-dimensional
analogue of FTop1

, denoted by FTop2
: cmp→ Top, which associates each computad to a topological

space.

We introduce the fundamental groupoid functor Π : Top→ gr using the concept of presentation
via computads. More precisely, we firstly associate a computad to each topological space and, then, Π

is given by the groupoid presented by the associated computad. We prove theorems that relate the
fundamental groupoid and freely generated groupoids. In particular, the last results of Section 2.5
state that the fundamental groupoid of FTop2

(g) is equivalent to the groupoid presented by g. These
results show that FTop2

formalizes the usual construction of a CW-complex from each presentation of
groups, the Lyndon–van Kampen diagrams [56].

In Section 2.6 we introduce our main notions of deficiency. More precisely, we introduce the
notion of deficiency of a groupoid w.r.t. presentation of groupoids and the notion deficiency of a
presentation of a T -algebra w.r.t. a finite measure. Under suitable hypotheses, we find both notions
to coincide in the particular case of groupoids. They also coincide with the usual notions of deficiency.
In this section, mostly using the results of Section 2.5, we also develop a theory towards the study of
thin categories and thin groupoids. For instance, we prove that, whenever g is a computad such that
FTop2

(g) has Euler characteristic smaller than 1, then the groupoid presented by g is not thin. From
this fact, we can prove that deficiency of a thin groupoid is 0, recasting and generalizing the result that
says that trivial groups have deficiency 0.

Although our definition of computads is equivalent to the original one of [103], we introduce
it via a graph satisfying a coincidence property, as it is shown in Remark 2.8.12. The main point
of our perspective, besides giving a concise recursive definition, is that it allows us to prove that
the 2-category freely generated by a computad g is the coinserter of g, when we consider g as a
graph internal to an appropriate 2-category of 2-categories: the 2-category of 2-categories, 2-functors
and icons [69]. In order to get freely generated n-categories via coinserters, we introduce higher
dimensional analogues of icons. These concepts and results, including the general result that states
that the n-category freely generated by an n-computad is its coinserter, are given in Sections 2.7 and
2.8.

We finish the paper studying aspects of presentations of 2-categories. We show simple examples
of locally thin 2-categories that are not free and develop a theory to study presentations of locally
thin and groupoidal 2-categories. We give efficient presentations of 2-categories related to the strict
descent object. In the end of Chapter 2, we sketch a construction of the 3-dimensional analogue of
FTop2

, that is to say FTop3
, which associates a 3-dimensional CW-complex to each 3-computad.

1.4 Beck-Chevalley

The mate correspondence [63, 98] is a fundamental framework in 2-dimensional category theory. For
instance, this correspondence is in the core of the techniques of Chapter 2 to construct FTop2

and the
distributive law between the monads induced by F1 and FTop1

. Another important example is in
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Chapter 3: the Beck-Chevalley condition, written in terms of a simple mate correspondence, plays an
important role in the proof of the Bénabou-Robaud Theorem.

The main aim of this section is to present the Beck-Chevalley condition within the context of
2-dimensional monad theory. In order to do so, we present the most elementary version of mate
correspondence in Theorem 1.4.6. We start by defining and giving elementary results on adjunctions
in a 2-category.

Definition 1.4.1. [Adjunction] An adjunction in a 2-category A is a quadruplet

( f : Y → Z,g : Z→ Y,ε : f g⇒ idZ ,η : idY ⇒ g f ),

in which f ,g are 1-cells and ε,η are 2-cells of A, such that

Y

η

===⇒

f // Z

g

��

Y

η

===⇒

Z
goo

Y
f

// Z

ε

===⇒

Y

f

??

Zg
oo

ε

===⇒

are respectively the identity 2-cells f ⇒ f and g⇒ g. In this case, we denote the adjunction by
( f ⊣ g,ε,η) : Y → Z. For short, we also denote such an adjunction by just f ⊣ g when the counit and
unit are implicit.

Remark 1.4.2. If ( f ⊣ g,ε,η) : Y → Z is an adjunction, f is called left adjoint, g is called right
adjoint, ε is called the counit and η is called the unit of the adjunction. Moreover, the equations of
Definition 1.4.1 are called triangle identities.

Remark 1.4.3. It is clear that adjoints are unique up to isomorphism. More precisely, if ( f̃ ⊣ g,µ,ρ)
and ( f ⊣ g,ε,η) : Y → Z then

Y

η

===⇒

f // Z

g

��

Y
f̃ //

ρ

===⇒

Z

g

��

is the inverse of

Y
f̃

// Z

µ

===⇒

Y
f

// Z

ε

===⇒

by the triangle identities. In particular, f ∼= f̃ .

Let A be a 2-category. We can construct a category of adjunctions Aadj of A. The objects of Aadj

are the objects of A, but the morphisms are adjunctions ( f ⊣ g,ε,η) : Y → Z. The identities are the
adjunctions between identities with identities counit and unit. Given adjunctions ( f2 ⊣ g2,ε2,η2) :
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Y → Z and ( f1 ⊣ g1,ε1,η1) : X → Y , the composition is given by ( f2 f1 ⊣ g1g2,ε3,η3) : X → Z in
which ε3 and η3 are defined below.

X f1

&&

Z

Y f2

%%idY

��

Y

f2
ee

η3 := η1===⇒ Zη2===⇒
g2yy

ε3 := ε2⇐== X

f1
ee

ε1⇐==

Y
g1xx

Y

idY

OO

g1

99

X Z
g2

99

Of course, 2-functors take adjunctions to adjunctions. However, pseudofunctors do not. Instead,
in this case, we can say that left (or right) adjoints are taken to left (or right) adjoints. More precisely,
we have Lemma 1.4.5.

In order to prove such result, we use Lemma 1.4.4, a basic result on the image of pasting of 2-cells.
Following the notation established in Definition 4.2.1, we have:

Lemma 1.4.4. If L : A→B is a pseudofunctor, then:

L


W

α

===⇒

g //

m

��

X

h

��

n

��
Z f // Y

β

===⇒

= lng ·



L(W )

l−1
hg ·L(α)

====⇒

L(g) //

L(m)

��

L(X)

L(h)

}}

L(n)

��
L(Z) L( f ) // L(Y )

L(β )·l f h
====⇒


· l−1

f m
,

L


Z

α

===⇒

Xhoo

W

g

??

m

OO

Y

t

OO

uoo

γ

===⇒

= lht ·



L(Z)

l−1
hg ·L(α)

====⇒

L(X)L(h)oo

L(W )

L(m)

OO

L(g)

==

L(Y )

L(t)

OO

L(u)oo

L(γ)·lgu
====⇒


· l−1

mu
.

Proof. Firstly, by the interchange law, it is clear that the right side of the first equation above is equal
to

lng ·
(
L(β )∗L(idg)

)
·
(
l f h ∗ idL(g)

)
·
(

idL( f ) ∗ l
−1
hg

)
·
(
L(id f )∗L(α)

)
· l−1

f m
.

Then, by the naturality of Definition 4.2.1, this is equal to

L(β ∗ idg) · l( f h)g ·
(
l f h ∗ idL(g)

)
·
(

idL( f ) ∗ l
−1
hg

)
· l−1

f (hg)
·L(id f ∗α),

which is indeed equal to the left side of the equation above, since, by the associativity of Definition
4.2.1,

l
( f h)g ·

(
l f h ∗ idL(g)

)
·
(

idL( f ) ∗ l
−1
hg

)
· l−1

f (hg)
= l f (hg) ·

(
idL( f ) ∗ lhg

)
·
(

idL( f ) ∗ lhg

)−1
· l−1

f (hg)

= idL( f hg)
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and L(β ∗ idg) ·L(id f ∗α) = L
(
(β ∗ idg) · (id f ∗α)

)
. This proves the first equation. The proof of the

second one is analogous.

Lemma 1.4.5. If L : A→B is a pseudofunctor and ( f ⊣ g,ε,η) : Y → Z is an adjunction in A, then

(L( f ) ⊣ L(g), l−1
Z
·L(ε) · l f g , l

−1
g f
·L(η) · lY )

is an adjunction in B. Whenever ( f ⊣ g,ε,η) is implicit, we usually denote the induced adjunction
above by L( f ) ⊣ L(g).

Proof. By Lemma 1.4.4, we get that:

L



Y
η

===⇒

Z
goo

Y

f

??

Zg
oo

ε

===⇒


= lg idZ

·



L(Y )

l−1
g f ·L(η)

====⇒

L(Z)
L(g)oo

L(Y )

L( f )

==

L(Z)
L(g)

oo

L(ε)·l f g
====⇒


· l−1

idY g
,

L



Y
η

===⇒

f // Z

g

��
Y

f
// Z

ε

===⇒


= lidZ f ·



L(Y )

l−1
g f ·L(η)

====⇒

L( f ) // L(Z)

L(g)

}}
L(Y )

L( f )
// L(Z)

L(ε)·l f g
====⇒


· l−1

f idY
.

Since, by Equation 2 of Definition 4.2.1,

l−1
f idY

= idL( f ) ∗ lY , l−1
idY g

= lY ∗ idL(g) , lidZ f = l−1
Z
∗ idL( f ) , lg idZ

= idL(g) ∗ l
−1
Z
,

the result follows.

Theorem 1.4.6 (Mate Correspondence). Let ( f ⊣ g) := ( f ⊣ g,ε,η) : Z → Y and (l ⊣ u) := (l ⊣
u,µ,ρ) : W → X be adjunctions in a 2-category A. Given 1-cells m : X → Y and n : W → Z of A,
there is a bijection A(X ,Z)(nu,gm)∼= A(W,Y )( f n,ml), given by α 7→ α

f⊣g
l⊣u in which α

f⊣g
l⊣u is defined

by:

W l // X

u

��

m

��
α
( f⊣g)
(l⊣u)

:= W

ρ

=⇒

n

��

α

=⇒ Y

g

��
Z

f
//

ε

=⇒

Y
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We call α
f⊣g
l⊣u the mate of α under the adjunction (l ⊣ u,µ,ρ) and the adjunction ( f ⊣ g,ε,η).

Proof. The map β 7→ β
f⊣g
l⊣u

defined by

X u //W

l

��

n

��
β
( f⊣g)
(l⊣u)

:= X

µ⇐=

m

��

β⇐= Z

f

��
Y g

//

η⇐=

Z

is clearly the inverse of α 7→ α
( f⊣g)
(l⊣u) .

Actually, we can say much more about this correspondence. For instance, this is part of an
isomorphism of double categories. More precisely, given a 2-category A, we define two double
categories RAdj(A) and LAdj(A). The objects and the horizontal arrows of both double categories are
the objects and 1-cells of A, while the vertical arrows are adjunctions ( f ⊣ g,ε,η) of A. Given vertical
arrows ( f ⊣ g,ε,η) : Z→ Y , (l ⊣ u,µ,ρ) : W → X and horizontal arrows m : X → Y , n : W → Z, the
squares of RAdj(A) are 2-cells α : nu⇒ gm of A, while the squares of LAdj(A) are 2-cells β : f n⇒ml.
The composition of squares are given by pasting of 2-cells, the composition of horizontal arrows is
the composition of 1-cells and the composition of vertical arrows is the composition of adjunctions as
in Aadj. It is clear, then, that the mate correspondence induces an isomorphism between RAdj(A) and
LAdj(A). In particular, the mate correspondence respects vertical and horizontal compositions.

As a first application of these observations on the mate correspondence, we give another proof of
the statement of Remark 1.4.3. Indeed, in the context of Remark 1.4.3, we take the 2-cells that are
mates of the identity

Z
g
��

=

Z
g
��

Y Y

under the adjunctions ( f̃ ⊣ g,µ,ρ) and ( f ⊣ g,ε,η), and under the adjunctions ( f ⊣ g,ε,η) and
( f̃ ⊣ g,µ,ρ). They are respectively denoted by ψ : f idY ⇒ idZ f̃ and ψ ′ : f̃ idY ⇒ idZ f (which actually
are the 2-cells of Remark 1.4.3). Since the mate correspondence preserves horizontal composition, the
compositions ψ ′ψ and ψψ ′ are respectively the mates of the 2-cell idY g = gidZ above under f ⊣ g and
itself, and under f̃ ⊣ g̃ and itself; that is to say, the identity on f and the identity on f̃ . In particular,
ψ : f ⇒ f̃ is an isomophism.

Remark 1.4.7. If ( f ⊣ g,ε,η) : Y → Z is an adjunction in the 2-category Cat, we know that
Z( f−,−) ∼= Y (−,g−). The mate correspondence generalizes this fact since, assuming now that
(l ⊣ u,µ,ρ) : Y ′→ Z′ is an adjunction in a 2-category A, as a particular case of Theorem 1.4.6, we
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conclude that
A(X ,Y ′)(−,u−)∼= A(X ,Z′)(l−,−)

for any object X of A. Still, up to size considerations, the Yoneda structure [110] of CAT implies that:
given a functor f̃ : Y → Z, f̃ ⊣ g̃ in Cat if and only if there is a natural isomorphism

(CAT [Y,SET])op (CAT[g̃,SET])op
//

∼=

(CAT [Z,SET])op

Y
f̃

//

Y op
Y op

OO

Z

Y op
Zop

OO
(ϕ)

in which YY op , YZop denote the Yoneda embeddings. Moreover, it should be noted that, if f̃ ⊣ g̃, then
(CAT [g̃,SET])op ⊣

(
CAT

[
f̃ ,SET

])op
by the 2-functoriality of (CAT [−,SET])op : CATcoop→ CAT.

It is clear that the images of the mates by 2-functors are the mates of the images. In the case of
pseudofunctors, it follows from Lemma 1.4.4 that:

Lemma 1.4.8. Let E : A→B be a pseudofunctor and ( f ⊣ g,ε,η), (l ⊣ u,µ,ρ) adjunctions in A.
Given a 2-cell α : nu⇒ gm,

̂
E
(

α
f⊣g
l⊣u

)
= Ê(α)

E( f )⊣E(g)

E(l)⊣E(u) ,

in which
̂

E
(

α
f⊣g
l⊣u

)
:= e−1

ml
·E
(

α
f⊣g
l⊣u

)
· e f n and Ê(α) := e−1

gm
·E(α) · enu . In other words,

e−1
ml
·E
(

α
f⊣g
l⊣u

)
· e f n

is the mate of e−1
gm
·E(α) · enu under E(l) ⊣ E(u) and E( f ) ⊣ E(g).

We also have an important result relating mates and pseudonatural transformations:

Lemma 1.4.9. Let λ : E −→ L be a pseudonatural transformation between pseudofunctors. If
( f ⊣ g,ε,η) : Y → Z is an adjunction of A, then the mate of

E(Y )

E( f )

||

λY

��
E(Z)

λZ

��

λ f⇐=== L(Y )

L( f )
||

L(Z)

under the adjunction (E( f ) ⊣ E(g),e−1
Z
·E(ε) ·e f g ,e

−1
g f
·E(η) ·eY ) and (L( f ) ⊣ L(g), l−1

Z
·L(ε) · l f g , l

−1
g f
·

L(η) · lY ) is equal to λ−1
g

.

Proof. In order to simplify the terminology, we prove it for a pseudonatural transformation λ : E −→ L
between 2-functors. The proof in the case of pseudofunctors is analogous.
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The proof consists in verifying that the mate λ f
L( f )⊣L(g)
E( f )⊣E(g)

composed with λg is equal to the identity

L(g)λZ ⇒ L(g)λZ . Firstly, observe that this composition is equal to

E(Z)
λZ

$$

E(g)

��
E(ε)⇐==

E(Z)

λZ

��

E(Y )

λY

��

E( f )oo L(Z)

L(g)

zz

λg⇐===

L(Y )

L(η)⇐==

λ f⇐===

L( f )

zz
L(Z) L(g) // L(Y )

Since λidZ
= id

λZ
, by Equations 1 and 3 of Definition 4.2.2 we get that this composition is equal to

E(Z) λZ
//

E(g)

$$

L(Z)

L(g)

$$
=

E(Z) λZ
//

id
λZ⇐=⇒

L(Z)

L(g)

$$
E(Y )E(ε)⇐==

λ f g⇐===

E( f )

zz

L(Y )

L( f )

zz
L(η)⇐==

L(Y )L(ε)⇐==

L( f )

zz
L(η)⇐==

E(Z) λZ
// L(Z) L(g) // L(Y ) E(Z) λZ

// L(Z) L(g) // L(Y )

which is clearly equal to the identity L(g)λZ ⇒ L(g)λZ , since (L( f ) ⊣ L(g),L(ε),L(η)) is an adjunc-
tion.

Definition 1.4.10. [Beck-Chevalley condition] Let ( f ⊣ g) := ( f ⊣ g,ε,η) : Z→ Y and (l ⊣ u) :=
(l ⊣ u,µ,ρ) : W → X be adjunctions in a 2-category A. Assume that α : nu⇒ gm is a 2-cell of A. We
say that

X
u

~~
m

��
W

n

��

α

=⇒ Y

g
~~

Z

satisfies the Beck-Chevalley condition if the mate of α under l ⊣ u and f ⊣ g is an invertible 2-cell.

Outside any context, the meaning of the Beck-Chevalley condition might seem vacuous. Even
when some context is provided, it is many times considered as an isolated technical condition. In this
thesis, however, this condition is always applied in the context of doctrinal adjunction. More precisely,
our informal perspective is that, whenever the Beck-Chevalley condition plays an important role,
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we can frame our problem in terms of 2-dimensional monad theory, getting a problem of lifting of
adjunctions of the base 2-category to the 2-category of pseudoalgebras. The Beck-Chevalley condition
is precisely the obstruction condition to this lifting. The most important example of this approach in
this thesis is Chapter 3 or, more specifically, the proof of the Bénabou-Robaud Theorem presented
therein.

Below, we briefly explain the Beck-Chevalley condition within the context of 2-dimensional
monad theory. This section can be considered, then, as prerequisite to the understanding of Section
3.7, since herein we do not assume familiarity with the doctrinal adjunction. We also show in
1.4.17 how, within our context, Kock-Zöberlein pseudomonads encompass the situation of “the
Beck-Chevalley condition always holding”.

We start by showing the most elementary version of an important bijection between colax and
lax T -structures in adjoint morphisms. Again, the mate correspondence is the basic technique to
introduce this bijection.

Let T be a pseudomonad on a 2-category B and g : Z → Y a morphism of B. Given lax T -
algebras y= (Y,alg

y
,y,y

0
) and z= (Z,alg

z
,z,z0), the collection of lax T -structures for g : Z→ Y

w.r.t. z and y, denoted by Lax-T -Algℓ(z,y)g, is the pullback of the inclusion of g in the category
of morphisms B(Z,Y ), 1→B(Z,Y ), along the functor Lax-T -Algℓ(z,y)→B(Z,Y ) induced by
the forgetful 2-functor. Analogously, given a morphism f : Y → Z of B, Lax-T -Algcℓ(y,z) f is the
pullback of the inclusion of f into B(Y,Z) along the forgetful functor Lax-T -Algcℓ(y,z)→B(Y,Z).

It is clear, then, that a lax T -morphism in Lax-T -Algℓ(z,y)g corresponds to a 2-cell ⟨g⟩ :
alg

y
T (g)⇒ galg

z
of B satisfying the axioms of Definition 5.4.1, while a colax T -morphism in

Lax-T -Algcℓ(y,z) f corresponds to a 2-cell
〈
f
〉

: falg
y
⇒ alg

z
T ( f ) of B satisfying the axioms of

Definition 1.2.11.
Moreover, we can consider the category of lax T -structures for f w.r.t. lax T -algebras which

is the pullback of the inclusion of the morphism f into B, 2→B, along the forgetful 2-functor
Lax-T -Algℓ →B. Finally, the category of colax T -structures for g w.r.t. lax T -algebras is the
pullback of the inclusion of the morphism g into B along Lax-T -Algcℓ→B.

Theorem 1.4.11 (Colax and lax structures in adjoints). Let T be a pseudomonad on B and

( f ⊣ g,ε,η) : Y → Z

an adjunction in B. Given lax T -algebras y= (Y,alg
y
,y,y

0
) and z= (Z,alg

z
,z,z0), the mate cor-

respondence under the adjunction (T ( f ) ⊣T (g), t−1
Z
·T (ε) · t f g , t

−1
g f
·T (η) · tY ) and the adjunction

( f ⊣ g,ε,η) induces a bijection

� : Lax-T -Algℓ(z,y)g ∼= Lax-T -Algcℓ(y,z) f .

These bijections induce an isomorphism between the category of lax T -structures for g : Z→ Y and
category of colax T -structures for f : Y → Z w.r.t. lax T -algebras.

Proof. Assume that ( f ⊣ g,ε,η) : Y → Z is an adjunction in B and T is a pseudomonad on B as
in the hypothesis. Given 2-cells ⟨g⟩ : alg

z
T (g)⇒ galg

y
and

〈
f
〉

: falg
y
⇒ alg

z
T ( f ) that are mates

under the adjunctions (T ( f ) ⊣T (g), t−1
Z
·T (ε) · t f g , t

−1
g f
·T (η) · tY ) and ( f ⊣ g,ε,η), we have that:
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1. By Lemmas 1.4.8 and 1.4.9, the 2-cells

T Z
algz //

m f⇐=

Z

⟨f⟩⇐=

T 2Y

T̂ (⟨f⟩)
====⇒

T (algy )

||

T 2( f ) // T 2Z
mZ

""

T (algz )

{{
z

==⇒T 2Z

mZ

;;

T Y

T ( f )

bb

algy //

y⇐=

Y

f

``

T Y
T ( f )

//

algy
""

T Z

algz

##

⟨f⟩
=⇒

T Z

algz
||

T 2Y

mY

<<

T (algy )
//

T 2( f )

cc

T Y

algy

>>

Y
f

// Z

are respectively the mates of

T 2Z

m−1
g⇐==

mZ

||

T 2(g) // T 2Y
T (algy )

""

mY

{{
y⇐====

T Y
algy //

T̂ (⟨g⟩)
====⇒

Y

⟨g⟩
=⇒

T Z
T (g)

//

algz
""

T Y

algy

##

⟨g⟩⇐=

T Y

algy
||

T 2Y

T (algy )
;;

T Z

T (g)

bb

algz //

z
=⇒

Z

g

``

Z g
// Y T 2Z

T (algz )

<<

mZ

//
T 2(g)

cc

T Z

algz

>>

under the adjunctions T 2( f ) ⊣T 2(g) and f ⊣ g.

2. By Lemma 1.4.9, the 2-cells

Z

ηZ

��

η f⇐=

Y

ηY

}}

foo Z
ηZ

}}
T Z

algz

��
⟨f⟩⇐=

T Y y0⇐=
algy

!!

T ( f )
oo T Z z0⇐=

algz !!
Z Y

f
oo Z Y

foo

are respectively the mates of

Z
g //

ηZ

��

η−1
g⇐==

Y
ηY

}}

Z
ηZ

}}
T Z

T (g)
//

algz

��
⟨g⟩⇐=

T Y y0⇐=

algy !!

T Z z0⇐=

algz !!
Z g

// Y Z g
// Y

under f ⊣ g and itself.
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Therefore ⟨g⟩ : alg
z
T (g)⇒ galg

y
corresponds to a lax T -morphism in Lax-T -Algℓ(z,y)g if and

only if
〈
f
〉

: falg
y
⇒ alg

z
T ( f ) corresponds to a colax T -morphism in Lax-T -Algcℓ(y,z) f .

Remark 1.4.12. Clearly, we have dual results. For instance, given colax T -algebras z,y and an
adjunction ( f ⊣ g,ε,η) : Y → Z in the base 2-category B, we can analogously define the collections
Colax-T -Algcℓ(y,z) f and Colax-T -Algℓ(z,y)g of colax T -structures for f and lax T -structures for
g. The mate correspondence induces a bijection between such collections.

Now, we can introduce the Beck-Chevalley condition in the context of lax T -morphisms, being a
particular case of Definition 1.4.10. The relevance of this case is demonstrated in Theorem 1.4.14.

Definition 1.4.13. [Beck-Chevalley within 2-dimensional monad theory] Let T be a pseudomonad on
B and ( f ⊣ g,ε,η) : Y → Z an adjunction in B. Assume that g= (g,⟨g⟩) : z→ y is a lax T -morphism
between the lax T -algebras z= (Z,alg

z
,z,z0) and y= (Y,alg

y
,y,y

0
).

We say that g satisfies the Beck-Chevalley condition if the corresponding colax T -morphism
( f ,�⟨g⟩) : z→ y via the bijection of Theorem 1.4.11 is a T -pseudomorphism. That is to say, g
satisfies the Beck-Chevalley condition if

�⟨g⟩=

T Y
T ( f ) // T Z

t−1
g f ·T (η)·tY

======⇒
T (g)

}}

algz

��
T Y

algy

��

⟨g⟩
===⇒ Z

g

}}
Z

ε

==⇒

f
// Y

is an invertible 2-cell.

Given a 2-monad T on a 2-category B, while the forgetful 2-functors T -Algs → B and
Ps-T -Alg→B respectively reflect isomorphisms and equivalences, the forgetful 2-functor

Lax-T -Algℓ→B

reflects right adjoints that satisfy the Beck-Chevalley condition. More generally, the Doctrinal
Adjunction characterizes when the unit and the counit of an adjunction satisfy the condition of being a
T -transformation (given in in Eq. 3 of Definition 5.4.1).

Theorem 1.4.14 (Doctrinal Adjunction). Let T be a pseudomonad on B and

g= (g,⟨g⟩) : z→ y,f= ( f ,
〈
f
〉
) : y→ z
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lax T -morphisms. Assume that ( f ⊣ g,ε,η) : Y → Z is an adjunction in B. The 2-cells ε,η give
T -transformations ε̃ : fg⇒ id

z
and η̃ : id

y
⇒ gf if and only if

〈
f
〉

is invertible and �⟨g⟩=
〈
f
〉−1

.
In this case, (f ⊣ g, ε̃, η̃) is an adjunction in Lax-T -Algℓ.

Proof. Assume that ε,η give T -transformations ε̃ : fg⇒ id
z

and η̃ : id
y
⇒ gf in Lax-T -Algℓ. That

is to say, by hypothesis, ε,η satisfy Eq.3 of Definition 5.4.1. Denoting t−1
g f
·T (η) · tY by T̂ (η), we

have that
〈
f
〉
· (�⟨g⟩) and (�⟨g⟩) ·

〈
f
〉

are respectively equal to

T Y

T ( f )

!!

algy

��

T Yid
T Y

oo

T̂ (η)⇐===

Y ⟨f⟩⇐=

f

!!

T Z

T (g)

!!

algz

��
Z

ε⇐=

⟨g⟩⇐=

g

!!

T Y

algy

��
Z Yfoo

and

T Z

T (g)

!!

algz

��

T̂ (η)⇐===

T YT ( f )oo

Z ⟨g⟩⇐=

g

!!

T Y

algy

��

T ( f )

!!
Y

f

!!

⟨f⟩⇐= T Z

algz

��
Z

ε⇐====

ZidZ
oo

which, by Eq.3 of Definition 5.4.1 and the triangle identities (of Definition 1.4.1), are respectively
equal to the identities falg

y
⇒ falg

y
and alg

z
T ( f )⇒ alg

z
T ( f ). Therefore the proof of the first

part is complete.

Reciprocally, assume now that �⟨g⟩=
〈
f
〉−1

. We prove below that η gives a T -transformation
η̃ : id

y
⇒ gf. On one hand, the mate of the 2-cell



T Y

T (idY )

��

T (g f )

��

T (η)
===⇒

algy //

⟨gf⟩
==⇒

Y

g f

��
T Y algy // Y


·
(

id
algy
∗ tY

)
=

T Y

T ( f )

##
T̂ (η)
===⇒

algy // Y

f

��

⟨f⟩
=⇒

T Z

⟨g⟩
=⇒

algz
//

T (g)

{{

Z

g

��
T Y algy // Y

under the adjunction of identities and the adjunction ( f ⊣ g,ε,η) is equal to
〈
f
〉
· (�⟨g⟩) which by

hypothesis is equal to id falgy
. On the other hand, the mate of η ∗ id

algy
under the adjunction of identities

and the adjunction ( f ⊣ g,ε,η) is also equal to id falgy
by the triangle identity. Therefore, by the mate

correspondence (Theorem 1.4.6), we conclude that the left side of the equation above is equal to
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η ∗ id
algy

. Therefore

T Y

T (idY )

��

T (η)
===⇒T (g f )

��

algy // Y

g f

��

T Y
algy //

T (idY )

��

Y

idY

��

η

=⇒ g f

��

⟨gf⟩
==⇒ = idalgy

∗t−1
Y

=====⇒

T Y
algy

// Y T Y
algy

// Y

which, by Remark 1.2.12, shows that η satisfies Eq.3 of Definition 5.4.1. This proves that indeed η

gives a T -transformation η̃ : id
y
⇒ gf. The proof for ε is analogous.

Corollary 1.4.15. Let U : Lax-T -Algℓ→B be the forgetful 2-functor. Given a lax T -morphism
f : y→ z:

– f is left adjoint in Lax-T -Algℓ if and only if U(f) is left adjoint and f is a T -pseudomorphism;

– f is right adjoint if and only if U(f) is right adjoint and f satisfies the Beck-Chevalley condition.

In the case of pseudomorphisms, the second condition remains equally, but, for the case of lifting
of left adjoints, we still need to assure that the right adjoint is going to be a pseudomorphism. More
precisely:

Corollary 1.4.16. Let U : Lax-T -Algℓ→B be the forgetful 2-functor. Given a T -pseudomorphism
f= ( f ,

〈
f
〉
) : y→ z:

– f is left adjoint in Lax-T -Algℓ if and only if U(f) is left adjoint and �−1
〈
f
〉

is an invertible
2-cell;

– f is right adjoint if and only if U(f) is right adjoint and f satisfies the Beck-Chevalley condition.

1.4.17 Kock-Zöberlein pseudomonads

The concept of Kock-Zöberlein doctrine was originally introduced by Kock [65] and Zöberlein [114].
We adopt the natural extended notion of Kock-Zöberlein pseudomonad [83], called herein lax idempo-
tent pseudomonad.

Furthermore, since, in our context, the most important property of a lax idempotent pseudomonad
T is the fact that the forgetful 2-functor Lax-T -Algℓ→B is fully faithful, we get a shortcut, defining
lax idempotent pseudomonads via this property:

Definition 1.4.18. A pseudomonad (T ,m,η ,µ, ι ,τ) on a 2-category B is called a lax idempotent if
the forgetful 2-functor Lax-T -Algℓ→B is fully faithful (meaning that it is locally an isomorphism).

It should be noted that our definition is actually equivalent to the usual Kock-Zöberlein adjoint
property as stated below: the proof of this fact for the strict case is originally given in [60]. Since the
Kock-Zöberlein adjoint property has no important role in our observation, we avoid the proof.
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Proposition 1.4.19. A pseudomonad (T ,m,η ,µ, ι ,τ) is lax idempotent if and only if it satisfies the
Kock-Zöberlein adjoint structure property: that is to say, there is a modification γ : Id

T 2 =⇒ (ηT )(m)

such that (m ⊣ ηT , ι ,γ) is an adjunction.

In some situations, it can be easier to verify whether a pseudomonad T satisfies the Kock-
Zöberlein adjoint property than to verify whether the forgetful 2-functor Lax-T -Algℓ→B is fully
faithful. However our main observation on lax idempotent pseudomonads relies on the last property.
More precisely:

Remark 1.4.20. Given a lax idempotent pseudomonad (T ,m,η ,µ, ι ,τ), with a forgetful 2-functor
U : Lax-T -Algℓ→B, it is clear that:

– The forgetful 2-functor Ps-T -Algℓ→B is fully faithful as well;

– Given an object Z of B, if there is a lax T -algebra z such that U(z) = Z, it is unique up to
isomorphism;

– For every adjunction ( f ⊣ U(g),ε,η) : Y → Z in B, there is an adjunction (f ⊣ g, ε̃, η̃) in
Lax-T -Alg such that U(f) = f ;

– For every adjunction (U(f) ⊣ g,ε,η) : Y → Z in B, there is an adjunction (f ⊣ g, ε̃, η̃) in
Lax-T -Alg such that U(g) = g.

By Corollaries 1.4.15,1.4.16 and, by Remark 1.4.20, we get that, for every lax T -morphism
g : z→ y such that U(g) is right adjoint, g satisfies the Beck-Chevalley condition. More precisely:

Corollary 1.4.21. Assume that T is a lax idempotent pseudomonad, U : Lax-T -Algℓ→B is the
forgetful 2-functor and ( f ⊣ g,ε,η) : U(y)→U(z) is an adjunction in B.

– There is only one lax T -morphism f : y→ z such that U(f) = f . Furthermore, f is a T -
pseudomorphism which is left adjoint in Lax-T -Algℓ;

– There is only one lax T -morphism g : z→ y such that U(g) = g. Furthermore, g is right
adjoint to f in Lax-T -Algℓ and g satisfies the Beck-Chevalley condition.

This shows how Kock-Zöberlein pseudomonads encompass situations when “the Beck-Chevalley
conditions always hold”. In other words, given such a lax idempotent pseudomonad, whenever g is a
right adjoint between objects in the base 2-category that can be endowed with lax T -algebra structure,
the unique lax T -structure for g always satisfies the Beck-Chevalley condition.

We can now work on examples of lax idempotent pseudomonads. Besides the idempotent
pseudomonads of Chapter 3, the examples we should mention are the cocompletion pseudomonads [62,
95], which motivated the definition of Kock-Zöberlein doctrines. Our aim is to show how the
elementary result that says that left adjoints preserve colimits can be stated in our context.

The definition of cocompletion 2-monads for enriched categories is given in [95] and, by direct
verification, via Definition 1.4.18 or via the Kock-Zöberlein adjoint property, one can see that
cocompletion 2-monads are lax idempotent pseudomonads. We are more interested on the particular
case of the Kock-Zöberlein pseudomonad of cocompletion on CAT. In order to work out our example,
we need the list of well known properties of the cocompletion pseudomonad below. Although we do
not present proofs, they can be found in any of the main references [58].
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1. There exists a lax idempotent pseudomonad (P,m,η ,µ, ι ,τ) on CAT such that PX is the free
cocompletion of X for every category X ;

2. The P-pseudoalgebras (as the lax P-algebras) are the cocomplete categories;

3. Clearly, since P is lax idempotent, the lax P-morphisms are just functors between cocomplete
categories;

4. If f = ( f ,
〈
f
〉
) : y→ z is a lax P-morphism,

〈
f
〉

is given by the natural comparisons of
the colimit of the image and the image of the colimit of diagrams. In particular, the P-
pseudomorphisms are exactly the cocontinuous functors (which means that they preserve all the
colimits).

By Corollary 1.4.21, we get that right adjoint functors between cocomplete categories always
satisfy the Beck-Chevalley condition w.r.t. the pseudomonad P . Or, in other words, left adjoints
between cocomplete categories always induce P-pseudomorphisms.

Corollary 1.4.22. Left adjoint functors between cocomplete categories are cocontinuous.

This shows how our result on Beck-Chevalley condition for Kock-Zöberlein pseudomonads can
be seen as a generalization of this elementary result. Of course, left adjoints in general preserve
colimits. But we can see this fact as a consequence of Corollary 1.4.22. More precisely, given an
adjunction ( f̃ ⊣ g̃) : Y → Z in CAT, (CAT [g̃,SET])op ⊣

(
CAT

[
f̃ ,SET

])op
by Remark 1.4.7. Hence,

by Corollary 1.4.22, (CAT [g̃,SET])op is cocontinuous since it is a left adjoint between cocomplete
categories. By the natural isomorphism ϕ of Remark 1.4.7, since Y op

Y op :Y → (CAT [Y,Set])op preserves
and reflects colimits, we conclude that f̃ preserves colimits as well.

1.5 Pseudo-Kan Extensions and Descent Theory

Chapter 3 is the article Pseudo-Kan Extensions and descent theory [79], under review. We give a
formal approach to descent theory, framing classical descent theory in the context of idempotent
pseudomonads. Within this perspective, we recast and generalize most of the classical results of the
context of [51, 52], including transfer results, embedding results and the Bénabou-Roubaud Theorem.

The chapter starts by giving an outline of the setting, presenting basic problems and results of
the classical context of descent theory. We give an outline of the classical results that are proved and
generalized in that paper, including the results mentioned above.

In Section 3.2, we prove theorems on pseudoalgebra structures and biadjoint triangles, always
focusing in the case of idempotent pseudomonads. The main advantages on focusing our study
on idempotent pseudomonads are the following: the pseudoalgebra structures w.r.t. an idempotent
pseudomonad are easier to study. In this case, if a pseudoalgebra structure over an object X exists, it
is unique (up to isomorphism) and, moreover, the pseudoalgebra structure over an object X exists if
and only if the unit of the pseudomonad on X is an equivalence. This fact allows us to study situations
when we “almost have” a pseudoalgebra structure over an object X , which correspond to the situations
when the component of the unit on X is faithful or fully faithful. This is important, later, to study
descent and almost descent morphisms.
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The results on pseudoalgebra structures and biadjoint triangles give the formal account to study
descent theory. In order to study classical descent theory in the context of [52], the first step was
to give results on commutativity of bilimits. More precisely, we firstly give a direct approach to
prove an analogue of Fubini’s Theorem for weighted bilimits. This allows us to construct pointwise
pseudo-Kan extensions and prove the basic results about them. Secondly, since we prove that

[t,B]PS :
[
Ȧ,B

]
PS→ [A,B]

is pseudomonadic and induces an idempotent pseudomonad whenever t is locally fully faithful and Ȧ

is a small 2-category, we are able to get results on commutativity of bilimits as direct consequences of
our results on pseudomonadic pseudofunctors.

Section 3.4 introduces the descent objects, giving key results to finally frame the classical context
of descent theory. The main result of this section is that the conical bilimit of a pseudocosimplicial
object is its descent object. In other words, it shows that our definition of descent object coincides
with the usual definition (as, for instance, given in [104]). More concisely, within the language of
pseudo-Kan extensions, we prove that

PsRanjA (0)≃ PsRanj3
A t3

in which A : ∆→ H is a pseudofunctor, H is a bicategorically complete 2-category, j : ∆→ ∆̇ is the
full inclusion of the category of finite nonempty ordinals into the category of finite ordinals and order
preserving functions, t3 : ∆3 → ∆ is the inclusion of the 2-category given by the faces and degeneracies

1

d0
//

d1
//
2s0oo

∂ 0
//

∂ 1 //

∂ 2
//
3

into ∆, and j3 is the inclusion of ∆3 into the 2-category

0
d // 1

d0
//

d1
//
2s0oo

∂ 0
//

∂ 1 //

∂ 2
//
3

which is the 2-category obtained from the addition of an initial object to ∆3 . This proves in particular
that the definition of descent category via biased descent data on objects, which corresponds to
PsRanj3

A t3 , is equivalent to the definition of the descent category via unbiased descent data on
objects, which corresponds to the case PsRanjA (0). But the main points of this result are (1) this
gives a very simple universal property of the descent category/object and (2) this gives a way of easily
fitting the descent object in our language.

After this detailed work on descent objects, we turn to elementary and known examples. The
Eilenberg-Moore objects and the monadicity of functors also fit easily in our context of weighted
bilimits/pseudoalgebra structures, once we follow the ideas of [97]. This is explained in Section 3.6.

Finally, in Section 3.7, we show how our perspective on the Beck-Chevalley condition (as
explained in Section 1.4) allows us to get results on pseudoalgebra structures/commmutativity of
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bilimits and monadicity. This leads to our first result of the type of Bénabou-Roubaud Theorem. After
that, we finally show how our results work in the context of classical descent theory. We recast and
generalize classical results as direct consequences of our previous work.

We then give refinements of our results on commutativity of bilimits. In the context of descent
theory, this allows us to give better results on effective descent morphisms of weighted bilimits of
2-categories. It also gives the Galois result of [49] as a direct consequence.

One particular result obtained from our setting of commutativity of bilimits is the pseudopullback
theorem. It gives conditions to get effective descent morphisms (w.r.t. basic fibration) of well behaved
pseudopullbacks of categories. We finish this chapter applying this result to detect effective descent
morphisms in categories of enriched categories. Firstly, we prove that, for suitable cartesian categories
V , we have an embedding V -Cat→ Cat(V ) that is actually induced by a pseudopullback of categories.
Then, using the pseudopullback theorem, we prove that such embedding reflects effective descent
morphisms.

1.6 Biadjoint Triangles and Lifting of Biadjoints

Chapter 4 corresponds to the article On Biadjoint Triangles [77], published in Theory and Applications
of Categories, Vol 31, N. 9 (2016). The main contributions are the biadjoint triangle theorems, which
can be seen as 2-dimensional analogues of the adjoint triangle theorem of [30]. As mentioned in
Section 1.1, in order to prove the main results, we use the fact that the category of pseudomorphisms
between two pseudoalgebras has the universal property of the descent object. More precisely, assuming
that

A
J //

R ��

B

U��
C

≃

is a pseudonatural equivalence, in which R, J, U are pseudofunctors, U is pseudopremonadic and
R has a right biadjoint. We prove that J has a left biadjoint G, provided that A has some needed
codescent objects. We also study the unit and the counit of the obtained biadjunction: we give
sufficient conditions under which the unit and counit are pseudonatural equivalences. Finally, we
show that, under suitable conditions, it is possible to construct a (strict) left 2-adjoint.

Similarly to the case of adjoint triangles in 1-dimensional category theory, the biadjoint triangles
have many applications in 2-dimensional category theory. Examples of which are given in this same
paper:

– Pseudomonadicity characterization: without avoiding pseudofunctors, using the biadjoint trian-
gle theorem and the results on counit and unit, we give a explicit proof of the pseudomonadicity
characterization due to Le Creurer, Marmolejo and Vitale in [73];

– 2-monadic approach to coherence: as immediate consequences of our main theorems, we recast
and improve results on the 2-monadic approach to coherence developed in [9, 67, 73, 93]. More
precisely, we characterize when there is a left 2-adjoint (and biadjoint) to the inclusion of the
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2-category of strict algebras into the 2-category of pseudoalgebras,

T -Algs→ Ps-T -Alg

of a given 2-monad T . We also characterize when the unit of such biadjunction is a pseudonat-
ural equivalence;

– Lifting of biadjoints: the biadjoint triangle theorem gives biadjoints to algebraic pseudofunctors,
that is to say, lifting of biadjoints. These results recover and generalize, for instance, results of
Blackwell, Kelly and Power [9].

– Pointwise pseudo-Kan extension: We originally introduce the notion of pseudo-Kan extension
and, using the results on lifting of biadjoints, in the presence of weighted bilimits, we construct
pseudo-Kan extensions with them. This result, hence, gives the notion of pointwise pseudo-Kan
extension. It also gives a way of recovering the construction of weighted bilimits via descent
objects, cotensor (bi)products and (bi)products given originally in [104], if we assume the
construction of the pointwise pseudo-Kan extension via Fubini’s Theorem for weighted bilimits
given in Chapter 3.

Similarly to the pointwise Kan extension in 1-dimensional category theory, the concept of
pointwise pseudo-Kan extension plays a relevant role in 2-dimensional category theory. As
mentioned in Section 1.5, one instance of application of this concept given in this thesis is
within the study of commutativity of weighted bilimits of Chapter 3. Other examples are within
the study of 2-dimensional flat pseudofunctors of [27] and within the study of formal aspects of
2-dimensional category theory via Gray-categories [28].

Chapter 5 corresponds to the article On lifting of biadjoints and lax algebras [78], to appear in
Categories and General Algebraic Structures with Applications. It gives further theorems on lifting of
biadjoints provided that we can describe the categories of morphisms of a certain domain 2-categories
in terms of weighted (bi)limits. This gives an abstract account of the main idea of some proofs of
Chapter 4. Still, we show that this setting allows us to get results outside of the context of Chapter 4.

In particular, this approach, together with results on lax descent objects and lax algebras, allows
us to give results on lifting of biadjoints involving (full) sub-2-categories of the 2-category of lax
algebras. This gives biadjoint triangle theorems involving the 2-category of lax algebras. As a
immediate consequence, we complete our treatment of the 2-monadic approach to coherence via
biadjoint triangle theorems.

Remark 1.6.1. Unlike in the case of Chapter 5, our results on biadjoint triangles involving the
2-category of lax algebras, Theorems 5.5.2 and 5.5.3, lack the study of the counit and the unit of the
obtained biadjunctions. The study of counit and the unit in this setting could lead to new applications.
One example is given in Remark 1.7.8.

1.7 Lifting of Biadjoints and Formal Theory of Monads

In this section, we talk about applications of the results of Chapter 5 in the context of the formal
theory of monads. In order to do so, we assume most of the prerequisites of that chapter, including
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the concept of weighted limits and colimits in a 2-category w.r.t. the Cat-enrichment, usually called
2-limits and 2-colimits. In this direction, we adopt the terminology and definitions of Section 2.1.

Every adjunction induces a monad. This was originally shown in [48] for the 2-category Cat.
However it works for any 2-category. Indeed, given an adjunction ( f ⊣ g,ε,η) : Y → Z in a 2-category
B, (Y,g f , idg ∗ ε ∗ id f ,η) is a monad on Y , that is to say, a lax Id

B
-algebra structure on Y .

Remark 1.7.1. Given a monad y = (Y,alg
y
,y,y

0
) in a 2-category B, we define the category of

y-adjunctions y-adj(B) as follows:

– The objects of y-adj(B) are adjunctions ( f ⊣ g,ε,η) : Y → Z that induce y;

– A morphism of y-adj(B) between two adjunctions ( f ⊣ g,ε,η) : Y → Z and ( f̃ ⊣ g̃, ε̃,η) : Y →
Z̃ is a morphism j : Z→ Z̃ such that j f = f̃ and g = g̃ j.

If there exists, the terminal object of y-adj(B) is called an Eilenberg-Moore adjunction for the monad
y. In this case, the domain of the right adjoint of such adjunction is called the Eilenberg-Moore object
of y and denoted by Y y. Dually, the initial object (if it exists) is called the Kleisli adjunction for the
monad y. In this case, the domain of the right adjoint of such adjunction is called the Kleisli object of
y and denoted by Yy.

There is an Eilenberg-Moore adjunction and a Kleisli adjunction for each monad in Cat. These
results were shown respectively in [36] and [64]. However, it is easy to construct counterexamples
of 2-categories not having all the Eilenberg-Moore (or Kleisli) adjunctions. In order to give a non-
artificial easy to check example, we consider bicategories. More precisely, we can consider the
suspension of the monoidal cartesian category (Set,×,1), that is to say, we see such a monoidal
category as a bicategory with only one object △ as in Remark 1.2.8. A monad in such bicategory
is the same as a (classical) monoid. There are plenty nontrivial monoids, while the suspension of
(Set,×,1) has only the trivial adjunction.

Remark 1.7.2. Clearly there is a bijection between monads in B and monads in Bop. More precisely,
the contraviariant 2-functor B→Bop takes monads in B to monads in Bop. So, by abuse of language,
if y is a monad in B, we denote by y the corresponding monad in Bop.

We can, then, give precise meaning to the fact that the notion of Eilenberg-Moore objects is dual
to the notion of Kleisli objects. Indeed, the Kleisli object for a monad y in a 2-category B is, if it
exists, the Eilenberg-Moore object of y in Bop.

In [101], it is observed that the Eilenberg-Moore object has a concise universal property. Namely,
given a 2-category B, there is an inclusion 2-functor B→Mnd(B) which takes each object Z to
the monad (Z, idZ , ididZ

, ididZ
). The Eilenberg-Moore object of a monad y = (Y,alg

y
,y,y

0
) is given

by the right 2-reflection of y along B→Mnd(B), if it exists. In particular, a morphism f : X → Y y

corresponds to a pair f= ( f̃ ,
〈
f
〉
) in which f̃ : X → Y is a morphism and

〈
f
〉

: alg
y

f̃ ⇒ f̃ is a 2-cell,
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such that the equations

Y algy // Y

y

=⇒

⟨f⟩
=⇒

Y

algy

BB

algy

OO

Xf̃oo

f̃

OO

=

Y algy // Y

⟨f⟩
=⇒

⟨f⟩
=⇒

Y

algy

OO

X

f̃

OO

f̃

__

f̃oo

and

Y Y

y0=⇒

⟨f⟩
=⇒

Y

algy

BB

Xf̃oo

f̃

OO

=

Y

id
f̃

=⇒ f̃

��

f̃

��
X

hold. Since the Kleisli object of y is the Eilenberg-Moore object of y in Bop, we have that the Kleisli
object is given by the right 2-reflection of y along Bop→Mnd(Bop) which is the same as the left
2-reflection of B→ (Mnd(Bop))op ∼=Mndco(B).

Moreover, [101] generalizes the Eilenberg-Moore and the Kleisli constructions. More precisely,
if X is a category, [101] constructs the right 2-adjoint to the inclusion [X ,Cat]→ [X ,Cat]Lax of the
2-category of lax functors X → Cat, lax natural transformations and modifications into the 2-category
of 2-functors, 2-natural transformations and modifications. In [101], Street also constructs the left
2-adjoint to the inclusion [X ,Cat]→ [X ,Cat]Laxc , in which [X ,Cat]Laxc denotes the 2-category of lax
functors, colax natural transformations and modifications.

In order to verify that these 2-adjoints actually are generalizations of the Eilenberg-Moore and
Kleisli objects, we should observe that, considering the inclusions Cat→Mndco(Cat) and Cat→
Mnd(Cat), we actually have isomorphisms Mnd(Cat) ∼= [1,Cat]Lax and Mndco(Cat) ∼= [1,Cat]Laxc
such that the diagrams

Cat ∼= //

��

[1,Cat]

��
Mnd(Cat) ∼= // [1,Cat]Lax

Cat ∼= //

��

[1,Cat]

��
Mndco(Cat) ∼= // [1,Cat]Laxc

commute. More generally, in our context, this is given by the fact that, given a 2-category B, the
diagrams

Lax-Id
B

-CoAlgcℓ

))

Id
B

-CoAlgs
∼= Id

B
-Algs

��

oo // Lax-Id
B

-Algcℓ

vv
B

[1,B]Lax

$$

[1,B]

��

oo // [1,B]Laxc

zz
B
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are naturally isomorphic, in which the horizontal arrows are the obvious inclusions while the non-
horizontal arrows are the forgetful 2-functors. In particular, the inclusion [1,B]→ [1,B]Lax is actually
the inclusion Id

B
-CoAlgs

∼= Id
B

-Algs→ Lax-Id
B

-CoAlgcℓ.

More generally, if A is any 2-category, denoting by A0 the discrete 2-category of objects, the
inclusion A0→ A induces a restriction 2-functor [A,B]→ [A0,B]. If B has suitable weighted limits
and colimits and A is small, this restriction has right and left 2-adjoints given by the (global) pointwise
right and left Kan extensions. Assuming that this restriction has right and left 2-adjoints, we have a
2-monad L an and a 2-comonad Ran on the 2-category [A0,B]. In this case, the diagrams

Lax-Ran-CoAlgcℓ

((

Ran-CoAlgs
∼= L an-Algs

��

oo // Lax-L an-Algcℓ

vv
[A0,B]

[A,B]Lax

$$

[A,B]

��

oo // [A,B]Laxc

zz
[A0,B]

are naturally isomorphic. These observations immediately show how the results of Chapter 5 generalize
the construction: they actually characterize when it is possible to get such constructions. More
precisely, using the techniques of that chapter, we are able to study the existence of the right 2-adjoint
to S -CoAlgs → Lax-S -CoAlgcℓ for any given 2-comonad S , or, equivalently, a left 2-adjoint to
T -Algs→ Lax-T -Algcℓ for any given 2-monad T . So it is clear that this generalizes the constructions
of [101]. Since we do not explicitly deal with colax morphisms in Chapter 5, we briefly describe
below how we get the results for our context. We omit most of the proofs, since some of them are
slight variations of the proofs on lax morphisms of Chapter 5, while the rest of the proofs follow
directly from results of that chapter.

Definition 1.7.3. [tc : ∆c
ℓ → ∆̇c

ℓ] We denote by ∆̇c
ℓ the 2-category generated by the diagram

0
d // 1

d0
//

d1
//
2s0oo

∂ 0
//

∂ 1 //

∂ 2
//
3

with the 2-cells:
σ00 : ∂

0d0⇒ ∂
1d0,

σ01 : ∂
0d1⇒ ∂

2d0,

σ21 : ∂
2d1⇒ ∂

1d1,

n0 : id1 ⇒ s0d0,

n1 : id1 ⇒ s0d1,

ϑ : d0d⇒ d1d,

satisfying
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• Associativity:

0
d //

d

��

ϑ

=⇒

1

d0

��
=

3 2
∂ 1

oo

σ21=⇒
2σ01=⇒

∂ 2

bb

1
d1

oo

d0

OO

1
d0

//

d0

��
σ00=⇒

2

∂ 1

��

2

∂ 0

OO

ϑ

=⇒

1
d1

oo ϑ

=⇒

d0

OO

2
∂ 0

// 3 1

d0

OO

0
d

oo

d

OO
d

SS

• Identity:

0
d //

d

��

ϑ

=⇒

1

d1

��
=

0

d

��
1

d0
//

n0=⇒

2

s0

��

1
d1

//

n1=⇒

2

s0

��
1 1

The 2-category ∆c
ℓ is, herein, the full sub-2-category of ∆̇c

ℓ with objects 1, 2 and 3. We denote the
inclusion by tc : ∆c

ℓ → ∆̇c
ℓ .

Remark 1.7.4. [Colax descent object and category] If A : ∆c
ℓ → B and B : (∆c

ℓ)
op → B are 2-

functors, if it exists, the weighted limit
{

∆̇c
ℓ(0, t

c−),A
}

is called the strict colax descent object of
A , while the weighted colimit ∆̇c

ℓ(0, t
c−)∗B is called the strict colax codescent object of B (if it

exists).
In the case of strict colax descent categories, we have a result similar to that described by Remark

5.3.4. More precisely, if D : ∆ℓ→ Cat is a 2-functor, then{
∆̇
c
ℓ(0, t

c−),D
}∼= [∆c

ℓ ,Cat]
(
∆̇
c
ℓ(0, t

c−),D
)
.

Thereby, we can describe the strict colax descent object of D : ∆c
ℓ → Cat explicitly as follows:

1. Objects are 2-natural transformations f : ∆̇c
ℓ(0, t

c−)−→D . We have a bijective correspondence
between such 2-natural transformations and pairs ( f ,

〈
f
〉
) in which f is an object of D1 and〈

f
〉

: D(d0) f →D(d1) f is a morphism in D2 satisfying the following equations:

– Associativity:(
D(σ01) f

)(
D(∂ 0)(

〈
f
〉
)
)(

D(σ21) f

)(
D(∂ 2)(

〈
f
〉
)
)
=
(
D(∂ 1)(

〈
f
〉
)
)(

D(σ00) f

)
– Identity: (

D(s0)(
〈
f
〉
)
)(

D(n0) f

)
=
(
D(n1) f

)
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If f : ∆̇(0,−) −→ D is a 2-natural transformation, we get such pair by the correspondence
f 7→ (f1(d),f2(ϑ)).

2. The morphisms are modifications. In other words, a morphism m : f→ h is determined by a
morphism m : f → g in D1 such that D(d1)(m)

〈
f
〉
=
〈
h
〉
D(d0)(m).

Similarly to Proposition 4.5.5 and 5.4.5, we clearly have:

Proposition 1.7.5. Let T = (T ,m,η ,µ, ι ,τ) be a pseudomonad on a 2-category B. Given lax
T -algebras y= (Y,alg

y
,y,y

0
), z= (Z,alg

z
,z,z0) the category Lax-T -Algcℓ(y,z) is the strict colax

descent object of the diagram Ty
z : ∆ℓ→ Cat

B(Uy,Uz)

B(algy ,Uz)
//

B(T Uy,algz )◦ T
(Uy,Uz) //

B(T Uy,Uz)B(ηUy
,Uz)oo

B(T (algy ),Uz)
//

B(mUy
,Uz) //

B(T 2Uy,algz )◦ T
(T Uy,Uz)//

B(T 2Uy,Uz)

in which U : Lax-T -Algcℓ→B denotes the forgetful 2-functor and

Ty
z(σ01) f :=

(
id

algz
∗ t−1

( f )(algy )

)
Ty
z(σ21) f :=

(
id f ∗y

)
Ty
z(n1) f :=

(
id f ∗y0

) Ty
z(σ00) f :=

(
id

algz
∗m−1

f

)
·
(
z∗ id

T 2( f )

)
·
(

id
algz
∗ t−1

(algz )(T ( f ))

)
Ty
z(n0) f :=

(
id

algz
∗η
−1
f

)
·
(
z0 ∗ id f

)
Furthermore, the strict descent object of Ty

z is Lax-T -Alg(y,z).

Remark 1.7.6. Similarly to the case of Remark 5.4.6, we can actually define a pseudofunctor
Ty : ∆c

ℓ×Lax-T -Alg→ Cat in which Ty(−,z) :=Ty
z, since the morphisms defined above are actually

pseudonatural in z w.r.t. T -pseudomorphisms and T -transformations. More importantly to our
context, if T is a 2-monad, the restriction of Ty to ∆c

ℓ×Lax-T -Algs, in which Lax-T -Algs denotes
the locally full sub-2-category of lax algebras and (strict) T -morphisms and lax algebras, is actually
a 2-functor.

By Remark 1.7.6 and Proposition 1.7.5, as a consequence of the results of Chapter 5, we conclude
as a particular case that:

Theorem 1.7.7. Let T = (T ,m,η) be a 2-monad on B and (E ⊣ R,ε,η) : B → T -Algs the
Eilenberg-Moore 2-adjunction induced by T . The inclusion J : T -Algs → Lax-T -Algcℓ has a
left 2-adjoint if and only if T -Algs has the strict colax codescent object of

EUy E(ηUy
) // ET Uy

E(algy )
oo

εEUy
E(algJEUy

T (ηUy
))

oo

ET 2Uy

ET (algy )
oo

E(mUy
)oo

εET Uy
E(alg

JET Uy
T (η

T Uy
))

oo

(By)

(with omitted 2-cells) in which U : Lax-T -Algcℓ→B is the forgetful 2-functor. In this case, the left
2-adjoint is given by Gy= ∆̇c

ℓ(0, t
c−)∗By.
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As a corollary, if T is a 2-monad on B, the inclusion T -Algs → Lax-T -Algcℓ has a left 2-
adjoint if B has and T preserves strict colax codescent objects. Dually, if S is a 2-comonad on B,
S -CoAlgs→ Lax-S -CoAlgcℓ has a right 2-adjoint if B has and S preserves strict colax descent
objects.

Since the 2-monad L an on [A0,B] preserves strict colax codescent objects whenever A is small
and B has 2-colimits, our result gives a left 2-adjoint to the inclusion [A,B]→ [A,B]Laxc . Dually, the
2-comonad Ran on [A0,B] preserves strict colax descent objects whenever B has 2-limits, hence our
result gives the right 2-adjoint of [A,B]→ [A,B]Lax. These facts explain how our results generalize
greatly the constructions of [101]. In particular, unlike [101], our setting includes the case of lax
actions of monoidal categories (called graded monads): or, more precisely, the case in which A is a
bicategory with only one object (see Remark 5.4.3 and [37]).

Applying to the very special case of the classical theory of monads, we get that the Eilenberg-
Moore category of a monad (seen as a lax coalgebra) y= (Y,coalg

y
,y,y

0
) is the colax descent category

of

Y

coalgy //

idY

//
YidY

oo

coalgy //

idY
//

idY

//
Y (D)

in which D(σ00) = y, D(n0) = y
0

and the images of σ01, σ21 and n1 are the identities.

Remark 1.7.8. The article [101] also recasts the original universal properties w.r.t. adjunctions. That
is to say, it generalizes the (universal property) of the (generalized) Eilenberg-Moore and Kleisli
adjunctions to its setting. In order to do so, it relies on the study of the counit and unit of the
2-adjunctions [X ,B]→ [X ,B]Laxc and [X ,B]→ [X ,B]Lax constructed therein. This fact shows that
the study of counit and unit of the obtained biadjunctions (and 2-adjunctions) in the context of Chapter
5 could be interesting to recast the Eilenberg-Moore and Kleisli adjunctions in our context, in order to
generalize the setting of [101].

1.8 Pseudoexponentiability

There is a vast literature on exponentiability of objects and morphisms within 1-dimensional category
theory [90, 91]. As mentioned in Section 1.2.8, we could consider exponentiability of objects w.r.t.
other monoidal structures in V , but we are particularly interested in the case of exponentiation w.r.t.
the cartesian structure.

An object A of a cartesian category V is exponentiable if the functor A×− : V →V is left adjoint.
In this case, the right adjoint is usually denoted by [A,−]. A morphism f : A→ B is exponentiable if
it is an exponentiable object of the comma category V/B defined by:

• The objects are morphisms with B as codomain;
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• A morphism f → g is a morphism h of V between the domains of f and g such that

A h //

f
��

A′

g
��

B

commutes in V ;

• The composition and identities are given by the composition and identities of V .

The main problem is to characterize objects and morphisms that are exponentiable in a given
category V of interest. For instance, the characterization of the exponentiable morphisms (functors) of
Cat is given in [23, 39], while in [19, 20] the exponentiable morphisms (enriched functors) between
V -enriched categories are characterized, for suitable monoidal categories V .

As many concepts of 1-dimensional category theory, exponentiability is very strict to most of the
cases within bicategory theory. Hence we should consider a weaker version: pseudoexponentiability.
Firstly, we consider bicategorical products instead of products. Secondly, we consider a biadjunction
instead of an adjunction. That is to say:

Definition 1.8.1. An object Y of a 2-category B with bicategorical products is pseudoexponentiable
if the pseudofunctor Y ×− : B→B has a right biadjoint, while Y is exponentiable if Y ×− is a
2-functor and it has a right 2-adjoint.

As briefly mentioned in Section 1.6, the adjoint triangle theorem of [30] has many applications
in 1-dimensional category theory. In particular, it is very useful within the study of exponentiable
objects and morphisms. For instance, some of the results of the theory developed in [33] can be seen
as applications of the adjoint triangle theorem.

This fact suggests the possibility of applying the biadjoint triangle theorem proved in Chapter 4 to
develop an analogue theory for pseudoexponentiable objects and morphisms. We however do not do
this here. Instead, we finish the chapter giving what seems to be a folklore result on exponentiability
of coalgebras. Then, employing the biadjoint triangle theorem, we give the bicategorical analogue
that studies the (pseudo)exponentiability of pseudocoalgebras.

Theorem 1.8.2 (Exponentiability of Coalgebras). Let S be a comonad on a finitely complete category
B. If S preserves finite limits, then the forgetful functor L : S -CoAlg→B reflects exponentiable
objects.

Proof. In this setting, L creates finite limits. In particular, given an S -coalgebra y= (Y,coalg
y
), we

get that

S -CoAlgs
y×− //

L

��

S -CoAlgs

L

��
B

(Ly)×−
// B

commutes. If (Ly)×− ⊣ [(Ly),−], we have that (Ly)×L(−) ⊣U [(Ly),−]. Since L is comonadic,
by the adjoint triangle theorem of Dubuc, we conclude that y×− has a right adjoint.
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Within the context of the theorem above, given an S -coalgebra y, by the Beck theorem, it is clear
that L induces a functor L/y : S -CoAlgs/y→B/L(y) which creates limits and is comonadic as well.
Therefore:

Corollary 1.8.3. Let S be a comonad on a finitely complete category B. If S preserves finite limits,
then the forgetful functor L : S -CoAlgs→B reflects exponentiable morphisms.

Remark 1.8.4. An elementary application is given by the category of functors. For instance, if
X ,Y are categories such that X is small and Y is complete, there exists a (global) pointwise right
Kan extension Cat [X0,Y ]→ Cat [X ,Y ]. Since the forgetful functor Cat [X ,Y ]→ Cat [X0,Y ] creates
equalizers, we conclude that Cat [X ,Y ]→ Cat [X0,Y ] is comonadic.

By Theorem 1.8.2, we conclude that Cat [X ,Y ] → Cat [X0,Y ] reflects exponentiable objects.
More generally, a natural transformation is exponentiable in Cat [X ,Y ] whenever it is objectwise
exponentiable.

From an argument entirely analogous to that given in the proof of Theorem 1.8.2, using the
enriched version of the adjoint triangle theorem as presented in Section 4.1, we get that:

Theorem 1.8.5 (Exponentiability of Strict Coalgebras). Let S be a 2-comonad on a 2-category B.
If B has and S preserves products and equalizers, then the forgetful 2-functor L : S -CoAlgs→B

reflects exponentiable objects.

Recall the definition of (strict) descent objects given in Section 4.3. Employing the strict version
of the biadjoint triangle theorem given in Theorem 4.5.10, we can study the exponentiability of
pseudocoalgebras.

Theorem 1.8.6 (Exponentiability of Pseudocoalgebras). Let S be a 2-comonad on a 2-category
B. If B has and S preserves products and strict descent objects, then the forgetful 2-functor
L : Ps-S -CoAlg→B reflects exponentiable objects.

Finally, by the biadjoint triangle theorem given in Theorem 4.5.10, we conclude that:

Theorem 1.8.7 (Pseudoexponentiability of Pseudocoalgebras). Let S be a pseudocomonad on a
2-category B. If B has and S preserves biproducts and descent objects, then the forgetful 2-functor
L : Ps-S -CoAlg→B reflects pseudoexponentiable objects.

Remark 1.8.8. Similarly to the case of Remark 1.8.4, we can use the results above to study ex-
ponentiability and pseudoexponentiability of the 2-category of 2-functors [A,B] (with 2-natural
transformations and modifications) and in the 2-category of pseudofunctors [A,B]PS (with pseudonat-
ural transformations and modifications) as defined in Section 4.2.

For instance, if A is small and B is 2-complete, we conclude that a 2-functor is exponentiable
in [A,B] if it is objectwise exponentiable. Moreover, using the pointwise pseudo-Kan extension
constructed in 4.9.2 (or in Section 3.3.5), we get an analogous result for pseudofunctors. More
precisely, assuming that B is bicategorically complete and A is small, we get that a pseudofunctor in
[A,B]PS is pseudoexponentiable whenever it is objectwise pseudoexponentiable.





Chapter 2

Freely generated n-categories,
coinserters and presentations of low
dimensional categories

Composing with the inclusion Set→ Cat, a graph G internal to Set becomes a graph of discrete

categories, the coinserter of which is the category freely generated by G. Introducing a suitable

definition of n-computad, we show that a similar approach gives the n-category freely generated

by an n-computad. Suitable n-categories with relations on n-cells are presented by these (n+1)-

computads, which allows us to prove results on presentations of thin groupoids and thin categories.

So motivated, we introduce a notion of deficiency of (a presentation of) a groupoid via computads

and prove that every small connected thin groupoid has deficiency 0. We compare the resulting

notions of deficiency and presentation with those induced by monads. In particular, we find our

notion of group deficiency to coincide with the classical one. Finally, we study presentations of

2-categories via 3-computads, focusing on locally thin groupoidal 2-categories. Under suitable

hypotheses, we give efficient presentations of some locally thin and groupoidal 2-categories.

A fundamental tool is a 2-dimensional analogue of the association of a “topological graph”

to every graph internal to Set. Concretely, we construct a left adjoint FTop2 : 2-cmp→ Top

associating a 2-dimensional CW-complex to each small 2-computad. Given a 2-computad g, the

groupoid it presents is equivalent to the fundamental groupoid of FTop2(g). Finally, we sketch

the 3-dimensional version FTop3 .

Introduction

The category of small categories cat is monadic over the category of small graphs grph. The left
adjoint F1 : grph→ cat is defined as follows: F1(G) has the same objects of G and the morphisms
between two objects are lists of composable arrows in G between them. The composition of such
morphisms is defined by juxtaposition of composable lists and the identities are the empty lists.

Recall that a small graph is a functor G : Gop→ Set in which G is the category with two objects
and two parallel morphisms between them. If we compose G with the inclusion Set→ cat, we get a

41
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diagram G′ : Gop→ cat. The benefit of this perspective is that the category freely generated by G is
the coinserter of G′, which is a type of (weighted) 2-colimit introduced in [59].

In the higher dimensional context, we have as primary structures the so called n-computads, firstly
introduced for dimension 2 in [103]. There are further developments of the theory of computads [15,
44, 82, 88, 94], including generalizations such as in [3] and the proof of the monadicity of the category
of the strict ω-categories over the category of ω-computads in [89].

In this paper, we give a concise definition of the classical (strict) n-computad such that the (strict)
n-category freely generated by a computad is the coinserter of this computad. More precisely, we
define an n-computad as a graph of (n−1)-categories satisfying some properties (given in Remark
2.8.12) and, then, we demonstrate that the n-category freely generated by it is just the coinserter of
this graph composed with the inclusion (n−1)-Cat→ nCat, getting in this way the free n-category
functor whose induced monad is denoted by Fn. More generally, we show that this approach works
for an n-dimensional analogue of the notion of derivation scheme, introduced for dimension 2 in
[106].

Since we are talking about coinserters, we of course consider a 2-category of n-categories. Instead
of n-natural transformations, we have to consider the n-dimensional analogues of icons, introduced
for dimension 2 in [69]. We get, then, 2-categories nCat of n-categories, n-functors and n-icons.

Every monad T on a category X induces a notion of presentation of algebras given in Definition
2.3.1, which we refer as T -presentation. If, furthermore, X has a strong notion of measure µ of
objects, we also get a (possibly naive) notion of deficiency (of a presentation) of a T -algebra induced
by µ (given in Remark 2.6.19). In the case of algebras over Set (together with cardinality of sets) given
in 2.6.1, we get the classical notions of deficiency of a (presentation of a) finitely presented group,
deficiency of a (presentation of a) finitely presented monoid and dimension of a finitely presented
vector space.

Higher computads also give notions of presentations of higher categories. More precisely, using
the description of n-computads of this paper, the coequalizer of an n-computad g : Gop→ (n−1)-Cat,
denoted by P(n−1)(g), is what we call the (n−1)-category presented by this n-computad in which the
n-cells of the computad correspond to “relations of the presentation”. In this context, an n-computad
gives a presentation of an (n−1)-category with only equations between (n−1)-cells.

We show that every presentation of (n−1)-categories via n-computads are indeed particular cases
of Fn-presentations. Moreover, on one hand, the notion of F1-presentation of a monoid does not
coincide with the (classical) notion of F0-presentation, since there are F1-presentations that are
not F0-presentations of a monoid. On the other hand, the notion of presentation of a monoid via
computads does coincide with the classical one.

We present, then, the topological aspects of this theory. In order to do so, we construct two
particular adjunctions. Firstly, we give the construction in Remark 2.5.1 of the left adjoint functor
FTop1

: Grph→ Top which gives the “topological graph” associated to each graph Gop→ Set via
a topological enriched version of the coinserter. Secondly, we show how the usual concatenation
of continuous paths in a topological space gives rise to a monad functor/morphism F1 −→FTop1

between the free category monad and the monad induced by the left adjoint FTop1
. Finally, using this

monad morphism, we construct a left adjoint functor FTop2
: 2-cmp→ Top.
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The adjunction FTop2
⊣ CTop2

gives a way of describing the fundamental groupoid of a topo-
logical space: CTop2

(X) presents the fundamental groupoid of X . More precisely, it is clear that
P1CTop2

(X)∼= Π(X) which we adopt as the definition of the fundamental groupoid of a topological
space X in Section 2.5.

Denoting by L1 : cat→ gr the functor left adjoint to the inclusion of the category of small
groupoids into the category of small categories, we show that the fundamental groupoid of a graph is
equivalent to the groupoid freely generated by this graph, proving that there is a natural transformation
which is objectwise an equivalence between L1F1 and ΠFTop1

∼= P1CTop2
FTop1

. We also show
that, given a small 2-computad g, there is an equivalence P1FTop2

(g) ≃L1P1(g), which means
that there is an equivalence between the fundamental groupoid of the CW-complex/topological space
associated to a small 2-computad g and the groupoid presented by g.

In the context of presentation of groups via computads, the left adjoint functor FTop2
formalizes

the usual association of each classical (L0F0-)presentation of a group G with a 2-dimensional
CW-complex X such that π1(X)∼= G.

We study freely generated categories and presentations of categories via computads, focusing
on the study of thin groupoids and thin categories. By elementary results on Euler characteristic of
CW-complexes, the results on FTop2

described above imply in Theorem 2.6.10 which, together with
Theorem 2.6.16, motivate the definition of deficiency of a groupoid (w.r.t. presentations via groupoidal
computads). We compare this notion of deficiency with the previously presented ones: for instance, in
Remark 2.6.19, we compare with the notion of deficiency induced by the free groupoid monad L1F1

together with the “measure” Euler characteristic, while in Propostion 2.6.14 we show that the classical
concept of deficiency of groups coincides with the concept of deficiency of the suspension of a group
w.r.t. presentations via computads.

By Theorem 2.6.16 and Theorem 2.6.10, the deficiency of thin “finitely generated” groupoids
are 0, what generalizes the elementary fact that the trivial group has deficiency 0. Moreover, this
implies that Theorem 2.6.16 gives efficient presentations, meaning that it has the least number of
2-cells (equations) of the finitely presented thin groupoids.

We lift some of these results to presentations of thin categories and give some further aspects of
presentations of thin categories as well. Finally, supported by these results and the characterization
of thin categories that are free F1-algebras, we give comments towards the deficiency of a thin
finitely presented category, considering a naive generalization of the concept of deficiency of groupoid
introduced previously.

The final topic of this paper is the study of presentations of locally thin 2-categories via 3-
computads. Similarly to the 1-dimensional case, we firstly describe aspects of freely generated
2-categories, including straightforward sufficient conditions to conclude that a given (locally thin)
2-category is not a free F2-algebra. We conclude that there are interesting locally thin 2-categories
that are not free, what gives a motivation to study presentations of locally thin 2-categories. In
order to study such locally thin 2-categories, we study presentations of some special locally thin
(2,0)-categories which are, herein, 2-categories with only invertible cells. With suitable conditions,
we can lift such presentations to presentations of locally thin and groupoidal 2-categories.

We also give a sketch of the construction of a left adjoint functor FTop3
: 3-cmp→ Top which

allows us to give a result (Corollary 2.10.18) towards a 3-dimensional version of Theorem 2.6.10.
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This result shows that the presentations of (2,0)-categories given previously have the least number of
3-cells (equations): they are efficient presentations.

In [77–79], we introduce 2-dimensional versions of bicategorical replacements of the category ∆̇′3
of the ordinals 0, 1, 3 and order-preserving functions between them without nontrivial morphisms
3→ n. We apply our theory to give an efficient presentation of the bicategorical replacement of the
category ∆̇2 and study the presentation of the locally groupoidal 2-category ∆̇Str introduced in [79]
(which corresponds to Chapter 3).

This work was realized in the course of my PhD studies at University of Coimbra. I wish to
thank my supervisor Maria Manuel Clementino for giving me useful pieces of advice, feedback and
insightful lessons.

2.1 Preliminaries

The most important hypothesis is that Cat,CAT are cartesian closed categories of categories such that
Cat is an internal category of the subcategory of discrete categories of CAT. So, herein, a category
X means an object of CAT. Moreover, if X ,Y are objects of Cat, we denote by Cat[X ,Y ] its internal
hom and by Cat(X ,Y ) the discrete category of functors between X and Y . We also assume that the
category of sets Set is an object of Cat. The category of small categories is cat := int(Set), that is to
say, cat is the category of internal categories of the category of sets.

If V is a symmetric monoidal closed category, we denote by V -Cat the category of V -enriched
categories. We refer the reader to [7, 31, 58] for enriched categories and weighted limits. It is
important to ratify that herein the collection of objects of a V -category X of V -Cat is a discrete
category in Cat, while V -cat denotes the category of small V -categories.

Inductively, we define the category n-Cat by (n + 1)-Cat := (n-Cat) -Cat and 1-Cat := Cat.
Therefore there are full inclusions (n+1)-Cat→ int(n-Cat) and n-Cat is cartesian closed, being an
(n+1)-category which is not an object of (n+1)-Cat. In particular, Cat is a 2-category which is not
an object of 2-Cat.

We deal mainly with weighted limits in the Cat-enriched context, the so called 2-categorical
limits. The basic references are [59, 103]. Let W : S→ Cat,W ′ : Sop→ Cat and D : S→ A be
2-functors with a small domain. If it exists, we denote the weighted limit of D with weight W by
{W ,D}. Dually, we denote by W ′∗D the weighted colimit provided that it exists. Recall that, by
definition, there is a 2-natural isomorphism (in X)

A(W ′∗D ,X)∼= [Sop,Cat] (W ′,A(D−,X))∼=
{
W ′,A(D−,X)

}
in which [Sop,Cat] denotes the 2-category of 2-functors Sop→ Cat, 2-natural transformations and
modifications.

In the last section, we apply 2-monad theory to construct 2-categories nCat for each natural
number n. We refer the reader to [9] for the basics of 2-monad theory. The category nCat is one of
the possible higher dimensional analogues of the 2-category of 2-categories, 2-functors and icons
introduced in [69].
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The category ∆̇ is the category of finite ordinals, denoted by 0,1,2, . . . ,n, . . ., and order-preserving
functions between them. We denote by ∆ the full subcategory of nonempty ordinals. There are full
inclusions ∆→ ∆̇→ cat→ Cat. Often, we use n also to denote its image by these inclusions. Thereby
the category n is the category

0→ 1→ ·· · → n−1.

For each n of ∆, the n-truncated category of ∆̇, denoted by ∆̇n, is the full subcategory of ∆̇ with
only 0,1, . . . ,n as objects. The truncated category ∆n is analogously defined. For instance, the category
∆2 is generated by the faces d0,d1 and by the degeneracy s0 as follows:

1
d1

//

d0
// 2s0oo

in which, after composing with the inclusions ∆2→ ∆→Cat, d0 and d1 are respectively the inclusions
of the codomain and the domain of morphism 0→ 1 of 2.

Moreover, the category G is, herein, the subcategory of ∆2 without the degeneracy 2→ 1 and
with all the faces 1→ 2 of ∆2 as it is shown below. Again, considering G as a subcategory of Cat, d1

is the inclusion of the domain and d0 is the inclusion of the codomain.

1
d1
//

d0
// 2

We denote by I : G→ Cat the inclusion given by the composition of the inclusions G→ ∆2→ Cat.
The 2-functor I defines the weight of the limits called inserters, while I -weighted colimits are
called coinserters. Also, we have the weight U1L1I : G→Cat which gives the notions of isoinserter
and isocoinserter, defined as follows:

1
//
// ∇2

in which ∇2 is the category with two objects and one isomorphism between them and U1L1I (d0),
U1L1I (d1) are the inclusions of the two different objects.

Let 22 be the 2-category below with two parallel nontrivial 1-cells and only one nontrivial 2-cell
between them. We define the weight J22 by

J22 : 22→ Cat

∗
,,

⇓ 22 ∗
✤ // 1

--
⇓ 11 ∇2,

in which the image of the 2-cell is the only possible natural isomorphism between the inclusion of the
domain and the inclusion of the codomain. The J22-weighted colimits are called coinverters.

Finally, let G2 be the 2-category with two parallel nontrivial 1-cells and only two parallel nontrivial
2-cells between them. We define the weight JG2 by

JG2 : G2→ Cat

∗
,,

⇓ ⇓ 22 ∗
✤ // 1

--
⇓ 11 2,



46 Freely generated n-categories, coinserters and presentations of low dimensional categories

in which the images of the 2-cells are the only possible natural transformation between the inclusion
of the domain and the inclusion of the codomain. The JG2-weighted colimits are called coequifiers.

2.1.1 Thin Categories and Groupoids

A category X is a groupoid if every morphism of X is invertible. The 2-category of groupoids of Cat
is denoted by Gr. The inclusion U1 : Gr→ Cat has a left 2-adjoint L1. Also, the category of locally
groupoidal 2-categories is, by definition, Gr-Cat and the previous adjunction induces a left adjoint
L2 to the inclusion U2 : Gr-Cat→ 2-Cat.

Definition 2.1.2. [Connected Category] A category X of Cat is connected if every object of L1(X)

is weakly terminal. In particular, a groupoid Y is connected if and only if every object of Y is weakly
terminal.

A category X of Cat is thin if between any two objects of X there is at most one morphism. Again,
we can consider locally thin 2-categories, which are categories enriched over the category of thin
categories of Cat. We denote by Prd the category of thin categories. The inclusion M1 : Prd→ Cat

has a left 2-adjoint M1. Again, it induces a left adjoint M2 to the inclusion Prd-Cat→ 2-Cat.

Remark 2.1.3. The 2-functors U1 : Gr→ Cat,M1 : Prd→ Cat are 2-monadic and the 2-monads
induced by them are idempotent, since U1,M1 are fully faithful. Therefore U1,M1 create 2-limits.

The functor U1 is left adjoint: hence, as U1 is monadic, U1 creates coequalizers and coproducts.
But it does not preserve tensor with 2. Finally, Prd is isomorphic to the 2-category of categories
enriched over 2 and, hence, it is 2-cocomplete.

Proposition 2.1.4. Let X be an object of Gr or Cat. We have that X is a thin category if and only if X
is (isomorphic to) the coequifier of

(Gop t X)0
//

α⇓ β⇓ // X

in which Cat(Gop,X)∼= (Gop t X)0 is the discrete category of internal graphs of X, αG = G(d0) and
βG = G(d1).

Theorem 2.1.5. There are categories X ,Y in Cat such that L1(X) and Y are thin, but X and L1(Y )
are not thin. In particular, L1 is not faithful.

Proof. For instance, we define Y to be the category generated by the graph

∗ ,,// ∗ ∗oo // ∗ (example of weak tree)

in which there is no nontrivial composition and X can be defined as

∗ h // ∗ f //
g // ∗

satisfying the equation f h = gh.

A category X satisfies the cancellation law if every morphism of X is a monomorphism and an
epimorphism.
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Theorem 2.1.6. If X satisfies the cancellation law and L1(X) is a thin groupoid, then X is a thin
category.

Proof. The components of the unit on the categories that satisfy the cancellation law of the adjunction
L1 ⊣U1 are faithful. Thereby, if X satifies the cancellation law and L1(X) is thin, X is thin.

Theorem 2.1.7. Let X be an object of Prd or Cat. X is a groupoid if and only if X is the coinverter of

(2 t X)0
//

α⇓ // X

in which (2 t X)0 is the discrete category of morphisms in X and α f = f .

Remark 2.1.8. As a consequence, since M1 preserves 2-colimits and, for each Y in Prd, the induced
functor Prd((2 t M1(X))0,Y )→ Prd(M1(2 t X)0,Y ) is fully faithful, M1 preserves groupoids.

2.2 Graphs

We start studying aspects of graphs and freely generated categories. An internal graph of a category
X is a functor G : Gop→ X, while the category of graphs internal to X, denoted by Grph(X), is the
category of functors and natural transformations CAT[Gop,X].

Herein, a graph is an internal graph of discrete categories in Cat. That is to say, a graph is a functor
G : Gop→ Cat that factors through the inclusion of the discrete categories SET→ Cat. This defines
the category of graphs Grph := Grph(SET). Although the basic theory works for larger graphs and
computads in the setting of Section 2.1, the combinatorial part is of course just suited for small graphs
and computads. We define the category of small graphs by grph := Cat[Gop,Set], while the category
of finite/countable graphs is the full subcategory of small graphs G such that G(1) is finite/countable.

If G : Gop→ Cat is a graph, G(1) is the discrete category/collection of objects of G, while G(2)

is the discrete category/collection of arrows (or edges) of G. An arrow a of G is denoted by a : x→ z,
if G(d0)(a) = z and G(d1)(a) = x. As usual, in this case, z is called the codomain and x is called the
domain of the edge a.

We also consider the category of reflexive graphs RGrph := Cat
[
∆

op
2 ,SET

]
and the category of

small reflexive graphs Rgrph := Cat
[
∆

op
2 ,Set

]
. If G is a reflexive graph, the collection in the image

of G(s0) is called the collection/discrete category of trivial arrows/identity arrows/identities of G.
The inclusion Gop→ ∆

op
2 induces a forgetful functor R : RGrph→ Grph and the left Kan exten-

sions along this inclusion provide a left adjoint to this forgetful functor, denoted by E .

Lemma 2.2.1. The forgetful functor R : RGrph→ Grph has a left adjoint E .

Remark 2.2.2. The terminal object of RGrph is denoted by •. It has only one object and its trivial
arrow. It should be noted that RGrph is not equivalent to Grph, since • is also weakly initial in RGrph

while the terminal graph R(•)∼=⃝ is not.

The inclusion SET→ Cat has a right adjoint (−)0 : Cat→ SET, the forgetful functor. The
comonad induced by this adjunction is also denoted by (−)0. On one hand, we define C1 : Cat→Grph
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by C1(X) := Cat(I−,X) = (Cat [I−,X ])0. On the other hand, if G : Gop→ Cat is any 2-functor,
we have:

Cat[I ∗G,X ]∼= [Gop,Cat] (G,Cat[I−,X ]),

since I ∗G∼= G∗I . This induces an adjunction between the category of categories and the category
of internal graphs of Cat. If G(2) is a set, this shows how the coinserter encompasses the notion of
freely adding morphisms to a category G(1). In particular, if G is a graph, this induces a (natural)
bijection between natural transformations G−→ Cat(I−,X) and functors I ∗G−→ X . Therefore:

Lemma 2.2.3. F1 : Grph→ Cat,F1(G) = I ∗G gives the left adjoint to C1.

Informally, we get the result above once we realize that if X is a category in Cat then a functor
f : F1(G)→ X needs to correspond to a pair ( f0,α

f ), in which f0 : G(1)→ (X)0 is a morphism of
SET and α f : f0G(d1) −→ f0G(d0) is a natural transformation. This is precisely an object of the
inserter of Cat(G−,X).

Remark 2.2.4. [Categories freely generated by reflexive graphs] We can also consider the inclusion
I R : ∆2→ Cat and this inclusion induces the functor

C R
1 : Cat→ RGrph,C R

1 (X) = Cat(I R−,X).

Analogously, this functor has a left adjoint defined by FR
1 (G) = I R∗G. It is easy to verify that

there is a natural isomorphism F1 ∼= FR
1 E .

If G is a reflexive graph and x is an object of G, we say that G(s0)(x) is the trivial arrow/identity
arrow of x. In particular, the image of G(s0) is called the discrete category/collection of the trivial
arrows of G.

Remark 2.2.5. Since (1⨿1)∼= (2)0 in Cat and Cat is lextensive, recall that X×(2)0∼= (X×1)⨿(X×
1) for any object X of Cat.

If G is an object of Grph, we can construct F1(G) via the pushout of the morphism G(2)×(2)0→
G(1) induced by (G(d0),G(d1)) along the functor G(2)× (2)0→ G(2)×2 given by the product of
the identity with the inclusion (2)0→ 2 induced by the counit of the comonad (−)0 : Cat→ Cat.

Remark 2.2.6. The functor C1 is monadic since it is right adjoint, reflects isomorphisms, preserves
coequalizers and Cat is cocomplete. Hence, each component of the counit of F1 ⊣ C1 gives a functor
compX : F1C1(X)→ X which is a regular epimorphism.

The forgetful functor C1U1 : Gr→ Grph has an obvious left adjoint given by L1F1 : Grph→ Gr.
If G : Gop→ Cat is a graph, L1F1(G) is called the groupoid freely generated by G.

We denote respectively by F1 and L1F1 the monads induced by the adjunctions F1 ⊣ C1 and
L1F1 ⊣ C1U1.The free F1-algebras are called free categories, while we call free groupoids the free
algebras of the monad L1F1.

Lemma 2.2.7. L1F1(G)∼= I ∗(L1G)∼= (U1L1I )∗(L1G) gives the left adjoint to C1.

Observe that L1G : Gop→ Gr is nothing but G itself as an internal graph of discrete groupoids
since L1 takes discrete categories to discrete groupoids. Also, U1L1(F1(G))∼= (U1L1I )∗G in
Cat. That is to say, the groupoid freely generated by G is its isocoinseter in Cat.
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Remark 2.2.8. [Characterization of Free Categories [106]] The category Grph has terminal object
⃝, namely the graph with only one object and only one arrow. If we denote by Σ(N) the resulting
category from the suspension of the monoid of non-negative integers N, we have that F1(⃝)∼= Σ(N).
Therefore, every graph G comes with a functor

ℓG : F1(G)→ Σ(N)

which is by definition the morphism F1(G→⃝). The functor ℓG is called length functor. It satisfies
a property called unique lifting of factorizations, usually refereed as ulf. In this case, this means in
particular that, if ℓG( f ) = m, then there are unique morphisms fm, . . . , f1, f0 such that

– fm · · · f1 f0 = f ;

– ℓG( ft) = 1 ∀t ∈ {1, . . . ,m} and f0 is the identity.

This property characterizes free categories. More precisely, X ∼= F1(G) for some graph G if and only
if there is a functor ℓX : X → Σ(N) satisfying the unique lifting of factorizations property.

A morphism f has length m if ℓG( f ) = m. It is easy to see that the morphisms of F1(G) with
length 1 correspond to the edges of G. Roughly, the unique lifting property of ℓG says that every
morphism f : x→ z is a composition f = a1 . . .am of arrows with length 1 which corresponds to a list
of arrows in G satisfying G(d1)(at) = G(d0)(at+1) for all t ∈ {1, . . . ,m−1}, while the identities of
F1(G) correspond to empty lists. Following this viewpoint, the composition is given by juxtaposition
of these lists. A morphism of f : x→ z of F1(G) is often called a path (of length ℓG( f )) between x an
z in the graph G.

It is clear that the length functors reflect isomorphisms. More precisely, if ℓG is a length functor,
then ℓG( f ) = 0 implies that f = id.

As a particular consequence of the characterization given in Remark 2.2.8, we get that:

Theorem 2.2.9. For any graph G, F1(G) satisfies the cancellation law.

Remark 2.2.10. Let X be a category. By the natural isomorphism of Remark 2.2.4, we have that
X ∼= F1(G) for some graph G if and only if X ∼= FR

1 E (G). Also, X ∼= FR
1 (G) for some reflexive

graph G if and only if X ∼= F1(GE ), in which GE : Gop → Set has the same objects of G and the
nontrivial arrows of G. More precisely, GE (2) = G(2)−G(s0)(G(1)), GE (1) = G(1). Therefore the
characterization of categories freely generated by reflexive graphs is equivalent to the characterization
given in Remark 2.2.8.

It should be noted that (−)E is a functor between the subcategories of monomorphisms of RGrph
and Grph.

Remark 2.2.11. [Characterization of Free Groupoids] A natural extension of the Remark 2.2.8 gives
a characterization of free groupoids. More precisely, for each graph G, there is functor

L1(ℓ
G) = L1F1(G→⃝) : L1F1(G)→ Σ(Z)

in which Σ(Z) is the suspension of the group of integers. This functor has the ulf property. In this
case, this means that, if L1(ℓ

G)( f ) = m, then there are unique morphisms fn, . . . , f1, f0 such that
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– fn · · · f1 f0 = f ;

– L1(ℓ
G)( ft) ∈ {−1,1}, for all t ∈ {1, . . . ,n} and f0 is identity;

– ∑L1(ℓ
G)( ft) = m.

This property characterizes free groupoids. That is to say, X ∼=L1F1(G) for some graph G if and only
if X is a groupoid and there is a functor ℓX : X → Σ(Z) satisfying the unique lifting of factorizations
property.

It is easy to see that the morphisms of L1F1(G) with length 1 correspond to the arrows of G,
while the morphisms with length −1 correspond to formal inversions of arrows of G.

Definition 2.2.12. A graph G is called:

– connected if F1(G) is connected;

– a weak forest if F1(G) is thin;

– a forest if L1F1(G) is thin;

– a tree/weak tree if G is a connected forest/weak forest.

Theorem 2.2.13. If G is a forest, then it is a weak forest as well.

Proof. By Theorem 2.1.6 and Theorem 2.2.9, if L1F1(G) is thin, then F1(G) is thin as well.

The converse of Theorem 2.2.13 is not true. For instance, a counterexample is given in Remark
2.2.16.

Remark 2.2.14. [Maximal Tree] By Zorn’s Lemma, every small connected graph G has maximal
trees and maximal weak trees. This means that, given a small connected graph G, the preordered set
of trees and the preordered set of weak trees of G have maximal objects. Of course, these results do
not depend on Zorn’s Lemma if G is countable.

Lemma 2.2.15. Gmtree is a maximal tree of a connected graph G if and only if the following properties
are satisfied:

– Gmtree is a subgraph of G;

– Gmtree is a tree;

– Gmtree has every object of G.

Remark 2.2.16. By the last result, a tree in a small connected graph G is maximal if and only if it
has all the objects of G. Such a characterization does not hold for maximal weak trees. For instance,
the graph T given by the example of weak tree is a weak tree which is not a tree. Hence, the maximal
tree of this graph is an example of a weak tree that has all the objects of the graph T without being a
maximal weak tree. However, one of the directions holds. Namely, every maximal weak tree of a
small connected graph G has every object of G.
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Remark 2.2.17. All definitions and results related to trees and forests have analogues for reflexive
graphs. In fact, for instance, a reflexive graph G is a reflexive tree if FR

1 (G) is a connected thin
category. Then, we get that G is a reflexive tree if and only if the graph GE (defined in Remark 2.2.10)
is a tree.

In particular, Gmtree is a maximal reflexive tree of a connected reflexive graph G if and only if
GE

mtree is a maximal tree of the graph GE .

Definition 2.2.18. [Fair Graph] An object G of Grph is a fair graph if it has a maximal weak tree
which is a tree.

Remark 2.2.19. From Zorn’s Lemma, we also get that every small graph G has a maximal fair
subgraph which contains a maximal tree of G. Again, we can avoid Zorn’s Lemma if we restrict our
attention to countable graphs.

There are thin categories which are not free F1-algebras. For instance, as a particular case of
Lemma 2.2.20, the category ∇2 is thin and is not a free category. Furthermore, by Theorem 2.2.22,
R and Q are examples of small thin categories without nontrivial isomorphisms that are not free
categories.

Lemma 2.2.20. If X is a category and it has a nontrivial isomorphism, then X is not a free category.

Proof. There is only one isomorphism in Σ(N), namely the identity 0. If f is an isomorphism of
F1(G), then ℓG( f ) = 0. Since ℓG reflects identities, we conclude that f is an identity.

We can also consider the thin category freely generated by a graph G, since M1F1 ⊣ C1M1. It
is clear that C1M1 is fully faithful and, hence, it induces an idempotent monad M1F1. In particular,
every M1F1-algebra is a free M1F1-algebra. That is to say, every thin category is a thin category
freely generated by a graph.

Proposition 2.2.21. If F1(G) is a totally ordered set then, for each object x of F1(G) and each
length m, there is at most one morphism of length m with x as domain in F1(G). Moreover, if x is not
the terminal object, then there is a unique morphism of length 1 with x as domain in F1(G).

Proof. In fact, suppose there are morphisms b : x→ z′,a : x→ z of length m. Since F1(G) is totally
ordered, we can assume without losing generality that there is a morphism c : z≤ z′ of some length n.

As F1(G) is thin, ca = b. In particular, n+m = ℓG(ca) = ℓG(b) = m. Hence n = 0. This means
that c is the empty path (identity) and z = z′. Again, since F1(G) is thin, a = b.

It remains to prove the existence of a morphism of length 1 with x as domain whenever x is not the
top element. In this case, there is a morphism x→ z′′ of length m > 0 By Remark 2.2.8, we conclude
that there is a unique list x < z1 < .. . < zm−1 < z′′ such that zt < zt+1 corresponds to a morphism of
length 1. In particular, x < z1 has length 1.

Theorem 2.2.22. If F1(G) is a totally ordered set, then it is isomorphic to one of the following
ordered sets:

– The finite ordinals 0,1, . . . ,n, . . .;
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– The totally ordered sets N,Nop and Z.

Proof. – Assuming that F1(G) has bottom ⊥ and top ⊤ elements:
If 1 ̸∼= F1(G) ̸∼= 2, ⊥→⊤ has a length, say m−1≥ 2. This means that

F1(G)∼= {⊥< 1 < .. . < m−2 <⊤} ∼=m.

– Assuming that F1(G) has a bottom element ⊥ but it does not have a top element:

We can define s :N→F1(G) in which s(0) :=⊥ and s(n+1) is the codomain of the unique morphism
of length 1 with s(n) as domain. Of course, s is order preserving.

It is easy to see by induction that ⊥ < s(n) has length n. Hence it is obvious that s is injective.
Also, given an object x of F1(G), there is m′ such that ⊥→ x has length m′. By Proposition 2.2.21, it
follows that s(m′) = x. This proves that s is actually a bijection.

– Assuming that F1(G) has a top element ⊤ but it does not have a bottom element:

By duality, we get that Nop ∼= F1(G).

– Assuming that F1(G) does not have top nor bottom elements:

If F1(G) ̸∼= 0, given an object y of F1(G), take the subcategories

{x ∈F1(G) : x≤ y} and {x ∈F1(G) : y≤ x} .

By what we proved, these subcategories are isomorphic respectively to Nop and N. By the uniqueness
of pushouts, we get F1(G)∼= Z.

Corollary 2.2.23. If F1(G) is a small thin category, then it is isomorphic to a colimit of ordinals
0,1, . . . ,n, . . . or/and N,Nop,Z.

Remark 2.2.24. There are non-free categories which are subcategories of free categories. But
subgroupoids of freely generated small groupoids are freely generated. In fact, this follows from:

Theorem 2.2.25. A small groupoid is free if and only if its skeleton is free. In particular, freeness is a
property preserved by equivalences of groupoids. As a consequence, subgroupoids of free groupoids
are free.

Proof. Since L1F1 creates coproducts and every groupoid is a coproduct of connected groupoids, it
is enough to prove the statement for connected groupoids.

If a connected groupoid is free, this means that it is isomorphic to L1F1(G) for a connected
graph G. It is easy to see that the skeleton of L1F1(G) is isomorphic to L1F1(G)/L1F1(Gmtree)

for any maximal tree Gmtree. Therefore L1F1(G/Gmtree) is isomorphic to the skeleton and, hence,
the skeleton is free.

Reciprocally, if the skeleton of a connected groupoid X is free, it follows that for any object y of X ,
the full subgroupoid with only x as object, often denoted by π(X ,y), is free. We take π(X ,y)∼=F1(H)
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and define the graph G : Gop→ cat by:

−G(2) := H(2)⨿(cat(1,X)−{y}) ;

−G(d1) is constant equal to y;

−G(d0)(z) := z if z ∈ cat(1,X)−{y} .

−G(1) := cat(1,X);

−G(d0)(a) := y if a ∈ H(2);

Of course, L1F1(G)∼= X . The consequence follows from Nielsen-Schreier theorem for groups, since
every small groupoid is equivalent to a coproduct of groups.

2.3 Presentations

If T = (T ,m,η) is a monad on a category X, we denote respectively by XT and XT the category
of Eilenberg-Moore T -algebras and the Kleisli category. Every such monad comes with a notion of
presentation of a T -algebra. More precisely, a diagram in X

G2
//
// T (G1) (T -presentation diagram)

can be seen as a graph in XT and, hence, it can be seen as a graph Gop→ XT of free T -algebras in
XT . We say that the graph above is a presentation of the T -algebra (G′,T (G′)→ G′) if this algebra
is (isomorphic to) the coequalizer of the corresponding diagram Gop→XT of free T -algebras in XT .
Every T -algebra admits a presentation, since every T -algebra is a coequalizer of free T -algebras.
If XT has all coequalizers of free algebras, denoting by Grph(XT ) = Cat [Gop,XT ] the category of
graphs internal to the Kleisli category, there is a functor Grph(XT )→ XT which takes each graph to
the category presented by it.

Definition 2.3.1. [T -presentation] Let T = (T ,m,η) be a monad on a category X. Consider the
comma category (IdX/T ). We have a functor KT : (IdX/T )→ Grph(XT ) given by the composition
of the comparisons (IdX/T )→ Grph(XT )→ Grph(XT ).

Consider also the full subcategory Grph′(XT ) of Grph(XT ) whose objects are graphs G such
that the coequalizer of G exists in XT . The category of T -presentations, denoted by Pre(T ), is the
pullback of KT along the inclusion Grph′(XT )→ Grph(XT ).

We get then a natural functor K′T : Pre(T )→ Grph′(XT ). The functor presentation, denoted by
PT : Pre(T )→ XT , is the composition of the coequalizer Grph′(XT )→ XT with K′T .

Lemma 2.3.2. PT is essentially surjective. This means that every T -algebra has at least one
presentation.

Remark 2.3.3. We ratify that if T is a monad such that XT has coequalizers of free algebras, then
the definition of Pre(T ) is easier. More precisely, Pre(T ) := (IdX/T ).

We denote by L0F0 the free group monad on Set whose category of algebras is the category of
groups Group. A L0F0-presentation of a group is a pair ⟨S,R⟩ in which S is a set and R : Gop→ Set

is a small graph such that R(1) = L0F0(S). This induces a graph R : Gop→ Group of free groups.
The coequalizer of this graph is precisely the group presented by ⟨S,R⟩. Analogously, we get the
notion of F0-presentation of monoids induced by the free monoid monad F0 on Set.



54 Freely generated n-categories, coinserters and presentations of low dimensional categories

Remark 2.3.4. Recall, for instance, the basics of presentations of groups [54]. The classical definition
of a presentation of a group is not usually given explicitly by a graph as it is described above. Instead,
the usual definition of a presentation of a group is given by a pair ⟨S,R⟩ in which S is a set and R is a
“set of relations or equations”. However, this is of course the same as an L0F0-presentation. That is
to say, it is a graph

R //
// L0F0(S)

in Set such that the first arrow gives one side of the equations and the second arrow gives the other
side of the equations. For instance, in computing the fundamental group of a torus via the van Kampen
Theorem and the quotient of the square [74], one usually gets it via the presentation ⟨{a,b} ,ab = ba⟩.
This is the same as the graph

∗ //
// L0F0({a,b})

in which the image of ∗ by the first arrow is the word ab and the image by the second arrow is ba. Of
course, this is the presentation of Z×Z, as Z×Z is the coequalizer of the corresponding diagram of
free groups in the category of groups.

The free category monad F1 on Grph induces a notion of presentation of categories. More
precisely, an F1-presentation of a category X is a graph g : G→ GrphF1

such that, after composing

g with GrphF1
→ GrphF1 ≃ Cat, its coequalizer in Cat is isomorphic to X . Analogously, the free

groupoid monad L1F1 gives rise to the notion of L1F1-presentation of groupoids.

Remark 2.3.5. [Suspension] The forgetful functor u1 : Grph→ SET has left and right adjoints.
The left adjoint i1 : SET→ Grph is defined by i1(X)(2) = /0 and i1(X)(1) = X . The right adjoint
σ1 = Σ′ : SET→ Grph is defined by Σ′(X)(2) = X and Σ′(X)(1) = ∗ is the terminal set.

Indeed, σ1 is part of monad (mono)morphisms F0→F1 and L0F0→L1F1. We conclude that
presentation of monoids are particular cases of presentations of categories and presentations of groups
are particular cases of presentations of groupoids. More precisely, there are inclusions

Pre(L0F0) //

��

Pre(F0)

��
Pre(L1F1) //Pre(F1)

but it is important to note that they are not essentially surjective.

Roughly, F1-presentations and L1F1-presentations can be seen as freely generated graphs with
equations between 1-cells and equations between 0-cells. More precisely, we have:

Definition 2.3.6. If g : Gop → GrphF1
is a presentation of a category, we denote by g(d0)1 the

component of the graph morphism g(d0) in 1. If g(d0)1 = g(d1)1 and they are inclusions, g : Gop→
GrphF1

is called an 1-cell presentation.

Theorem 2.3.7. If g : Gop→ GrphF1

g(2)
g(d0)//

g(d1)
// F1(g1)
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is a presentation of a category X, then there is an induced 1-cell presentation g of X

g(2)
g(d0)
//

g(d1)
// F1(g1)

in which g(2)(1) is the coequalizer of the graph of objects induced by g.

Example 2.3.8. We denote by 2̂ the graph such that F1(2̂) = 2. It is clear that I can be lifted through
C1. That is to say, there is a functor Î : G→ Grph such that C1Î = I . Then F1Î composed with
the isomorphism Gop ∼=G gives a graph of free F1-algebras. Therefore it gives an F1-presentation

• //
// F1(2̂)

of the category (suspension of the monoid) Σ(N). Actually, the corresponding 1-cell presentation is
just

/0 //
// F1(⃝)∼= Σ(N).

Remark 2.3.9. Of course, we also have the notion of FR
1 -presentations of categories. Although the

category of F1-presentations is not isomorphic to the category of FR
1 -presentations, we have an

obvious inclusion between these categories which is essentially surjective.

2.4 Definition of Computads

In Section 2.8, we give the definition of the n-category freely generated by an n-computad by induction.
The starting point of the induction is the definition of a category freely generated by a graph. Thereby
graphs are called 1-computads and we define respectively the category of 1-computads and the
category of small 1-computads by 1-Cmp := Grph and 1-cmp := grph.

In the present section, we give a concise definition of 2-computads and of the category 2-Cmp.
This concise definition is precisely what allows us to get its freely generated 2-category via a coinserter.
We also introduce the notion of a category presented by a computad, which is going to be our canonical
notion of presentation of categories.

Definition 2.4.1. [Derivation Schemes and Computads] Consider the functor (−×G) : SET→
Cat,Y 7→ Y ×G and the functor F1 : Grph→ Cat. The category of derivation schemes is the comma
category Der := (−×G/IdCat). The category of 2-computads is the comma category 2-Cmp :=
(−×G/F1).

Considering the restrictions (−×G) : Set→ cat and F1 : grph→ cat, we define the category
of small 2-computads as 2-cmp := (−×G/F1). We also define the category of small computads
over reflexive graphs (or just category of reflexive computads) as Rcmp := (−×G/FR

1 ). There is
an obvious left adjoint inclusion cmp→ Rcmp induced by E . We denote the induced adjunction by
Ecmp ⊣Rcmp.

Derivations schemes were first defined in [106]. Respecting the original terminology of [103], the
word computad without any index means 2-computad. Also, we set the notation: Cmp := 2-Cmp and
cmp := 2-cmp.
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The pushout of the inclusion (2)0→ 2 of Remark 2.2.5 along itself is (isomorphic to) G. Hence,
by definition, a derivation scheme is pair (d,d2) in which d2 is a discrete category and d : Gop→ Cat

is an internal graph
d2×2

//
// d(1) (d-diagram)

such that, for every α of d2:

d(d0)(α,0) = d(d1)(α,0) d(d0)(α,1) = d(d1)(α,1).

In this direction, by definition, a computad is a triple (g,g2,G) in which (g,g2) is a derivation
scheme and G : Gop→ Cat is a graph such that g(1) = F1(G). We usually adopt this viewpoint.

Definition 2.4.2. [Groupoidal Computad] Consider the functor (−×L1(G)) : SET→ Gr,X 7→
X×L1(G) and the functor L1F1 : Grph→ Gr. The category of groupoidal computads is the comma
category CmpGr := (−×L1(G)/L1F1). Analogously, the category of groupoidal computads over
reflexive graphs is defined by Rcmpgr := (−×L1(G)/L1FR

1 ).

We denote by Ĝ the graph below with two objects and two arrows between them. It is clear
that F1(Ĝ) ∼=G. Hence, there is a natural morphism Ĝ→ C1(G) induced by the unit of F1 ⊣ C1.
Moreover, it is important to observe that Ĝ is not isomorphic to C1(G).

∗ //
// ∗

Theorem 2.4.3. Consider the functor (i1(−)× Ĝ) : Set→ grph,X 7→ i1(X)× Ĝ. There are isomor-
phisms of categories Cmp∼= (i1(−)× Ĝ/F1) and CmpGr

∼= (i1(−)× Ĝ/L1F1).
Moreover, considering suitable restrictions of (i1(−)× Ĝ) and F1 (to Set and grph respectively),

we have that cmp∼= (i1(−)× Ĝ/F1). Analogously, cmpGr
∼= (i1(−)× Ĝ/L1F1).

Definition 2.4.4. [Presentation of a category via a computad] We say that a computad (g,g2,G)

presents a category X if the coequalizer of g : Gop→ Cat is isomorphic to X . We have, then, a functor
P1 : Cmp→ Cat which gives the category presented by each computad. Of course, there is also a
presentation functor PR

1 : Rcmp→ cat.
Analogously, we say that a groupoidal computad (g,g2,G) presents a groupoid X if the coequalizer

of g : Gop→ Gr is isomorphic to X . Again, we have presentation functors P(1,0) : CmpGr→ Gr and
PR

(1,0) : Rcmpgr→ gr.

Theorem 2.4.5. Every presentation via computads is an F1-presentation. That is to say, there
is a natural inclusion Cmp→Pre(F1). Analogously, every groupoidal computad is an L1F1-
presentation.

Proof. By Theorem 2.4.3, Cmp∼= (i1(−)× Ĝ/F1). So, it is enough to consider the natural inclusion
between comma categories

(i1(−)× Ĝ/F1)→ (IdGrph/F1).

Every category admits a presentation via a computad and, analogously, every groupoid admits a
presentation via a groupoidal computad. These results follow from Theorem 2.3.7 and:
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Theorem 2.4.6. There is a functor Cmp→Pre(F1),g 7→ C1g which is essentially surjective in the
subcategory of 1-cell presentations g : Gop→ Grph of categories such that the graph g(2) has no
isolated objects (that is to say, every object is the domain or codomain of some arrow). Moreover,
there is a natural isomorphism

Cmp //

P1
""

∼=

Pre(F1)

PF1
zz

Cat

Example 2.4.7. The computad (g∆̇2 ,g∆̇2
2 ,G

∆̇2
) defined below presents the truncated category ∆̇2.

G
∆̇2
(1) := {0,1,2}

G
∆̇2
(d1)(di) := 1,∀i

G
∆̇2
(d0)(di) := 2,∀i

G
∆̇2
(d1)(d) := 0,∀i

G
∆̇2
(2) :=

{
d,s0,d0,d1}

G
∆̇2
(d1)(s0) := 2

G
∆̇2
(d0)(s0) := 1

G
∆̇2
(d0)(d) := 1,∀i

g∆̇
2 := {n0,n1,ϑ}

g∆̇2(d1)(n0,0→ 1) := s0 ·d0

g∆̇2(d0)(n0,0→ 1) := id1

g∆̇2(d0)(ϑ ,0→ 1) := d0 ·d

g∆̇2(d0)(n1,0→ 1) := s0 ·d1

g∆̇2(d1)(n1,0→ 1) := id1

g∆̇2(d1)(ϑ ,0→ 1) := d1 ·d.

This computad can also be described by the graph

0 d // 1
d1

//

d0
// 2s0oo

with the following 2-cells:

n0 :s0 ·d0⇒ id1 , n1 : id1 ⇒ s0 ·d1, ϑ :d1 ·d⇒ d0 ·d.

Lemma 2.4.8. The category ∆̇2 is the coequalizer of the computad g∆̇2 .

Example 2.4.9. The usual presentation of the category ∆̇ via faces and degeneracies is given by the
computad (g∆̇,g∆̇

2 ,G∆̇
) which is defined by

g∆̇
2 ×2

//
// F1(G∆̇

)

in which G
∆̇
(1) := (N)0 is the discrete category of the non-negative integers and

G
∆̇
(2) :=

{
(di,m) : (i,m) ∈ N2, i≤ m

}
∪
{
(sk,m) : (k,m) ∈ N2,k ≤ m−1≥ 0

}
G

∆̇
(d1)(di,m) := m

G
∆̇
(d0)(di,m) := m+1

G
∆̇
(d1)(sk,m) := m+1

G
∆̇
(d0)(sk,m) := m
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g∆̇
2 :=

{
(dk,di,m) : (i,k,m) ∈ N3,m≥ i < k

}
∪
{
(sk,si,m) : (i,k,m) ∈ N3,0≤ m−1≥ k ≥ i

}
∪
{
(sk,di,m) : (i,k,m) ∈ N3,k ≤ m−1≥ 0

}
g∆̇(d1)((dk,di,m),0→ 1) := (dk,m+1) · (di,m)

g∆̇(d1)((sk,si,m),0→ 1) := (sk,m) · (si,m+1)

g∆̇(d1)((sk,di,m),0→ 1) := (sk,m+1) · (di,m)

g∆̇(d0)((dk,di,m),0→ 1) := (di,m+1) · (dk−1,m)

g∆̇(d0)((sk,si,m),0→ 1) := (si,m) · (sk+1,m+1)

g∆̇(d0)((sk,di,m),0→ 1) := (di,m−1) · (sk−1,m), if k > i

g∆̇(d0)((sk,di,m),0→ 1) := idm , if i = k or i = k+1

g∆̇(d0)((sk,di,m),0→ 1) := (di−1,m−1) · (sk,m−1), if i > k+1.

Lemma 2.4.10. The category ∆̇ is the coequalizer of the computad g∆̇.

Every computad induces a presentation of groupoids via a groupoidal computad, since we have an
obvious functor Cmp→ CmpGr induced by L1. More precisely, the functor L Cmp

1 : Cmp→ CmpGr
is defined by g 7→ L1g. Observe that the groupoidal computad L1g gives a presentation of the
coequalizer of L1g in Gr which is (isomorphic to) L1P1(g). In this case, we say that the computad
g presents the groupoid L1P1(g).

Proposition 2.4.11. There is a natural isomorphism P(1,0)L
Cmp

1
∼= L1P1.

Remark 2.4.12. If P1(g) is a groupoid, there is no confusion between the groupoid presented by g

and the category presented by g, since, in this case, they are actually isomorphic. More precisely, in
this case, L1P1(g)∼= P1(g).

Theorem 2.4.13. If the groupoid presented by a computad (g,g2,G) is thin, then (g,g2,G) presents a
thin category as well provided that P1(g,g2,G) satisfies the cancellation law.

Proof. By Theorem 2.1.6, if L1P1(g) is thin, then P1(g) is thin.

Definition 2.4.14. [2-cells of computads] Let (g,g2,G) be a computad. The discrete category g2 is
called the discrete category of the 2-cells of the computad g. Moreover, we say that α is a 2-cell
between f and g, denoted by α : f ⇒ g, if g(d1)(α,0→ 1) = f and g(d0)(α,0→ 1) = g. In this
case, the domain of α is f while the codomain is g.

Sometimes, we need to be even more explicit and denote the 2-cell α by α : f ⇒ g : x→ y
whenever g(d1)(α,0→ 1) = f , g(d0)(α,0→ 1) = g, g(d0)(α,0) = x and g(d0)(α,1) = y.

In the context of presentation of categories, the 2-cells of a computad (g,g2,G) correspond to the
equations of the presentation induced by this computad. If g has more than one 2-cell between two
arrows of g(1), then it is a redundant presentation of the coequalizer of g. Yet, we also have interesting
examples of redundant presentations. For instance, in the next section, we give the definition of the
fundamental groupoid via a redundant presentation.
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Remark 2.4.15. [Sigma] There is an obvious forgetful functor u2 : cmp→ grph. This forgetful
functor has left and right adjoints. The left adjoint i2 : grph→ cmp is defined by i2(G) = (Gi2 , /0,G).
Sometimes, we denote Gi2 by i2(G) and, of course, it is defined as follows:

i2(G) : /0 //
// F1(G).

The right adjoint σ2 : grph→ cmp is defined by σ2(G) = (Gσ2 ,Gσ2
2 ,G) in which σ2(G)(2) = Gσ2

2 ×2

and the set of 2-cells Gσ2
2 is the pullback of (F1(G)(d1),F1(G)(d0)) : F1(G)(2)→F1(G)(1)×

F1(G)(1) along itself. Finally, the images of Gσ2(G)(d1),Gσ2(d0) are induced by the obvious
projections. Sometimes we write σ2(G) = (σ2(G),σ2(G)2,G) as follows

σ2(G) : Gσ2
2 ×2

//
// F1(G).

Remark 2.4.16. [SigmaGr] Of course, we also have a forgetful functor uGr2 : cmpGr → grph. The
left adjoint of this functor is defined by iGr2 := L Cmp

1 i2, while the right adjoint is defined by σGr
2 :=

L Cmp
1 σ2.

Proposition 2.4.17. There is a natural isomorphism P1i2 ∼= F1.

Definition 2.4.18. [Connected Computad] A computad (g,g2,G) is connected if u2(g,g2,G) = G is
connected.

Remark 2.4.19. Let X be a group. We consider the full subcategory Pre(L0F0,X) of Pre(L0F0)

consisting of the presentations of X . This subcategory is isomorphic to the full subcategory of cmpGr

consisting of the groupoidal computads which presents Σ(X). This fact shows that presentations
of groupoids by groupoidal computads generalizes the notion of L0F0-presentations of groups.
Moreover, unlike the case of L1F1-presentations, the notion of presentations of (suspensions of)
groups by groupoidal computads is precisely the same of L0F0-presentations.

Analogously, given a monoid Y the category of F0-presentations Pre(F0,Y ) is isomorphic to
the category of computads which presents Σ(Y ).

2.5 Topology and Computads

We introduce topological aspects of our theory. We refer the reader to [87] for basic notions and
results of algebraic topology, including the van Kampen theorem for fundamental groupoids.

We start with the relation between the fundamental groupoids and groupoids freely generated
by small graphs. By the classical van Kampen theorem, the fundamental group of a (topological)
graph with only one object is the group freely generated by the set of edges/arrows. We show that it
also holds for fundamental groupoids: roughly, the groupoid freely generated by a small graph G is
equivalent to its fundamental groupoid. Although this is a straightforward result, this motivates the
relation between topology and small computads: that is to say, the association of each small computad
with a CW-complex presented in 2.5.12.

We always consider small computads, small graphs and small categories throughout this section.
Moreover, we use the appropriate restrictions of the functors F1,L1,U1,C1. Finally, Top denotes
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any suitable cartesian closed category of topological spaces: for instance, compactly generated spaces.
Then we can consider weighted colimits in Top w.r.t. the Top-enrichment.

Remark 2.5.1. [Topological Graph] There is an obvious left adjoint inclusion D2 : cat→ Top-Cat
induced by the fully faithful (discrete topology) functor D : Set→ Top left adjoint to the forgetful
functor Top→ Set. We denote by G and Gop the images D2(G) and D2(G

op) respectively, whenever
there is no confusion. If I = [0,1] is the unit interval with the usual topology and ∗ is the terminal
topological space, then the Top-weight ITop1

: G→ Top defined by

∗
1 //

0
// I

gives the definition of Top-isoinserters and Top-isocoinserters.

If G :Gop→ Set is a small graph, DG :Gop→Top is actually compatible with the Top-enrichment.
More precisely, since D2 is left adjoint, there is a Top-functor D2(G

op)→ Top which is the mate
of DG : Gop → Top. Again, by abuse of notation, the mate D2(G

op)→ Top is also denoted by
DG : Gop→ Top.

Any small graph G : Gop→ Set has an associated topological (undirected) graph given by the
Top-isocoinserter of the Top-functor DG. This gives a functor FTop1

: grph→ Top which is left
adjoint to the functor CTop1

: Top→ grph, E 7→ Top(ITop1
−,E). We denote the monad induced by

this adjunction by FTop1
.

A path in a topological space E is an edge of CTop1
(E), that is to say, a path in E is a continuous

map a : I→ E.

Lemma 2.5.2. A small graph G is connected if and only if FTop1
(G) is a path connected topological

space.

Remark 2.5.3. We also have an adjunction FR
Top1
⊣C R

Top1
in which C R

Top1
=CTop1

R. This adjunction
is induced by a weight analogue of ITop1

. Namely, if we denote by ∆2 the image of itself by
cat→ Top-Cat, the Top-functor I R

Top1
: ∆2→ Top defined by

∗
1 //

0
// Ioo

in which I R
Top1

composed with the inclusion G→ ∆2 is equal to ITop1
. This weight gives rise to the

notion of reflexive Top-isoinserters and reflexive Top-isocoinserters. Finally, FR
Top1

(G)=I R
Top1
∗DG

and CTop1
: Top→ Rgrph, E 7→ Top(I R

Top1
−,E).

Given an arrow f of F1CTop1
(E), we have that there is a unique finite list of arrows a f

0 , . . . ,a
f
m−1

of CTop1
(E) such that f = a f

m−1 · · ·a
f
0 by the ulf property of the length functor. Since, by definition,

a f
0 , . . . ,a

f
m−1 are continuous maps I→ E, we can define a continuous map

⌈
f
⌉

E
: I→ E by

⌈
f
⌉

E
(t) =

a f
n(mt−n) whenever t ∈ [n/m,(n+1)/m]. This gives a morphism of graphs

⌈ ⌉E : C1F1CTop1
(E)→ CTop1

(E)
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which is identity on objects and takes each arrow f = a f
m−1 · · ·a

f
0 of length m to the arrow

⌈
f
⌉

E
of

CTop1
(E). These graph morphisms define a natural transformation

⌈ ⌉ : F1CTop1
−→ CTop1

.

Remark 2.5.4. It is very important to observe that, if f is an arrow of C1F1CTop1
(E) of length m > 1,

then
⌈

f
⌉

E
: x→ z is not the same as the morphism f : x→ z itself. The former is an edge of CTop1

(E),
which means that, as morphism of F1CTop1

(E), its length is 1.

Remark 2.5.5. We have also a natural transformation ⌈ ⌉Gr : L1F1CTop1
−→CTop1

. Observe that, by
the ulf property of the length functor and by the definition of CTop1

, if f is an arrow of L1F1CTop1
(E)

of lenght k, then f = a f
m−1 · · ·a

f
0 for a unique list (a f

m−1, . . . ,a
f
0) of paths or formal inverses of paths in

E and we can define
⌈

f
⌉Gr

E
: I→ E by:

⌈
f
⌉Gr

E
(t) =


a f

n(mt−n), if t ∈ [n/m,(n+1)/m]and a f
n is a path in E,

b f
n(−mt +n+1), if t ∈ [n/m,(n+1)/m]and a f

n

is a formal inverse of an arrow b f
n of CTop1

(E).

On one hand, this defines morphisms of graphs L1F1CTop1
(E)−→ CTop1

(E) for each topological
space E. On the other hand, these morphisms define the natural transformation ⌈ ⌉Gr : L1F1CTop1

−→
CTop1

.

Theorem 2.5.6. The mate of ⌈ ⌉ : F1CTop1
−→ CTop1

under the adjunction FTop1
⊣ CTop1

and the
identity adjunction is a natural transformation

⌈ ⌉ : F1 −→FTop1

which is a part of a monad functor/morphism (Id
Grph

,⌈ ⌉) : FTop1
→ F1. Analogously, the mate

⌈ ⌉Gr under the same adjunctions is a natural transformation ⌈ ⌉Gr which is part of a monad functor
(Id

Grph
,⌈ ⌉Gr) : FTop1

→L1F1.

Remark 2.5.7. It is also important to consider the mate ⌈·⌉ : FTop1
F1 −→FTop1

of the natural
transformation ⌈ ⌉ : F1CTop1

−→ CTop1
under the adjunction FTop1

⊣ CTop1
and itself. Again, we

can consider the case of groupoids: the mate of ⌈ ⌉Gr under FTop1
⊣ CTop1

and itself is denoted by
⌈·⌉Gr : FTop1

L1F1 −→FTop1
.

Let S1 be the circle (complex numbers with norm 1) and B2 the closed ball (complex numbers
whose norm is smaller than or equal to 1). We denote the usual inclusion by h : S1→ B2. We consider
also the embeddings:

h0 : I→ B2, t 7→ eπit h1 : I→ B2, t 7→ eπi(−t).

Recall that, if E is a topological space and a,b : I→ E are continuous maps, a homotopy of paths
H : a≃ b is a continuous map H : B2→ E such that Hh0 = a and Hh1 = b. If there is such a homotopy,
we say that a and b are homotopic.
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There is a functor CTop2
:Top→ cmp given by CTop2

(E) = (gE ,gE
2 ,G

E) in which GE :=CTop1
(E)

and

gE
2 :=

{
( f ,g,H :

⌈
f
⌉

E
≃
⌈
g
⌉

E
) :

H is a homotopy of paths and f ,g ∈F1CTop1
(E)(2)

}
.

Also, gE(d1)( f ,g,H :
⌈

f
⌉

E
≃
⌈
g
⌉

E
,0→ 1) := f and gE(d0)( f ,g,H :

⌈
f
⌉

E
≃
⌈
g
⌉

E
,0→ 1) := g. By

an elementary result of algebraic topology, the image of P1CTop2
: Top→ Cat is inside the category

of small groupoids gr. More precisely, there is a functor Π : Top→ gr such that U1Π∼=PCTop2
. If E

is a topological space, Π(E) is called the fundamental groupoid of E. Given a point e ∈ E, recall that
the fundamental group π1(E,e) is by definition the full subcategory of Π(E) with only e as object.

Example 2.5.8. The van Kampen theorem [29] for groupoids (see, for instance, [12, 29]) gives the
fundamental groupoid Π(S1) by the pushout of the inclusion {0,1} → Π(I) along itself. This is
equivalent to the pushout of the inclusion (2)0→ 2 of Remark 2.2.5 along (2)0→ 1, which is given
by the L1F1-presentation

• //
// L1F1(2̂)

induced by the F1-presentation of Example 2.3.8. We conclude that this is isomorphic to L1(Σ(N))∼=
Σ(Z).

Proposition 2.5.9. There is a natural isomorphism CTop1
∼= u2CTop2

.

Remark 2.5.10. The groupoid freely generated by a given small graph is equivalent to the fundamental
groupoid of the respective topological graph. To see that, since FR

1 E ∼= F1 and FR
Top1

E ∼= FTop1
, it

is enough to prove that, for each small reflexive graph G,

L1F
R
1 (G)≃ΠFR

Top1
(G).

On one hand, if G is a reflexive tree, then both L1FR
1 (G),ΠFR

Top1
(G) are thin (and connected):

therefore, they are equivalent. On the other hand, if G is a reflexive graph with only one object,
then L1FR

1 (G) and ΠFR
Top1

(G) are equivalent to the group freely generated by the set of nontrivial
edges/arrows of G.

If a reflexive graph G is not a reflexive tree and it has more than one object, we can choose a
maximal reflexive tree Gmtree of G. Then, if we denote by L1FR

1 (G)/L1FR
1 (Gmtree) the pushout of

the inclusion L1FR
1 (Gmtree)→L1FR

1 (G) along the unique functor between L1FR
1 (Gmtree) and

the terminal groupoid, we get:

L1F
R
1 (G)≃L1F

R
1 (G)/L1F

R
1 (Gmtree)∼= L1F

R
1 (G/Gmtree),

in which, analogously, G/Gmtree denotes the pushout of the morphism induced by the inclusion
Gmtree→ G along the unique morphism Gmtree→• in the category of reflexive graphs Rgrph.

Since the reflexive graph G/Gmtree has only one object, we have that

L1F
R
1 (G/Gmtree)≃ΠFR

Top1
(G/Gmtree)∼= Π

(
FR

Top1
(G)/FR

Top1
(Gmtree)

)
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in which the last isomorphism follows from the fact that FR
Top1

is left adjoint. Since

Π

(
FR

Top1
(G)/FR

Top1
(Gmtree)

)
≃ΠFR

Top1
(G),

the proof is complete. This actually can be done in a pseudonatural equivalence as we show below.

Theorem 2.5.11. There is a natural transformation L1F1 −→ ΠFTop1
which is an objectwise

equivalence.

Proof. Consider the unit of the adjunction FTop1
⊣CTop1

, denoted in this proof by η . We have that the
horizontal composition IdP1i2

∗η gives a natural transformation P1i2 −→P1i2FTop1
. We, then, com-

pose this natural transformation with the obvious isomorphism P1i2FTop1
−→P1i2u2CTop2

FTop1

obtained from the isomorphism of Proposition 2.5.9
Now, we suitably past this natural transformation with the counit of i2 ⊣ u2 and get a natural trans-

formation P1i2 −→P1CTop2
FTop1

, which, after composing with the isomorphism of Proposition
2.4.17, gives F1 −→P1CTop2

FTop1
.

The horizontal composition of this natural isomorphism with IdL1
gives our natural transformation

L1F1 −→L1P1CTop2
FTop1

∼= ΠFTop1
. It is an exercise of basic algebraic topology to show that,

as a consequence of the considerations of Remark 2.5.10, this natural transformation is an objectwise
equivalence.

2.5.12 Further on Topology

To get the relation between small computads and topological spaces, we use the isomorphism of
Theorem 2.4.3. In particular, an object (g,g2,G) of cmp is a diagram g : 2→ grph

Ĝ× i1(g2)→F1(G),

in which g2 is a set and G is a small graph. We also fix the homeomorphism cir−1 : FTop1
(Ĝ)→ S1

which is the mate of the morphism of graphs cir′ : Ĝ→ CTop1
(S1) which takes the edges of Ĝ to the

continuous maps h′1,h
′
0 : I→ S1, h′1(t) := h1(t), h′0(t) := h0(t) (which are edges between 0 and 1 in

CTop1
(S1)). More generally, for each set g2, we fix the homeomorphism

cir×g2 : S1×D(g2)→FTop1
(Ĝ× i1(g2)).

Analogously to the case of graphs, we can associate each computad with a “topological computad”,
which is a CW-complex of dimension 2. The functor CTop2

: Top→ cmp is actually right adjoint
to the functor FTop2

: cmp→ Top defined as follows: if (g,g2,G) is a small computad g : Ĝ×
i1(g2)→F1(G), then FTop2

(g,g2,G) is the pushout of h×D(g2) : S1×D(g2)→ B2×D(g2) along
the composition of the morphisms

S1×D(g2)
(cir×g2)// FTop1

(Ĝ× i1(g2))
(FTop1g)// FTop1

F1(G)
⌈·⌉G // FTop1

(G)

in which ⌈·⌉ : FTop1
F1 −→FTop1

is the natural transformation of Remark 2.5.7.
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Lemma 2.5.13. A small computad (g,g2,G) is connected if and only if FTop2
(g,g2,G) is a path

connected topological space.

Let g= (g,g2,G) be a small connected computad. We denote by T the maximal tree of u2(g,g2,G).
Consider the pushout of FTop2

i2(T)→∗ along the composition

FTop2
i2(T)→FTop2

i2u2(g,g2,G)→FTop2
(g,g2,G)

in which FTop2
i2(T)→FTop2

(i2u2(g,g2,G)) is induced by the inclusion of the maximal tree of the
graph u2(g,g2,G) and FTop2

(i2u2(g,g2,G))→FTop2
(g,g2,G) is induced by the counit of i2 ⊣ u2.

Since this is actually a pushout of a homotopy equivalence along a cofibration (that is to say, this
is a homotopy pushout along a homotopy equivalence), we get that FTop2

(g,g2,G) has the same
homotopy type of the obtained pushout which is a wedge of spheres, balls and circumferences.

Theorem 2.5.14. For each small computad (g,g2,G), there is an equivalence

ΠFTop2
(g,g2,G)≃L1P1(g,g2,G).

Remark 2.5.15. It is clear that the adjunction FTop2
⊣ CTop2

can be lifted to an adjunction FGr
Top2
⊣

C Gr
Top2

in which FGr
Top2

: cmpGr → Top is defined as follows: if (g,g2,G) is a small groupoidal
computad,

g : Ĝ× i1(g2)→L1F1(G),

then FGr
Top2

(g,g2,G) is the pushout of h×D(g2) : S1×D(g2)→ B2×D(g2) along ⌈·⌉GrG · (FTop1
g) ·

(cir×g2). We have an isomorphism FGr
Top2

L cmp
1
∼= FTop2

.

Theorem 2.5.16. For each small groupoidal computad (g,g2,G), there is an equivalence

ΠFGr
Top2

(g,g2,G)≃P(1,0)(g,g2,G).

2.6 Deficiency

In this section, we study presentations of small categories/groupoids, focusing on thin groupoids and
categories. Roughly, the main result of this section computes the minimum of equations/2-cells neces-
sary to get a presentation of a groupoid generated by a given graph G with finite Euler characteristic.
This result motivates our definition of deficiency of a (finitely presented) groupoid/category. We start
by giving the basic definitions of deficiency of algebras over Set.

2.6.1 Algebras over the category of sets

Let T = (T ,m,η) be a monad on Set. We denote a T -presentation R : Gop→ Set,

R(2) //
// T (S),

by ⟨S,R⟩. If S and R(2) are finite, the presentation ⟨S,R⟩ is called finite. If a T -algebra (A,T (A)→A)
has a finite presentation ⟨S,R⟩, it is called finitely (T -)presented.
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In this context, the (T -)deficiency of a T -presentation ⟨S,R⟩ is defined by

defT (⟨S,R⟩) := |S|− |R(2)|

in which |−| gives the cardinality of the set. The (T -)deficiency of a finitely presented T -algebra
(A,T (A)→ A), denoted by defT (A,T (A)→ A), is the maximum of the set

{defT (⟨S,R⟩) : ⟨S,R⟩ presents (A,T (A)→ A)} .

Example 2.6.2. Consider the free real vector space monad and the notion of presentation of vector
spaces induced by it. In this context, the notion of finitely presented vector space coincides with the
notion of finite dimensional vector space and it is a consequence of the rank-nulity theorem that the
deficiency of a finite dimensional vector space is its dimension.

The notion of deficiency and finite presentations induced by the free group monad L0F0 coincide
with the usual notions (see [54]). Analogously, the respective usual notions of deficiency and finite
presentations are induced by the free monoid monad and free abelian group monad.

It is well known that, if a (finitely presented) group has positive deficiency, then this group is
nontrivial (actually, it is not finite). Indeed, if H is a group which has a presentation with positive
deficiency, then Group(H,R) is a vector space with a presentation with positive deficiency. This
implies that Group(H,R) has positive dimension and, then, H is not trivial. In particular, we conclude
that the trivial group has deficiency 0.

We present a suitable definition of deficiency of groupoids and, then, we prove that thin groupoids
have deficiency 0. Before doing so, we recall elementary aspects of Euler characteristics and define
what we mean by finitely presented category.

2.6.3 Euler characteristic

If X is a topological space, we denote by Hi(X) its ordinary i-th cohomology group with coefficients
in R. Assuming that the dimensions of the cohomology groups of a topological space X are finite,
recall that the Euler characteristic of a topological space X is given by

χ(X) :=
∞

∑
i=0

(−1)i dimHi(X)

whenever all but a finite number of terms of this sum are 0.
If G is a small graph, it is known that χ(FTop1

(G)) = |G(1)|− |G(2)| whenever the cardinality of
the sets G(1), G(2) are finite. Also, a connected small graph G is a tree if and only if χ(FTop1

(G)) = 1.
As a corollary of Theorem 2.2.13, we get:

Corollary 2.6.4. Let G be a connected small graph. If χ(FTop1
(G)) = 1, L1F1(G) and F1(G) are

thin.

If (g,g2,G) is a connected small computad, since FTop2
(g,g2,G) has the same homotopy type

of a wedge of spheres, closed balls and circumferences, H0
(
FTop2

(g)
)
= R and Hi

(
FTop2

(g)
)
= 0
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for all i > 2. Furthermore, assuming that χ(FTop1
u2(g,g2,G)) = χ(FTop1

(G)) and g2 are finite, we
have that:

χ
(
FTop2

(g,g2,G)
)
= χ(FTop1

(G))+ |g2|.

Remark 2.6.5. All considerations about FTop2
have analogues for FGr

Top2
. In particular, if (g,g2,G) is

a connected small groupoidal computad FGr
Top2

(g,g2,G) is a CW-complex and has the same homotopy

type of a wedge of spheres, closed balls and circumferences. Moreover, χ

(
FGr

Top2
(g,g2,G)

)
=

χ(FTop1
(G))+ |g2| provided that χ(FTop1

(G)) and g2 are finite.

2.6.6 Deficiency of a Groupoid

Observe that σ2(G) gives a (natural) presentation of the thin category freely generated by G. More
precisely, P1σ2 ∼= M1F1. Yet, σ2(G) gives always a presentation of M1F1(G) with more equations
than necessary.

Example 2.6.7. Let G be the graph below. In this case, the set of 2-cells σ2(G)2 is given by
{(w,w) : w ∈F1(G)(2)}∪{(yx,b),(yxa,ba),(ba,yxa),(b,yx)} with obvious projections.

· a // · b //

x
��

·

·

y

@@

On one hand, the computad σ2(G) induces the presentation of M1F1(G) with the equations:

w = w if w ∈F1(G)(2)

yx = b

yxa = ba

b = yx

ba = yxa.

On the other hand, the computad
2

//
// F1(G),

in which the image of one functor is the arrow yx while the image of the other functor is b, gives a
presentation of M1F1(G) with less equations than σ2(G).

The main theorem about presentations of thin groupoids in low dimension is Theorem 2.6.10.
This result gives a lower bound to the number of equations we need to present a thin groupoid. We
start with our first result, which is a direct corollary of Theorem 2.5.16:

Corollary 2.6.8. Let (g,g2,G) be a small connected groupoidal computad. P(1,0)(g,g2,G) is thin if
and only if FGr

Top2
(g,g2,G) is 1-connected which means that the fundamental group π1(FGr

Top2
(g,g2,G))

is trivial.
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Proof. The fundamental group π1(FTop2
(g,g2,G)) is trivial if and only if Π(FGr

Top2
(g,g2,G)) is thin.

By Theorem 2.5.16, we conclude that π1(FGr
Top2

(g,g2,G)) is trivial if and only if P(1,0)(g,g2,G) is
thin.

Remark 2.6.9. Of course, last corollary applies also to the case of presentation of groupoids via
computads. More precisely, if (g,g2,G) is a small connected computad,

L1P1(g,g2,G)∼= P(1,0)L
Cmp

1 (g,g2,G)

is thin if and only if the fundamental group of

FGr
Top2

L Cmp
1 (g,g2,G)∼= FTop2

(g,g2,G)

is trivial.

Theorem 2.6.10. If (g,g2,G) is a small connected groupoidal computad and

Z ∋ χ

(
FGr

Top2
(g,g2,G)

)
< 1,

then P(1,0)(g,g2,G) is not thin.

Proof. Recall that

χ

(
FGr

Top2
(g,g2,G)

)
= 1−dimH1

(
FGr

Top2
(g,g2,G)

)
+dimH2

(
FGr

Top2
(g,g2,G)

)
.

Therefore, by hypothesis,

dimH1
(
FGr

Top2
(g,g2,G)

)
> dimH2

(
FGr

Top2
(g,g2,G)

)
.

In particular, we conclude that dimH1
(
FGr

Top2
(g,g2,G)

)
> 0. By the Hurewicz isomorphism

theorem and by the universal coefficient theorem, this fact implies that the fundamental group
π1

(
FGr

Top2
(g,g2,G)

)
is not trivial. By Corollary 2.6.8, we get that P(1,0)(g,g2,G) is not thin.

Corollary 2.6.11. If (g,g2,G) is a small connected groupoidal computad which presents a thin
groupoid and χ(FTop1

(G)) is finite, then

χ(FTop1
(G))+ |g2|−1≥ 0.

In particular, Corollary 2.6.11 implies that, if G is such that χ(FTop1
(G)) is finite, we need at

least 1−χ(FTop1
(G)) equations to get a presentation of M1 L1F1(G).

Definition 2.6.12. [Finitely Presented Groupoids and Categories] A groupoid/category X is finitely
presented if there is a small connected groupoidal computad/small connected computad (g,g2,G)

which presents X , such that χ(FTop1
(G)) and |g2| are finite.

Recall the definition of deficiency of groups w.r.t. the free group monad L0F0 given in 2.6.1.
Definition 2.6.12 agrees with the definition of finitely L0F0-presented groups. Moreover, as explained
in Proposition 2.6.14, Definition 2.6.13 also agrees with the definition of L0F0-deficiency of groups.
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Definition 2.6.13. [Deficiency of a Groupoid] Let X be a finitely presented groupoid. The deficiency of
a presentation of X by a small connected groupoidal computad (g,g2,G) is defined by def(g,g2,G) :=
1−|g2|−χ(FTop1

(G)), provided that |g2| and χ(FTop1
(G)) are finite.

Moreover, the deficiency of the groupoid X is the maximum of the set{(
1−χ

(
F gr

Top2
(g,g2,G)

))
∈ Z : P(1,0)(g,g2,G)∼= X and χ(FTop1

(G)) ∈ Z
}
.

Proposition 2.6.14. If X is a finitely presented group, the deficiency of Σ(X) w.r.t. presentations by
groupoidal computads is equal to def L0F0

(X).

Proof. This result follows from Remark 2.4.19.

Theorem 2.6.11 is the first part of Corollary 2.6.18. The second part is Theorem 2.6.16 which is
easy to prove: but we need to give some explicit constructions to give further consequences in 2.6.20.
To do that, we need the terminology introduced in:

Remark 2.6.15. Given a small reflexive graph G, a morphism f of FR
1 (G) determines a subgraph of

G, namely, the smallest (reflexive) subgraph G′ of G, called the image of f , such that f is a morphism
of FR

1 (G′). More generally, given a small computad g= (g,g2,G) of Rcmp, it determines a subgraph
G′ of G, called the image of the computad g in G, which is the smallest graph G′ satisfying the
following: there is a computad g′ : g2×G→FR

1 (G′) such that

g2×G

g $$

g′ // FR
1 (G′)

��
FR

1 (G)

commutes. We also can consider the graph domain and the graph codomain of a small computad
g= (g,g2,G), g : Gop→ Cat, which are respectively the smallest subgraphs gd1

and gd0
of G such

that g(d1)(g2×2) and g(d0)(g2×2) are respectively in FR
1 (gd1

) and FR
1 (gd0

).
Of course, we can consider the notions introduced above in the category of computads or

groupoidal computads as well.

Theorem 2.6.16. Let G be a small connected graph such that χ(FTop1
(G)) ∈ Z (equivalently,

π1(FTop1
(G)) is finitely generated). There is a groupoidal computad (ĝ,g2,G) which presents

M1 L1F1(G) such that |g2|= 1−χ(FTop1
(G)).

Proof. Without losing generality, in this proof we consider reflexive graphs, and computads over
reflexive graphs. Let G be a small reflexive connected graph such that its fundamental group is finitely
generated. If Gmtree is the maximal (reflexive) tree of G, we know that the image of the (natural)
morphism of reflexive graphs G→ G/Gmtree by the functor L1FR

1 is an equivalence. That is to say,
we have a natural equivalence L1FR

1 (G)→L1FR
1 (G/Gmtree) which is in the image of L1FR

1 .
In particular, each arrow f of G/Gmtree corresponds to a unique arrow f̂ of G such that f̂ is not an

arrow of Gmtree and the image of f̂ by G→ G/Gmtree is f .
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Recall that, since G/Gmtree has only one object, L1FR
1 (G/Gmtree) is the suspension of the

group freely generated by the set G/Gmtree(2) of arrows. By hypothesis, this set is finite and has
1−χ(FTop1

(G)) ∈ N elements. Thereby we have a computad g : Gop→ cat,

g2×2 //
//
FR

1 (G/Gmtree),

in which g2 :=G/Gmtree(2), g(d0)( f ,0→ 1)= f and g(d0)( f ,0→ 1)= id. The computad L Rcmp
1 (g) :

Gop→ gr gives a presentation of the trivial group.
The computad g lifts through G→G/Gmtree to a (small) groupoidal computad ĝ : Gop→ cat over

G. More precisely, we define ĝ= (g,g2,G),

ĝ(1) = L1F
R
1 (G), ĝ(2) = g2×2, ĝ(d0)( f ,0→ 1) = f̂ and ĝ(d1)( f ,0→ 1) = ḟ

in which ḟ is the unique morphism of the (thin) subgroupoid L1FR
1 (Gmtree) of L1FR

1 (G) such that
the domain and codomain of ḟ coincide respectively with the domain and codomain of f̂ .

Of course, this construction provides a 2-natural transformation which is pointwise an equivalence
ĝ−→L Rcmp

1 (g),

g2×2 //
//
L1FR

1 (G)

��
g2×2 //

//
L1FR

1 (G/Gmtree).

It is easy to see that, in this case, it induces an equivalence between the coequalizers. Thereby ĝ

presents a thin groupoid, which is L1P1(σ
Gr
2 (G)). This completes the proof.

Remark 2.6.17. The graph domain and the graph codomain of the computad ĝ constructed in the
proof above are, respectively, inside and outside the maximal tree Gmtree. More precisely, for every
α ∈ ĝ2 = g2, the ĝ(d1)(α,0→ 1) is a morphism of L1FR

1 (Gmtree) and ĝ(d0)(α,0→ 1) is a morphism
of length one which is not an arrow of Gmtree.

By Theorem 2.6.16 and Theorem 2.6.10 we get:

Corollary 2.6.18. The deficiency of a finitely presented thin groupoid is 0. In particular, this result
generalizes the fact that the deficiency of the trivial group is 0.

Remark 2.6.19. [Finite measure and deficiency] Let R+
∞ be the category whose structure comes from

the totally ordered set of the non-negative real numbers with a top element ∞ with the usual order.
The initial object is of course 0, while the terminal object is ∞.

Let X′ be the subcategory of monomorphisms of a category X. A finite (strong/naive) measure on
X is a functor µ : X′→ R+

∞ that preserves finite coproducts (including the empty coproduct, which is
the initial object).

A pair (X,µ) together with a monad T on X give rise to a notion of finite T -presentation: a
presentation as in the T -presentation diagram is µ-finite if µ(G1) and µ(G2) are finite. In this case,
we define the (T ,µ)-deficiency of such a µ-finite T -presentation by def(T ,µ) := µ(G1)−µ(G2). If
X is a T -algebra which admits a finite presentation, X is called finitely T - presented.
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For instance, cardinality is a measure on the category of sets Set which induces the notions of
finite T -presentation and T -deficiency of algebras over sets given in 2.6.1.

Finally, consider the category of graphs GrphfinEu with finite Euler characteristic: the measure
Euler characteristic χ and the monad L1F1 induce the notion of (L1F1,χ)-deficiency of an L1F1-
presentation. If we consider the inclusion of Theorem 2.4.5, this notion of deficiency coincides with
the notion of deficiency of a presentation via groupoidal computad given in 2.6.6.

2.6.20 Presentation of Thin Categories

The results on presentations of thin groupoids can be used to study presentations of thin categories.
For instance, if a presentation of a thin groupoid can be lifted to a presentation of a category, then
this category is thin provided that the lifting presents a category that satisfies the cancellation law. To
make this statement precise (which is Proposition 2.6.22), we need:

Definition 2.6.21. [Lifting Groupoidal Computads] We denote by cmplift the pseudopullback (iso-
comma category) of P(1,0) : cmpgr→ gr along L1P1 : cmp→ gr. A small computad g is called a
lifting of the small groupoidal computad g′ if there is an object ζ

g
g′ of cmplift such that the images of

this object by the functors
cmplift→ cmpgr, cmplift→ cmp

are respectively g′ and g.

Proposition 2.6.22. If g′ is a groupoidal computad that presents a thin groupoid and P1(g) satisfies
the cancellation law, then g presents a thin category.

Proof. By hypothesis, P(1,0)(g
′)∼= L1P1(g) is a thin groupoid and P1(g) satisfies the cancellation

law. Hence P1(g) is a thin category.

Theorem 2.6.23. If G is small connected fair graph such that χ(FTop1
(G)) ∈ Z, then there is a com-

putad (g,g2,G) of cmp such that |g2|= 1−χ(FTop1
(G)) which presents the groupoid M1L1F1(G).

Proof. Let Gmtree be a maximal weak tree of G which is also the maximal tree. Let (ĝ,g2,G) be the
groupoidal computad constructed in the proof of Theorem 2.6.16 using the maximal tree Gmtree.

We will prove that the groupoidal computad (ĝ,g2,G) can be lifted to a computad. In order to do
so, we need to prove that, for each α ∈ g2, the restriction ĝ|α : Gop→ gr,

{α}×2 //
//
L1F1(G),

can be lifted to a small computad. By Remark 2.6.17, we know that ĝ(d1)(α,0→ 1) is a morphism
of L1F1(Gmtree) and ĝ(d0)(α,0→ 1) is a morphism of length one which is not an arrow of Gmtree.
Since Gmtree is a maximal weak tree, we conclude that the image of ĝ|α is not a weak tree. Hence
there are parallel morphisms f0, f1 of F1(G) that determine the same graph determined by the image
of ĝ|α (see Remark 2.6.15) such that f0 is a morphism of F1(Gmtree). Therefore, ĝ can be lifted to
(g|α ,{α} ,G) given by g|α : Gop→ cat, g|α(d0)(α,0→ 1) = f0 and g|α(d1)(α,0→ 1) = f1.

As a corollary of the proof, we get:
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Corollary 2.6.24. If G is small connected fair graph such that χ(FTop1
(G)) ∈ Z and (g,g2,G) is a

small computad which presents M1F1(G), then |g2| ≥ 1−χ(FTop1
(G)).

Proof. As consequence of the constructions involved in the last proof, for each 2-cell of the computad
g of Theorem 2.6.23, there are parallel morphisms in F1(G) such that they can be represented by
(completely) different lists of arrows of G.

However, in the conditions of the result above, often we need more than 1− χ(FTop1
(G)))

equations. The point is that the lifting given in Theorem 2.6.23 often does not present a category that
satisfies the cancellation law. As consequence of the proof of Theorem 2.6.23, we get a generalization.
More precisely:

Corollary 2.6.25. Let G be a small connected graph such that χ(FTop1
(G)) ∈ Z. Consider the

groupoidal computad (ĝ,g2,G) constructed in Theorem 2.6.16.
There is a largest groupoidal computad of the type (ĥ,h2,G) which is a subcomputad of ĝ and

can be lifted to a computad (h,h2,G) in the sense of Definition 2.6.21. We have that

min
{
|x2| : P1(x,x2,G)∼= M1F1(G)

}
≥ |h2| .

Definition 2.6.26. A pair (G,Gmtree) is called a monotone graph if G is a small connected graph,
χ(FTop1

(G))) ∈ Z, Gmtree is a maximal weak tree of G and, whenever there exists an arrow f : x→ y
in G, either x≤ y or y≤ x in which ≤ is the partial order of the poset F1(Gmtree).

If (G,Gmtree) is a monotone graph and f : x→ y is an arrow such that y ≤ x, f is called a
nonincreasing arrow of the monotone graph. Finally, if (G,Gmtree) does not have nonincreasing
arrows, (G,Gmtree) is called a strictly increasing graph.

Theorem 2.6.27. Let (G,Gmtree) be a strictly increasing graph. There is a computad (g,g2,G) such
that |g2|= 1−χ(FTop1

(G))) which presents M1F1(G,Gmtree).

Proof. For each arrow f : x→ y outside the maximal weak tree Gmtree, there is a unique morphism
ḟ : x→ y in F1(Gmtree). It is enough, hence, to define

g2 :=
{

α f : f ∈ G(2)−Gmtree(2)
}
, g(d0)(α f ,0→ 1) := ḟ , g(d1)(α f ,0→ 1) := f .

It is clear that this is a lifting of the groupoidal computad ĝ of Theorem 2.6.16. Actually, g is
precisely the lifting given by Theorem 2.6.23. Moreover, it is also easy to see that P1(g) satisfies the
cancellation law. Therefore the category presented by g is thin.

As a consequence of Corollary 2.6.24 and Theorem 2.6.27, we get:

Corollary 2.6.28. Let (G,Gmtree) be a strictly increasing graph. The minimum of the set{
|g2| : P1(g,g2,G)∼= M1F1(G)

}
is equal to 1−χ(FTop1

(G)).

Theorem 2.6.29. Let (G,Gmtree) be a monotone graph with precisely n nonincreasing arrows. There
is a computad (g,g2,G) such that |g2|= 1−χ(FTop1

(G)))+n which presents M1F1(G,Gmtree).
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Proof. For each nonincreasing arrow f : x→ y outside the maximal weak tree Gmtree, either there is a
unique morphism ḟ : y→ x in F1(Gmtree) or there is a unique ḟ : x→ y in F1(Gmtree). We define A∗

the set of the nonincreasing arrows of G outside Gmtree and A := G(2)−Gmtree(2)−A∗. We define

g2 :=
{

α f : f ∈ A
}
∪
{

β( f , j) : f ∈ A∗ and j ∈ {−1,1}
}
,

g(d0)(α f ,0→ 1) := ḟ , g(d1)(α f ,0→ 1) := f ,

g(d0)(β( f ,1),0→ 1) := ḟ f , g(d1)(β( f ,1),0→ 1) := id,

g(d0)(β( f ,−1),0→ 1) := f ḟ , g(d1)(β( f ,−1),0→ 1) := id.

It is clear that is a lifting of the groupoidal computad ĝ of Theorem 2.6.16. Actually, the lifting given
by Theorem 2.6.23 is a subcomputad of g. Moreover, it is also easy to see that P1(g) satisfies the
cancellation law. Therefore the category presented by g is thin.

Remark 2.6.30. If we generalize the notion of deficiency of a groupoid and define: the deficiency of
a finitely presented category X (by presentations via computads) is, if it exists, the maximum of the set{(

1−χ
(
FTop2

(g,g2,G)
))
∈ Z : P1(g,g2,G)∼= X and χ(FTop1

(G)) ∈ Z
}
,

then, given a strictly increasing graph (G,Gmtree), the deficiency of M1F1(G,Gmtree) is 0. However,
for instance, the deficiency of the thin category (by presentation of computads) ∇2 is not 0: it is −1.
More generally, by Corollary 2.6.24 the deficiency of category freely generated by a tree (characterized
in Theorem 2.2.22 and Corollary 2.2.23) is 0, while the deficiency of category freely generated by
a weak tree G is χ(G)− 1. Furthermore, if (G,Gmtree) is a monotone graph, the deficiency (by
presentations via computads) of M1F1(G,Gmtree) is −n in which n is the number of nontrivial
isomorphisms of X (see Theorem 2.6.29).

2.7 Higher Dimensional Icons

Icons were originally defined in [69]. They were introduced as a way of organizing bicategories in
a 2-category, recovering information of the tricategory of bicategories, pseudofunctors, pseudonatu-
ral/oplax natural transformations and modifications. Thereby, icons allow us to study aspects of these
2-categories of 2-categories/bicategories via 2-dimensional universal algebra.

There are examples of applications of this concept in [69, 70]. In this setting, on one hand, we get
a 2-category 2Cat which is the 2-category of 2-categories, 2-functors and icons. On the other hand,
we have the 2-category Bicat of bicategories, pseudofunctors and icons.

The inclusion 2Cat→ Bicat can be seen as an inclusion of the 2-category of strict algebras into
the 2-category of pseudoalgebras of a 2-monad. Therefore, we can apply 2-monad theory to get results
about these categories of algebras. The 2-monadic coherence theorem [9, 67, 77] can be applied to this
case and we get, in particular, the celebrated result that states that “every bicategory is biequivalent to
a 2-category”.

In Section 2.8, we show that the 2-categories 2Cat and Bicat provide a concise way of constructing
freely generated 2-categories as coinserters. We also show analogous descriptions for n-categories.
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In order to do so, we give a definition of higher dimensional icon and construct 2-categories nCat of
n-categories in this section. It is important to note that there are many higher dimensional versions of
icons and, of course, the best choice depends on the context. The definition of 3-dimensional icon
presented herein is similar to that of “ico-icon” introduced in [38], but the scope herein is limited to
strict n-categories.

Definition 2.7.1. [V -graphs] Let V be a 2-category. An object G of the 2-category VGrph is a discrete
category G(1) = G0 of Cat with a hom-object G(A,B) of V for each ordered pair (A,B) of objects of
G(1).

A 1-cell F : G → H of VGrph is a functor F0 : G(1) → H(1) with a collection of 1-cells{
F(A,B) : G(A,B)→ H(F0(A),F0(B))

}
(A,B)∈G0×G0

of V . The composition of 1-cells in VGrph is de-
fined in the obvious way.

A 2-cell α : F ⇒ G is a collection of 2-cells
{

α(A,B) : F(A,B)⇒ G(A,B)
}
(A,B)∈G2

0
in V . It should be

noted that the existence of such a 2-cell implies, in particular, that F0 = G0. The horizontal and vertical
compositions of 2-cells in VGrph come naturally from the horizontal and vertical compositions in V .

Let V be a 2-category with finite products and large coproducts (indexed in discrete categories of
Cat). Assume that V is distributive w.r.t. these large coproducts. We can define a 2-monad TV on
VGrph such that TV (G)0 = G0 and

TV (G)(A,B) = ∑
j∈N

∑
(C1,...,C j)∈G j

0

G(C j,B)×·· ·×G(C1,C2)×G(A,C1),

in which ∑ denotes coproduct and this coproduct includes the term for j = 0 which is G(A,B).
The actions of TV on the 1-cells and 2-cells are defined in the natural way. The component mG :
T 2

V (G) −→ TV (G) of the multiplication is identity on objects, while the 1-cells between the hom-
objects are induced by the isomorphisms given by the distributivity and identities G(C j,B)×·· ·×
G(A,C1) = G(C j,B)×·· ·×G(A,C1). The component ηG : G −→ TV (G) of the unit is identity on
objects and the 1-cells between the hom-objects are given by the natural morphisms G(A,B)→
∑ j∈N ∑(C1,...,C j)∈G j

0
G(C j,B)×·· ·×G(A,C1) which correspond to the “natural inclusions” for j = 0.

In this context, we denote by V -Cat the category of V -enriched categories (described in Section
2.1) w.r.t. the underlying cartesian category of V .

Lemma 2.7.2. Let V be a 2-category satisfying the properties above. The underlying category of the
2-category of strict 2-algebras TV -Alg

s
is equivalent to V -Cat.

Proof. This follows from a classical result that states that the enriched categories are the Eilenberg-
Moore algebras of the underlying monad of TV . See, for instance, [7].

Remark 2.7.3. We could consider the general setting of a 2-category V with a monoidal structure
which preserves (large) coproducts (see, for instance, [99]).

Corollary 2.7.4. The underlying category of the 2-category of strict 2-algebras TCat-Algs
is equiva-

lent to 2-Cat.
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Definition 2.7.5. [nCat] We define 2Cat := TCat-Algs
and Bicat := Ps-T -Alg. An icon is just a

2-cell of Bicat. More generally, we define

nCat := T(n−1)Cat-Algs
.

The 2-cells of nCat are called n-icons. Following this definition, icons are also called 2-icons and
1-icons are just natural transformations between functors.

Proposition 2.7.6. The underlying category of nCat is the category of n-categories and n-functors
n-Cat.

Remark 2.7.7. We say that an internal graph d : Gop→ m-Cat satisfies the n-coincidence property if,
whenever N ∋ r ≤ n, d(d1)(κ) = d(d0)(κ) for every r-cell κ of X .

If F,G : X → Y are m-functors, n > 1 and there is an m-icon α : F ⇒ G, then, in particular, the
pair (F,G) defines an internal graph

X
F //

G
// Y

in mCat (or m-Cat) that satisfies the (m−2)-coincidence property. For instance, if there is an icon
α : F ⇒ G between 2-functors (or pseudofunctors), then the internal graph defined by (F,G) satisfies
the 0-coincidence property: this means that F(κ) = G(κ) for any 0-cell (object) κ of X .

Definition 2.7.8. [Universal n-cell] For each n ∈ N, we denote by 2n the n-category with a nontrivial
n-cell κ̂ with the following universal property: if κ is an n-cell of an n-category X, then there is a
unique n-functor F : 2n→ X such that F(κ̂) = κ .

Remark 2.7.9. We have isomorphisms 21 ∼= 2 and 20 ∼= 1. Moreover, in general, 2n is an n-category
but we also denote by 2n the image of this n-category by the inclusion n-Cat→ (n+m)-Cat for
m≥ 1. Therefore, for instance, we can consider inclusions 2n→ 2n+m which are (n+m)-functors, i.e.
morphisms of (n+m)-Cat.

Of course, 2n has a unique nontrivial n-cell. This n-cell is denoted herein by κ̂n, or just κ̂ whenever
it does not cause confusion.

Theorem 2.7.10. Let F,G : 2n → Y be (n+ 1)-functors such that F(κ) = G(κ) for all m-cell κ ,
provided that m < n. There is a one-to-one correspondence between the (n+1)-cells F(κ̂) =⇒ G(κ̂)

of Y and (n+1)-icons F ⇒ G.

2.8 Higher Computads

Recall that a derivation scheme is a pair (d,d2) in which d2 is a discrete category and d : Gop→ Cat

is an internal graph with the same format of d-diagram (described in Section 2.4) satisfying the 0-
coincidence property. Roughly, the 2-category freely generated by a derivation scheme is the category
d(1) freely added with the 2-cells of d2 in the following way, for each α ∈ d2, we freely add a 2-cell

α : d(d1)(α,0→ 1)⇒ d(d0)(α,0→ 1).
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This construction is described in [106]. More precisely, it is constructed a 2-category F2-Der(d) with
the following universal property: a 2-functor G : F2-Der(d)→ X is uniquely determined by a pair
(G1,G2) in which G1 : d(1)→ X is a 2-functor (between categories) and G2 : d2→ 2-Cat(22,X) is a
2-functor (between discrete categories) satisfying the codomain and domain conditions, which means
that, given α ∈ d2, the 1-cell domain of G2(α) is equal to d(d1)(α,0→ 1) and the codomain of G2(α)

is equal to d(d0)(α,0→ 1).

Theorem 2.8.1. There is a functor F2-Der : Der→ 2-Cat which gives the 2-category freely generated
by each derivation scheme. Furthermore, for each derivation scheme (d,d2),

F2-Der(d)∼= I ∗d,

in which, by abuse of language, I ∗d denotes the coinserter in 2Cat of the internal graph d composed
with the inclusion Cat→ 2Cat.

Proof. An object of the inserter

2Cat(d(1),X)
//
// 2Cat(d2×2,X).

is a 2-functor G1 : d(1)→ X and an icon G1
(
d(d1)

)
⇒ G1

(
d(d0)

)
which means a 2-cell G2(α) for

each α ∈ d2 by Theorem 2.7.10 such that the 1-cell domain of G2(α) is equal to d(d1)(α,0→ 1) and
the codomain of G2(α) is equal to d(d0)(α,0→ 1). This proves that the coinserter is determined by
the universal properties of the 2-category freely generated by the derivation scheme of d.

We already can construct the 2-category freely generated by a computad. This is precisely the
2-category freely generated by its underlying derivation scheme. More precisely, there is an obvious
forgetful functor Cmp→Der and the functor F2 : Cmp→ 2-Cat is obtained from the composition of
such forgetful functor with F2-Der.

Definition 2.8.2. [2n] For each n ∈ N, of course, there are precisely two inclusions 2(n−1)→ 2n. This
gives an n-functor

In : G→ n-Cat, 2(n−1)
//
// 2n.

Definition 2.8.3. [Gn] Consider the usual forgetful functor (n+1)-Cat→ n-Cat. The image of 2(n+1)

by this forgetful functor is denoted by Gn.

Lemma 2.8.4. The internal graph of Definition 2.8.2 induces an n-functor 2(n−1)⨿2(n−1)→ 2n. The
pushout in n-Cat of this n-functor along itself is isomorphic to Gn.

Furthermore, there is an inclusion n-functor G(n−1)→ 2n induced by the counit of the adjunction
with right adjoint being n-Cat→ (n−1)-Cat. The pushout in n-Cat of this inclusion along itself is
isomorphic to Gn.

Definition 2.8.5. [Higher Derivation Schemes] Consider the functor (−×Gn−1) : SET→ (n−
1)-Cat,Y 7→Y×G. The category of derivation n-schemes is the comma category n-Der :=(−×Gn−1/IdCat).
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Remark 2.8.6. Of course, Der = 2-Der. Also, it is clear that the derivation n-scheme is just a pair
(d,d2) in which d2 is a discrete category and d : Gop→ (n−1)-Cat is an internal graph

d2×2(n−1)
//
// d(1)

satisfying the (n−2)-coincidence property.

We can define a forgetful functor Cn-Der : n-Cat→ n-Der where Cn-Der(X) : Gop→ (n−1)-Cat
is an internal graph (derivation scheme)

n-Cat(2n,X)×2(n−1)
//
// X

in which n-Cat(2n,X) denotes the set of n-functors 2n → X and, by abuse of language, X is the
underlying (n− 1)-category of X . This graph is obtained from the graph n-Cat[In−,X ] : Gop →
n-Cat: firstly, we compose each nontrivial morphism in the image of this graph with the inclusion
n-Cat(2n,X)→ n-Cat[2n,X ] (induced by the counit of the adjunction given by the inclusion and
underlying set) as follows:

Cat(2n,X) // n-Cat[2n,X ]
//
// n-Cat[2(n−1),X ]

and, then, we take the mates:

n-Cat(2n,X)×2(n−1)
//
// X . (Cn-Der(X)-diagram)

Finally, we compose this internal graph Gop→ n-Cat with the underlying functor n-Cat→ (n−1)-Cat.
The universal property that defines F2-Der is precisely the universal property of being left adjoint

to C2-Der, namely a morphism of derivation schemes G : d→ C2-Der(X) corresponds to a pair of
2-functors (G1,G2) with the universal property described in the proof of Theorem 2.8.1.

Theorem 2.8.7. There is an adjunction F2-Der ⊣ C2-Der. More generally, there is an adjunction
Fn-Der ⊣ Cn-Der in which Fn-Der(d) := I ∗d where, by abuse of language, I ∗d denotes the coin-
serter in nCat of the derivation n-scheme d :Gop→ (n−1)-Cat with the inclusion (n−1)-Cat→ nCat.

Proof. Similarly to the proof of Theorem 2.8.1, this result follows from the universal property of the
coinserter and from Theorem 2.7.10.

Proposition 2.8.8. In this proposition, we denote by In the functor In : G→ n-Cat composed with
the isomorphism Gop→G. In this case, In is itself a higher derivation scheme. Then F(n+1)-Der(In)

is isomorphic to 2(n+1).

Remark 2.8.9. The inclusion Cmp→Der has a right adjoint (−)Cmp : Der→ Cmp such that, given a
derivation scheme d : d2×G→ X , (d)Cmp is the pullback comp∗X(d) in Cat of the morphism d along
compX . It is clear that this adjunction is induced by the adjunction F1 ⊣ C1.

Theorem 2.8.10. There is an adjunction F2 ⊣ C2 such that F2 : Cmp 2-Cat gives the 2-category
freely generated by each computad. More precisely, given a computad g : Gop→ Cat in the format of
the d-diagram, F2(g) is the coinserter in 2Cat of g composed with the inclusion Cat→ 2Cat.
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Proof. It is enough to define the adjunction F2 ⊣C2 as the composition of the adjunctions−⊣ (−)Cmp

and F2-Der ⊣ C2-Der.

Definition 2.8.11. [n-computads] For each n∈N, consider the functor (−×Gn) : SET→ n-Cat,Y 7→
Y ×Gn. The category of (n+1)-computads is defined by the comma category

(n+1)-Cmp := (−×Gn/Fn)

in which Fn is the composition of the inclusion n-Cmp→ n-Der with Fn-Der.

Remark 2.8.12. By Lemma 2.8.4, it is easy to see that an n-computad is just a triple (g,g2,G) in
which g2 is a discrete category, G is a (n− 1)-computad and g : Gop → (n− 1)-Cat is an internal
graph

g2×2(n−1)
//
// F(n−1)(G) (n-computad diagram)

satisfying the (n−2)-coincidence property. Or, more concisely, by Remark 2.8.6, an n-computad is
just a derivation n-scheme (g,g2) with a (n−1)-computad G such that g(1) = F(n−1)(G).

Theorem 2.8.13 (Freely Generated n-Categories). For each n ∈ N, there is a functor Fn : n-Cmp→
n-Cat such that, given an n-computad as in the n-computad diagram, Fn(g) is given by the coinserter
in nCat of g : Gop→ (n−1)-Cat composed with the inclusion (n−1)-Cat→ nCat. This functor is left
adjoint to a functor Cn : n-Cat→ n-Cmp which gives the underlying n-computad of each n-category.

Proof. Of course, Fn coincides with the functor Fn of Definition 2.8.11. We prove by induction
that Fn is left adjoint. It is clear that F1 ⊣ C1. We assume by induction that we have an adjunction
Fm ⊣ Cm.

We have that Fm ⊣ Cm induces an adjunction (−) ⊣ (−)(m+1)-Cmp in which the left adjoint is the
inclusion m-Cmp→m-Der similarly to what is described in Remark 2.8.9. That is to say, (d)(m+1)-Cmp

is the pullback of d along the component of the counit of Fm ⊣ Cm on d(1).
Finally, we compose the adjunction F(m+1)-Der ⊣C(m+1)-Der with the adjunction (−)⊣ (−)(m+1)-Cmp

to get the desired adjunction F(m+1) ⊣ C(m+1).

An n-category X is a free n-category if there is an n-computad g : Gop→ (n−1)-Cat such that
Fn(g)∼= X .

Definition 2.8.14. Let g = (g,g2,G) be an n-computad. The objects of g2 are called n-cells of g,
while, whenever n≥ m > 0, an (n−m)-cell of g is an (n−m)-cell of the (n−1)-computad G. In this
context, we use the following terminology for graphs in Grph: the 0-cells of a graph are the objects
and its 1-cells are the arrows.

Similarly to the 2-dimensional case, we denote an n-cell by ι : α =⇒ α ′ if g(d0)(α, κ̂) = α ′ and
g(d1)(α, κ̂) = α .

Remark 2.8.15. For each n∈N such that n> 1, there is a forgetful functor un : n-Cmp→ (n−1)-Cmp,
(g,g2,G) 7→ G. This forgetful functor has a left adjoint in : (n−1)-Cmp→ n-Cmp such that

in(g) : /0×2(n−1)
//// F(n−1)(g)
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and a right adjoint σn : (n−1)-Cmp→ n-Cmp, defined by σn(G) = (Gσn ,Gσn
2 ,G) in which there is

precisely one n-cell ι(α,α ′) : α =⇒ α ′ for each ordered pair (α,α ′) with same domain and codomain
of F(n−1)(G). Actually, it should be observed that the description of these functors are similar to
those given in Remark 2.4.15.

2.9 Freely Generated 2-Categories

Recall the adjunction ECmp ⊣RCmp in which ECmp : Cmp→ RCmp is the inclusion (see Definition
2.4.1). We also can consider the 2-category freely generated by computad over a reflexive graph.
More precisely, given a computad g of RCmp, FR

2 (g) is the coinserter of g : Gop→ 2Cat. It is clear
that FR

2 is left adjoint to a forgetful functor C R
2 . Moreover, RCmpC

R
2
∼= C2 and FR

2 ECmp
∼= F2.

In this section, following our approach of the 1-dimensional case, we give some results relating
free 2-categories with locally thin categories and locally groupoidal categories. In order to do so, we
also consider the (strict) concept of (2,0)-category given in Definition 2.9.6 and the (2,0)-category
freely generated by a computad which provides a way of studying some elementary aspects of free
2-categories. We start by giving some sufficient conditions to conclude that a 2-category is not free.

Remark 2.9.1. [Length [106]] Recall that σ2 : Grph→ Cmp is right adjoint and⃝ is the terminal
graph in Grph. Therefore σ2(⃝) : Gop→ Cat is the terminal computad. If g is a computad, the length
2-functor is defined by ℓg := F2(g→ σ2(⃝)). It should be noted that ℓg reflects identity 2-cells.

The 2-category F2σ2(⃝) is described in [106]. The unit of the adjunction F2 ⊣ C2 induces a
morphism of computads σ2(⃝)→ C2F2σ2(⃝). The image of the 2-cells of σ2(⃝) are called herein
simple 2-cells. If α is a composition in F2σ2(⃝) of a simple 2-cell with (only) 1-cells (identity
2-cells), α is called a whiskering of a simple 2-cell. It is clear that every 2-cell of σ2(⃝) is given by
successive vertical compositions of whiskering of simple 2-cells. It is also easy to see that σ2(⃝)

does not have nontrivial invertible 2-cells.
The counit of the adjunction F2 ⊣ C2 induces a 2-functor pastX : F2C2(X)→ X for each 2-

category X , called pasting.

Remark 2.9.2. Similarly to the 1-dimensional case, the terminal reflexive computad of Rcmp is the
computad with only one 0-cell, the trivial 1-cell and only one 2-cell. That is to say, the computad
G→FR

1 (•) which is the unique functor between G and the terminal category FR
1 (•). If h is a

subcomputad of g in Rcmp, we denote by g/h the pushout of the inclusion h→ g along the unique
morphism of reflexive computads between h and the terminal reflexive computad in Rcmp.

As a particular case of Proposition 2.9.3, if a 2-category X has a nontrivial invertible 2-cell, then
X is not a free 2-category. Consequently, any locally thin 2-category that has a nontrivial invertible
2-cell is not a free 2-category.

Proposition 2.9.3. Let α be an invertible 2-cell of a 2-category X in 2-Cat. If we can write α as
pasting of 2-cells in which at least one of the 2-cells is nontrivial, then X is not free.

Proof. Let α be a pasting of 2-cells in F2(g). We have that ℓg(α) is a pasting of 2-cells of F2σ2(⃝)

with at least one nontrivial 2-cell. Therefore ℓg(α) is not identity and, hence, α is not invertible.
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Recall that there is an adjunction M2 ⊣M2 which induces a monad M2, in which M2 : Prd-Cat→
2-Cat is the inclusion.

Corollary 2.9.4. Let X be a 2-category in 2-Cat. Assume that β : f ⇒ g is a 2-cell of X such that
f ̸= g. If the pasting of β with another 2-cell is a 2-cell α : h⇒ h, then M2(X) is not a free 2-category.

Proof. The unit of the monad M2 gives, in particular, a 2-functor X →M2(X). Therefore, the image
of α : h⇒ h by this 2-functor is also the pasting of a nontrivial 2-cell with other 2-cells, but, since
M2(X) is locally thin, α is the identity. Therefore M2(X) is not free by Proposition 2.9.3.

Proposition 2.9.5. Consider the computad g∆̇2 : Gop→ Cat defined in Example 2.4.7. The locally
thin 2-category M2F2(g

∆̇2) is not a free 2-category. In particular, F2(g
∆̇2) and L2F2(g

∆̇2) are not
locally thin.

Proof. Since M2F2(g
∆̇2) is locally thin, we conclude that:

0
d //

d

��

1

d1

��

n1⇐==

0

d

��

= d

��

ϑ⇐== =

1
d0

//

n0⇐==

2

s0

��
1 1

(identity descent diagram)

Therefore, by Corollary 2.9.4, the proof is complete.

If a 2-category X is locally groupoidal and free, then every 2-cell of X is identity. Hence, in this
case, X is locally discrete, that is to say, it is a free 1-category.

We call M2F2(g) the locally thin 2-category freely generated by g. But we often consider such a
2-category as an object of 2-Cat, that is to say, we often consider M2F2(g).

Definition 2.9.6. [(n,m)-Categories] If m < n, an (n,m)-category X is an n-category of n-Cat such
that, whenever n≥ r > m, all r-cells of X are invertible. The full subcategory of n-Cat consisting of
the (n,m)-categories is denoted by (n,m)-Cat.

For instance, groupoids are (1,0)-categories and locally groupoidal categories are (2,1)-categories.
The adjunction L1 ⊣ U1 also induces an adjunction L(2,0) ⊣ U(2,0) in which U(2,0) : (2,0)-Cat→
2-Cat is the inclusion. Thereby, given a computad g of Cmp, we can consider the locally groupoidal
2-category L2F2(g) freely generated by the computad g, as well as the (2,0)-category L(2,0)F2(g)

freely generated by g.
Sometimes, we denote L(2,1) := L2 and U(2,1) := U(2,1).

Remark 2.9.7. Let X be a (2,0)-category of (2,0)-Cat and assume that Y is a sub-2-category of X .
We denote by X/Y the pushout of the inclusion Y → X along the unique 2-functor between Y and
the terminal 2-category. If Y is locally discrete and thin (that is to say, a thin category), then X/Y is
isomorphic to X .
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Definition 2.9.8. A 2-category X satisfies the (2,1)-cancellation law if it satisfies the cancellation
law w.r.t. the vertical composition of 2-cells (that is to say, it satisfies the cancellation law locally).

A 2-category X satisfies the (2,0)-cancellation law if it satisfies the (2,1)-cancellation law and,
whenever X has 1-cells f ,g and 2-cells α,β such that id f ∗α ∗ idg = id f ∗β ∗ idg , α = β .

It is clear that, if a 2-category X satisfies the (2,0)-cancellation law, in particular, the underlying
category of X satisfies the cancellation law. Moreover, every (2,1)-category satisfies the (2,1)-
cancellation law and every (2,0)-category satisfies the (2,0)-cancellation law.

Finally, the components of the units of the adjunctions L2 ⊣U2 and L(2,0) ⊣U(2,0) are locally
faithful on 2-categories satisfying respectively the (2,1)-cancellation law and the (2,0)-cancellation
law. Thereby:

Theorem 2.9.9. Let X be a 2-category. If X satisfies the (2,1)-cancellation law and L2(X) is locally
thin, then X is locally thin as well. Analogously, if X satisfies the (2,0)-cancellation law and L(2,0)(X)

is locally thin, then X is locally thin as well

Corollary 2.9.10. Let g be an object of Cmp. Consider the following statements:

(a) L(2,0)F2(g) is locally thin;

(b) L2F2(g) is locally thin;

(c) F2(g) is locally thin.

We have that (a) implies (b) implies (c).

Proof. It is clear that F2(g) and L2F2(g) satisfies the (2,0)-cancellation law. Therefore we get the
result by Theorem 2.9.9.

Definition 2.9.11. A 2-category X satisfies the underlying terminal property or u.t.p. if the underlying
category of X is the terminal category.

On one hand, by the Eckman-Hilton argument, given any small 2-category X with only one
object ∗, the vertical composition of 2-cells id⇒ id coincides with the horizontal one and they
are commutative. Therefore, in this context, the set of 2-cells id⇒ id endowed with the vertical
composition is a commutative monoid, denoted by Ω2(X) := X(∗,∗)(id, id).

On the other hand, given a commutative monoid Y , the suspension Σ(Y ) is naturally a monoidal
category (in which the monoidal structure coincides with the composition). This allows us to consider
the double suspension Σ2(Y ) which is a 2-category satisfying u.t.p. and the set of 2-cells id⇒ id
is the underlying set of Y , while the vertical and horizontal compositions of Σ2(Y ) are given by the
operation of Y . More precisely, there is a fully faithful functor

Σ
2 : AbGroup→ (2,1)-cat

between the category of abelian groups and the category of small locally groupoidal 2-categories
which is essentially surjective on the full subcategory of 2-categories satisfying u.t.p. such that
Ω2Σ2 ∼= IdAbGroup.

If (g,g2,G) is a small 2-computad in which G = •E is the connected graph without arrows, then
L(2,0)F2(g,g2,G) is isomorphic to the double suspension of a free abelian group.
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Theorem 2.9.12. If (g,g2,•) is a small reflexive computad, then L(2,0)F
R
2 (g) ∼= L2FR

2 (g) ∼=
Σ2π2(FTop2

(g)).

Proof. Since FR
1 (•) is the terminal category, Ω2

(
L2FR

2 (g)
)

is the abelian group freely generated
by the set g2 that is also isomorhic to π2(FTop2

(g)).
To complete the proof, it is enough to observe that L(2,0)(X)∼= L2(X) whenever X does not have

nontrivial 1-cells.

We say that a computad g is 1-connected if FTop2
(g) is simply connected. By Corollary 2.6.8, a

computad g is 1-connected if and only if L1P1(g) is connected and thin.

Definition 2.9.13. [ f .c.s.] Let g= (g,g2,G) be a computad of Rcmp with only one 0-cell and let h
be a subcomputad of g.

We call gb := h a full contractible subcomputad of g or, for short, f .c.s. of g, if L(2,0)F
R
2 (gb)

has a unique 2-cell f ⇒ id or a 2-cell id⇒ f for each 1-cell f of g. In particular, if gb is an f .c.s. of
g, gb has every 1-cell of g.

It should be noted that, if gb is an f .c.s. of g, we are already assuming that g is an object of Rcmp.

There are small (reflexive) computads with only one 0-cell and no full contractible subcomputad.
For instance, consider the computad x with two 1-cells f ,g and with 2-cells α : g f ⇒ id and β : id⇒ g.
The number of 2-cells of any subcomputad belongs to {0,1,2}. It is clear that the subcomputads with
only one 2-cell are not full contractible subcomputads. It remains to prove that the whole computad is
not an f .c.s. of itself. Indeed, the 2-cells id

g−1 ∗ (β ·α) and α ·
(
β ∗ id f

)
below are both 2-cells f ⇒ id

of L(2,0)F
R
2 (x).

∗

β

==⇒

f // ∗ ∗
α

==⇒ β

==⇒ g

rr

g f

,,α

==⇒ ∗
g−1

��
∗

id
//

g

\\

∗

id

OO

∗

Theorem 2.9.14. If gb is an f .c.s., then the 2-categories FR
2 (gb), L2FR

2 (gb) and L(2,0)F
R
2 (gb)

are locally thin.

Proposition 2.9.15. If gb = (gb,gb2,G) is an f .c.s., then FR
Top2

(gb) is contractible. In particular, it is
simply connected and, hence, gb is 1-connected.

Proof. It is enough to see that FR
Top2

(gb) is a wedge of (closed) balls.

Theorem 2.9.16. Assume that gb is an f .c.s. of (g,g2,G). The following statements are equivalent:

– L(2,0)F
R
2
(
g/gb

)
is locally thin;

– L(2,0)F
R
2 (g) is locally thin;

– L2FR
2 (g) is locally thin;
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– FR
2 (g) is locally thin.

Proof. g/gb is the computad (h,h2,•) in which h2 = g2−gb2. Therefore L(2,0)F
R
2
(
g/gb

)
is locally

thin if and only if g2 = gb2, which means that g= gb. Since L(2,0)F
R
2 (gb) is locally thin, the proof is

complete.

Let g= (g,g2,G) be a small connected computad of Rcmp. Assume that Gmtree is a maximal tree
of G. We have that the computad

g2×2 //// FR
1 (G) // FR

1 (G/Gmtree)

obtained from the composition of the morphisms in the image of g with the natural morphism
FR

1 (G)→FR
1 (G/Gmtree) is the pushout of the mate of the inclusion Gmtree → uR

2 (g) under the
adjunction iR2 ⊣ uR

2 along the unique functor between iR2 (Gmtree) and the terminal reflexive computad.
That is to say, it is the quotient g/iR2 (Gmtree).

Definition 2.9.17. [ f .c.s. triple] We say that (g,Gmtree,h
b) is an f .c.s. triple if g is a small connected

reflexive computad, Gmtree is a maximal tree of the underlying graph of g and hb is an f .c.s. of
g/iR2 (Gmtree). In this case, we denote by ȟb the reflexive computad(

g/iR2 (Gmtree)
)
/hb.

Corollary 2.9.18. Let (g,Gmtree,h
b) be an f .c.s. triple. The (2,0)-category L(2,0)F

R
2 (g) is locally

thin if and only if L(2,0)F
R
2 (ȟb) is locally thin.

Proof. By Remark 2.9.7, L(2,0)F
R
2 (g/iR2 (Gmtree)) is locally thin if and only if L(2,0)F

R
2 (g) is

locally thin. By Theorem 2.9.16, the former is locally thin if and only if L(2,0)F
R
2 (ȟb) is locally

thin.

As a consequence of Corollary 2.9.18 and Theorem 2.9.12, we get:

Corollary 2.9.19. Let (g,Gmtree,h
b) be an f .c.s. triple. The (2,0)-category L(2,0)F

R
2 (g) is locally

thin if and only if π2FR
Top2

(g) is trivial.

Proof. By Theorem 2.9.12, L(2,0)F
R
2 (ȟb) is isomorphic to Σ2π2FR

Top2
(ȟb). Therefore, by Corollary

2.9.18 we conclude that L(2,0)F
R
2 (g) is locally thin if and only if Σ2π2FR

Top2
(ȟb) is trivial.

To complete the proof, it remains to prove that π2FR
Top2

(ȟb)∼= π2FR
Top2

(h). Indeed, since FR
Top2

preserves colimits and the terminal reflexive computad, we get that

FR
Top2

(g/iR2 (Gmtree))∼= FR
Top2

(g)/FR
Top2

iR2 (Gmtree)

and, since FR
Top2

iR2 (Gmtree)→FR
Top2

(g) is a cofibration which is an inclusion of a contractible space,
we conclude that FR

Top2
(g/iR2 (Gmtree)) has the same homotopy type of FR

Top2
(g). Analogously, we

conclude that FR
Top2

(ȟb) has the same homotopy type of FR
Top2

(g/iR2 (Gmtree)), since FR
Top2

(hb)→
FR

Top2
(g/iR2 (Gmtree)) is a cofibration which is an inclusion of a contractible space.
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Remark 2.9.20. The study of possible higher dimensional analogues of the isomorphisms given in
Remark 2.5.10 and in Theorem 2.5.11 would depend on the study of notions of higher fundamental
groupoids, higher homotopy groupoids and higher van Kampen theorems [12, 13, 38]. This is outside
of the scope of this paper.

2.10 Presentations of 2-categories

As 2-computads give presentations of categories with equations between 1-cells, (n+1)-computads
give presentations of n-categories with equations between n-cells. Contrarily to the case of presenta-
tions of categories via computads, it is clear that, for n > 1, there are n-categories that do not admit
presentations via (n+1)-computads.

Definition 2.10.1. [Presentation of n-categories via (n+ 1)-computads] Given n ∈ N, an (n+ 1)-
computad g : Gop → n-Cat as the n-computad diagram of 2.8.12 presents the n-category X if the
coequalizer of g in n-Cat is isomorphic to X . There is a functor Pn : (n+1)-Cmp→ n-Cat which,
for each (n+1)-computad g, gives the category Pn(g) presented by g.

The underlying (n− 1)-category of every n-category that admits a presentation via a (n+ 1)-
computad is a free (n−1)-category. Thereby:

Proposition 2.10.2. Let X be an n-category in n-Cat. If the underlying (n−1)-category of X is not
free, then X does not admit a presentation via an (n+1)-computad.

In this section, as the title suggests, our scope is restricted to presentations of 2-categories.
Similarly to the 1-dimensional case, we are mainly interested on presentations of locally thin 2-
categories, (2,1)-categories or (2,0)-categories.

We consider (reflexive) small (2,0)-categorical and (2,1)-categorical (reflexive) small 3-computads
which are 3-dimensional analogues of groupoidal computads, called respectively (3,0,R)-computads
and (3,1,R)-computads. More precisely, for each m ∈ {0,1}, we define the category of (3,m,R)-
computads by the comma category (3,2,m)-Rcmp := (−×L(2,m)(G2)/L(2,m)F

R
2 ) in which

(−×L(2,m)(G2)) : Set→ (2,m)-cat, Y 7→ Y ×L(2,m)(G2).

Whenever 2 > m ≥ 0, we have a functor PR
(2,m) : (3,2,m)-Rcmp→ (2,m)-cat that gives the

(2,m)-category presented by each (3,2,m,R)-computad. More precisely, for each 2 > m ≥ 0, a
(3,2,m,R)-computad is a functor g : Gop→ (2,m)-cat

g2×L(2,m)(22)
//
// L(2,m)F

R
2 (G) ((3,2,m,R)-computad diagram)

and PR
(2,m)(g) is the coequalizer of g in (2,m)-cat. For short, by abuse of language, by i3 the functors

Rcmp→ (3,2,m)-Rcmp induced by i3.

Theorem 2.10.3. Assume that Gb is an f .c.s. of the small reflexive 2-computad G. If (g,g2,G) is a
small (3,2,0,R)-computad, then the following statements are equivalent:

– PR
(2,0)

(
g/i3(Gb)

)
is locally thin;
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– PR
(2,0) (g) is locally thin.

Proof. We have that PR
(2,0)i3(G

b)∼= L(2,0)F2(Gb) is locally thin. Therefore

PR
(2,0) (g) and PR

(2,0)

(
g/i3(Gb)

)
∼= PR

(2,0) (g)/P
R
(2,0)

(
i3(Gb)

)
are biequivalent. Thereby the result follows.

In the setting of the result above, since we are assuming that the 2-computad G has only one 0-cell,
we get that there is a (3,2,0,R)-computad (g,g2,G) such that |g2| is precisely the number of 2-cells
of G/Gb and PR

(2,0) (g) is locally thin.

Theorem 2.10.4. Assume that Gb is an f .c.s. of a 2-computad G in Rcmp. There is a (3,2,0,R)-
computad (g,g2,G) such that g2 = G2−Gb

2 and PR
(2,0) (g) is locally thin. In other words, g presents

the locally thin (2,0)-category M2 L(2,0)F
R
2 (G) freely generated by G.

Proof. Recall, by Theorem 2.9.16, that we can consider that (G/Gb)2 = G2−Gb
2. Also, by hypothesis,

for each nontrivial 1-cell f of G, L(2,0)F
R
2 (Gb) has a unique 2-cell β f : f ⇒ id or β f : id⇒ f .

We define the (3,2,0,R)-computad (g,g2,G)

g2×L(2,0)(22)
//
// L(2,0)F

R
2 (G).

For each α ∈ g2 = G2−Gb
2, we put g(d1)(α, κ̂) := α : f ⇒ g and g(d0)(α, κ̂) := α̇ in which α̇ is the

composition of (possibly the inverse) of β f and (possibly the inverse) of βg in L(2,0)F
R
2 (G), that is

to say, in other words, α̇ is the unique 2-cell with same domain and codomain of α in L(2,0)F
R
2 (Gb).

It is clear that PR
(2,0)

(
g/i3(Gb)

)
is locally thin. Therefore the result follows from Theorem

2.10.3.

Corollary 2.10.5. Let (G,T,Hb) be an f .c.s. triple. There is a (3,2,0,R)-computad (h,h2,G) such
that h2 = Ȟb2 = G2−Hb

2 = (G/T)2−Hb
2 and PR

(2,0) (h) is locally thin.

Proof. We denote G/iR2 (T) by H. Consider the (3,2,0,R)-computad g= (g,g2,H) as constructed
in Theorem 2.10.4. Since each 2-cell of H corresponds to a unique 2-cell of G, we can lift g to a
(3,2,0,R)-computad (g,g2,G). We get this lifting (g,g2,G)

g2×L(2,0)(22)
//
// L(2,0)F

R
2 (H) // L(2,0)F

R
2 (G)

after composing each morphism in the image of g with L(2,0)F
R
2 (H)≃L(2,0)F

R
2 (G). Moreover,

since
PR

(2,0) (g)
∼= PR

(2,0)

(
h/i3iR2 (T)

)
∼= PR

(2,0) (h)/P
R
(2,0)

(
i3iR2 (T)

)
is locally thin, the result follows from Remark 2.9.7.

Analogously to Definition 2.6.21, we have:

Definition 2.10.6. [Lifting of 3-Computads] We denote by (3,2,1)-Rcmplift the pseudopullback (iso-
comma category) of PR

(2,0) along L(2,0)U(2,1)P
R
(2,1). A (3,2,1,R)-computad g is called a lifting of
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the (3,2,0,R)-computad g′ if there is an object ζ
g
g′ of (3,2,1)-Rcmplift such that the images of this

object by the functors

(3,2,1)-Rcmplift→ (3,2,0)-Rcmp, (3,2,1)-Rcmplift→ (3,2,1)-Rcmp

are respectively g′ and g. Analogously, we say that a (reflexive) 3-computad h is a lifting of a
(3,2,m,R)-computad h′ if L(2,m)U(2,m)P

R
(2,m)(h

′)∼= PR
2 (h).

Proposition 2.10.7. If a (3,2,1,R)-computad g is a lifting of a (3,2,0,R)-computad g′ such that
PR

(2,0)(g
′) is locally thin, then PR

(2,1)(g) is locally thin provided that PR
(2,1)(g) satisfies the (2,0)-

cancellation law.
Analogously, if a 3-computad h is a lifting of a (3,2,m,R)-computad h′ and PR

(2,m)(h
′) is locally

thin, then PR
2 (h) is locally thin provided that PR

2 (g) satisfies the (2,m)-cancellation law.

Proof. By hypothesis, PR
(2,1)(g)

∼=L(2,0)U(2,1)P
R
(2,1)(g) and U(2,1)P

R
(2,1) satisfies the (2,0)-cancellation

law. Therefore PR
(2,1)(g) is locally thin.

2.10.8 The bicategorical replacement of the truncated category of ordinals

In [77–79], we consider 2-dimensional versions of the subcategory ∆̇′3 of ∆̇3. For instance, the
bicategorical replacement of the category ∆̇′3. Here, we study the presentations of this locally
thin (2,1)-category, including the application of our results to the presentation of the bicategorical
replacement of ∆̇2. Following the terminology of [79] (which is Chapter 3), we have:

Definition 2.10.9. The 2-computad ḋStr = (g∆̇3 ,g∆̇3
2 ,G

∆̇3
) is defined by the graph

0
d // 1

d0
//

d1
//
2s0oo

∂ 0
//

∂ 1 //

∂ 2
//
3

with the 2-cells:
σ01 : ∂

1d0⇒ ∂
0d0

σ02 : ∂
2d0⇒ ∂

0d1

σ12 : ∂
2d1⇒ ∂

1d1

n0 : s0d0⇒ id1

n1 : id1 ⇒ s0d1

ϑ : d1d⇒ d0d

We denote by ∆̇Str the locally thin (2,1)-category M2 L2F2(ḋStr) freely generated by the 2-computad
ḋStr . We also define the subcomputad dStr of ḋStr such that ∆Str = M2 L2F2(dStr) is the full sub-2-
category of ∆̇Str and obj(∆Str) = {1,2,3}.

Lemma 2.10.10. Let g∆2 = (g∆2 ,g∆2
2 ,G∆2) be the full subcomputad of ḋStr defined by

1

d0
//

d1
//
2s0oo

with the 2-cells: n0 : s0d0 ⇒ id1 , n1 : id1 ⇒ s0d1. The (2,0)-category freely generated by g∆2 is
locally thin. In particular, the full sub-2-category ∆Str2

:= M2 L2F2
(
g∆2
)

of the 2-category ∆̇Str is
isomorphic to L2F2

(
g∆2
)
.
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Proof. We should prove that L(2,0)F2(g
∆2) is locally thin. By abuse of language, we denote by

Ecmp(g
∆2) the 2-computad g∆2 . We, then, take the maximal tree of the underlying graph of g∆2 defined

by 2
s0

→ 1 and denote it by Gs0 .
By Remark 2.9.7, L(2,0)F

R
2
(
g∆2/iR2 (Gs0)

)
is locally thin if and only if L(2,0)F

R
2
(
g∆2
)

is

locally thin. The quotient g∆2/iR2 (Gs0) is a computad with 1-cells d̃0, d̃1 and 2-cells ñ0 : d̃0⇒ id and
ñ1 : id⇒ d̃1. It is clear, then, that g∆2/iR2 (Gs0) is an f .c.s of itself. Thereby the proof is complete.

Furthermore, the full sub-2-category ∆Str of ∆̇Str is a free (2,1)-category as proved in:

Theorem 2.10.11 (∆Str). There is an isomorphism of 2-categories ∆Str
∼= L2F2(dStr).

Proof. Since ∆Str2
is a full sub-2-category and locally thin, it is enough to prove that ∆Str(1,3) and

∆Str(2,3) are thin.
It is clear that the nontrivial 2-cells of ∆Str(1,3) are horizontal compositions of 2-cells of ∆Str(1,1)

with σ01, σ02 and σ12. More precisely, the set of nontrivial 2-cells of ∆Str(1,3) is equal to

{σ01 ∗α,σ02 ∗α,σ12 ∗α|(α : f ⇒ g : 1→ 1) ∈ ∆Str(1,1)} .

This proves that ∆Str(1,3) is thin. Moreover, since the set of 2-cells of ∆Str(2,1) = ∆Str2
(2,1) is

equal to
{

α ∗ id
s0 |(α : f ⇒ g : 1→ 1) ∈ ∆Str(1,1)

}
, it follows that the set of 2-cells of ∆Str(2,3) is

equal to
{

β ∗ id
s0 |(β : f ⇒ g : 1→ 3) ∈ ∆Str(1,3)

}
. Since we already proved that ∆Str(1,3) is thin,

we conclude that ∆Str(2,3) is thin. Hence, as ∆Str(3,2) is the initial (empty) category, the proof is
complete.

As proved in Proposition 2.9.5, L2F2(g
∆̇2) is not locally thin. We prove below that ∆̇Str2

:=

M2 L2F2(g
∆̇2) can be presented by a 3-computad with only one 3-cell that corresponds to the

equation given in the identity descent diagram.

Theorem 2.10.12 (∆̇Str2
). The 3-computad h∆̇2 defined by the 2-computad g∆̇2 with only the 3-cell

0
d //

d

��

1

d1

��

n1⇐== ====⇒

0

d

��

= d

��

ϑ⇐==

1
d0

//

n0⇐==

2

s0

��
1 1

(identity descent 3-cell)

presents the locally thin (2,1)-category ∆̇Str2
. In other words, L2 P2(h

∆̇2)∼= ∆̇Str2
.

Proof. By abuse of language, we denote Ecmp(g
∆̇2) by g∆̇2 . We denote by T the maximal tree

0
d // 1 2

s0
oo
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of the underlying graph of g∆̇2 .

The (reflexive) 2-computad g∆̇2/iR2 (T) is defined by the 1-cells d̃0, d̃1 and 2-cells ϑ̃ : d̃1⇒ d̃0,
ñ0 : d̃0 ⇒ id and ñ1 : id⇒ d̃1, while the 2-computad g∆̇2

f cs := g∆2/iR2 (Gs0), defined in the proof of

Lemma 2.10.10, is an f .c.s. of g∆̇2/iR2 (T).

By the proof of Theorem 2.10.4, we get a presentation of M2 L(2,0)F
R
2 (g∆̇2/iR2 (T)) by a

(3,2,0,R)-computad j′ such that j′2 = g∆̇2
2 − g∆̇2

f cs2
. This (3,2,0,R)-computad is defined by the

2-computad g∆̇2/iR2 (T) with the 3-cell ϑ̃ =⇒ ñ0
−1 · ñ1

−1.

Thereby U(2,0)P
R
(2,0)(h

′)∼= M2 L(2,0)F
R
2 (g∆̇2/iR2 (T)). Furthermore, by Corollary 2.10.5, com-

posing each morphism in the image of j′ with the equivalence

L(2,0)F
R
2 (g∆̇2)∼= L(2,0)F

R
2 (g∆̇2/iR2 (T)),

we get a (3,2,0,R)-computad j which presents M2 L(2,0)F
R
2 (g∆̇2). This (3,2,0,R)-computad j is

defined by the 2-computad g∆̇2 with the 3-cell

id
s0 ∗ϑ =⇒

(
n−1

0 ·n
−1
1

)
∗ idd .

It is clear that the (reflexive) computad g∆̇2 together with the identity descent 3-cell define
a (reflexive) 3-computad h′ which is a lifting of j. Since L2PR

2 (h) clearly satisfies the (2,0)-
cancellation law, this completes the proof.

Theorem 2.10.13 (∆̇Str). The 3-computad h∆̇ defined by the 2-computad g∆̇2 with the 3-cell identity
descent 3-cell and the 3-cell below

0
d //

d
��

ϑ

=⇒

1

d0

��

d0
//

σ01==⇒

2

∂ 0

��
===⇒

3

σ02==⇒

2
∂ 0
oo

ϑ

=⇒

2

1 d1 //

d1

��
σ12==⇒

2 ∂ 1 // 3

id
3

��

2

ϑ

=⇒

∂ 2

OO

1d0oo

d1

OO

2
∂ 2

// 3 1

d1

OO

0
d
oo

d

OO

d
// 1

d0

OO (associativity descent 3-cell)

presents the locally thin (2,1)-category ∆̇Str . That is to say, L2 P2(h
∆̇)∼= ∆̇Str .

Proof. Recall that ∆̇Str2
→ ∆̇Str is a full inclusion of a locally thin 2-category and ∆̇Str(3,n) is thin for

any object n of ∆̇Str . Hence it only remains to prove that ∆̇Str(0,3) is thin.

Since the set of 2-cells of ∆̇Str(0,2) is given by

{ϑ}∪
{

id
di ∗α|i ∈ {0,1} and (α : f ⇒ g : 0→ 1) ∈ ∆Str(0,1)

}
,

we conclude that ∆̇Str(0,3) is the thin groupoid freely generated by the graph S defined by the
morphisms 0→ 3 as objects and the set of arrows (2-cells) T∪T′ in which

T′ :=
{

σi j ∗α|i, j ∈ {0,1} , i < j and (α : f ⇒ g : 0→ 1) ∈ ∆Str(0,1)
}
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and T :=
{

σi j ∗ idd |i, j ∈ {0,1} and i < j
}
∪{id∂ i ∗ϑ |i ∈ {0,1,2}}.

We consider the full subgraph of S with objects in the set

O=
{

∂
i ·d j ·d|i, j ∈ {0,1,2} and j ̸= 2

}
.

The set of arrows of S is precisely T and, by abuse of language, we also denote the graph by T.
The set of the arrows (2-cells) T′ defines a subgroupoid of ∆̇Str(0,3), also denoted by T′.

Since ∆̇Str(0,1) is thin, it is clear that T′ is thin. Moreover, it is clear that T′ is the coprod-
uct of T′12, T′02 and T′01 which are respectively the subgroupoids defined by the sets of 2-cells
{σ12 ∗α|(α : f ⇒ g) ∈ ∆Str(0,1)}, {σ02 ∗α|(α : f ⇒ g) ∈ ∆Str(0,1)} and {σ01 ∗α|(α : f ⇒ g) ∈ ∆Str(0,1)}.
In particular, there is not any 2-cell in T′ between any object of T′i j and any object T′xy when-
ever (i, j) ̸= (x,y). For instance, there is no arrows (2-cells) f ⇒ ∂ 2 · d1 · d, g⇒ ∂ 2 · d0 · d ⇒ and
h⇒ ∂ 1 ·d0 ·d⇒ in T for every f ,g,h objects of T such that f is outside T′12, g is outside T′02 and h
is outside T′01.

Therefore, it is enough to study the thin groupoid freely generated by T. More precisely, we have
only to observe that the equation given by the 3-cell associativity descent 3-cell indeed presents the
thin groupoid freely generated by the graph:

∂ 0 ·d0 ·d ∂ 0 ·d1 ·d
id

∂0∗ϑoo

∂ 1 ·d0 ·d

σ01∗idd

OO

∂ 2 ·d0 ·d

σ02∗idd

OO

∂ 1 ·d1 ·d

id
∂1∗ϑ

OO

∂ 2 ·d1 ·d

id
∂2∗ϑ

OO

σ12∗idd

oo

(T)

2.10.14 Topology

Analogously to the 1-dimensional case, we denote by Ĝ2 the 2-computad such that F2(Ĝ2)∼=G2.
We also have higher dimensional analogues for Theorem 2.4.3. This isomorphism gives an embedding
(n+1)-cmp→Pre(Fn) which shows that (n+1)-computads are indeed Fn-presentations.

If we denote i1! = i1 and i(n+1)! = i(n+1)in!, we have:

Theorem 2.10.15. More generally, there is an isomorphism (n+ 1)-cmp ∼= (in!(−)× Ĝn/Fn) in
which

in!(−)× Ĝn : Set→ cmp, Y 7→ in!(Y )× Ĝn.

In particular, there is an isomorphism 3-cmp∼= (i2i1(−)× Ĝ2/F2).

Observe that, analogously to the 2-dimensional case presented in 2.5.12, we have a homeomor-
phism

g2× cir2 : D(g2)×S2→FTop2
(i2i1(g2)× Ĝ2).

for each set g2.
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There are higher dimensional analogues of the association of each small computad with a CW-
complex given in 2.5.12. Nevertheless, again, analogously to Remark 2.9.20, we do not have higher
dimensional analogues of the results given in Remark 2.5.10, Theorem 2.5.11 and Theorem 2.5.14.

We sketch a 2-dimensional version of the natural transformation ⌈ ⌉ : F1CTop1
−→ CTop1

to get
the association of each small 3-computad with a 3-dimensional CW-complex.

Given a 2-cell α of F2CTop2
(E), we have that there is a unique way of getting α as pasting

of 2-cells of CTop2
(E). That is to say, it is a “formal pasting” of homotopies. We can glue these

homotopies to get a new homotopy, which is what we define to be ⌈α⌉2E : B2→ E. This defines a
natural transformation ⌈ ⌉2 : F2CTop2

−→ CTop2
. We denote by ⌈·⌉2 the mate under the adjunction

FTop2
⊣ CTop2

and itself.

Given a small 3-computad, seen as a morphism g : i2i1(g2)× Ĝ2→F2(G) of small 2-computads,
FTop3

(g,g2,G) is the pushout of the inclusion S2×D(g2)→ B3×D(g2) along the composition of
the morphisms

D(g2)×S2(cir2×g2)// FTop2
(i2i1(g2)× Ĝ2)

FTop2 (g)// FTop2
F2(G)

⌈·⌉2G // FTop2
(G).

The topological space FTop3
(g,g2,G) is clearly a CW-complex of dimension 3. Furthermore, of

course, we have groupoidal and reflexive versions of FTop3
as well, such as FR

Top3
: 3-Rcmp→ Top.

Lemma 2.10.16. If (g,g2,G) has only one 0-cell and only one 1-cell and π2FTop3
(g,g2,G) is not

trivial, then L(2,0)P2(g,g2,G) is not locally thin.

Thereby, by Theorem 2.10.3, we get:

Theorem 2.10.17. Assume that Gb is an f .c.s. of the small reflexive 2-computad G. If (g,g2,G) is a
small (reflexive) 3-computad such that π2FR

Top3
(g,g2,G) is not trivial, L(2,0)P

R
2 (g) is not locally

thin.

Proof. It follows from Theorem 2.10.3 and from the fact that FR
Top3

i3(Gb) is contractible and its
inclusion in FR

Top3
(g,g2,G) is a cofibration.

Since FTop3
(g,g2,G) has the same homotopy type of a wedge of circumferences, 2-dimensional

balls, 3-dimensional balls and spheres, we know that Euler characteristic χ
(
FTop3

(g,g2,G)
)

is equal
to

χ
(
FTop2

(G)
)
−|g2| ,

whenever both χ
(
FTop2

(G)
)

and |g2| are finite.

Corollary 2.10.18. Assume that Gb is an f .c.s. of the small reflexive 2-computad G. If (g,g2,G) is a
small (reflexive) 3-computad such that

Z ∋ χ

(
FR

Top3
(g,g2,G)

)
> 1,

then L(2,0)P2(g,g2,G) is not locally thin.
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Proof. Recall that

χ

(
FR

Top3
(g)
)
= 1−dimH1

(
FR

Top3
(g)
)
+dimH2

(
FR

Top3
(g)
)
−dimH3

(
FR

Top3
(g)
)
.

Since FR
Top3

(g,g2,G) is clearly 1-connected, dimH1
(
FR

Top3
(g,g2,G)

)
= 0. Therefore, by hypothe-

sis,
dimH2

(
FR

Top3
(g,g2,G)

)
> dimH3

(
FR

Top3
(g,g2,G)

)
≥ 0.

In particular, we conclude that dimH2
(
FR

Top3
(g,g2,G)

)
> 0. By the Hurewicz isomorphism

theorem and by the universal coefficient theorem, this fact implies that the fundamental group
π2

(
FR

Top3
(g,g2,G)

)
is not trivial. By Theorem 2.10.17, we get that L(2,0)P

R
2 (g) is not locally

thin.

Assume that (g,g2,G) is a small (reflexive) 3-computad such that there is an f .c.s. triple (G,T,Hb).
Then FR

Top3
i3i2(T)→ FTop3

(g,g2,G) is an cofibrant inclusion of a contractible space. Thereby,
π2FR

Top3
(g,g2,G) is trivial if and only if

π2

(
FR

Top3
(g)/FR

Top3
i3i2(T)

)
∼= π2

(
FTop3

(g/i3i2(T))
)

is trivial. Therefore, since L(2,0)P2(g/i3i2(T)) is locally thin if and only if L(2,0)P2(g) is locally
thin, it follows from Theorem 2.10.17 and Corollary 2.10.18 the result below:

Corollary 2.10.19. Assume that (g,g2,G) is a small (reflexive) 3-computad such that there is an f .c.s.
triple (G,T,Hb). If π2FR

Top3
(g,g2,G) is not trivial, L(2,0)P

R
2 (g) is not locally thin. Furthermore,

Z ∋ χ

(
FR

Top3
(g,g2,G)

)
> 1,

then L(2,0)P2(g,g2,G) is not locally thin.
In particular, we get that, whenever such a 3-computad presents a locally thin (2,0)-category,

|g2| ≥ χ

(
FR

Top2
(G)
)
−1.

This also works for the (3,2,0,R)-version of FTop3
which would show that the presentation by

(3,2,0,R)-computads given in Corollary 2.10.5 is in a sense the best presentation via (3,2,0,R)-
computads of the locally thin (2,0)-category generated by the reflexive computad G if FR

Top2
(G)

has finite Euler characteristic. For instance, by Corollary 2.10.19, since χ

(
FR

Top2
(g∆̇2)

)
= 2, the

presentation via 3-computad given in Theorem 2.10.12 has the least number of 3-cells.



Chapter 3

Pseudo-Kan Extensions and Descent
Theory

There are two main constructions in classical descent theory: the category of algebras and the

descent category, which are known to be examples of weighted bilimits. We give a formal

approach to descent theory, employing formal consequences of commuting properties of bilimits

to prove classical and new theorems in the context of Janelidze-Tholen “Facets of Descent II”,

such as Bénabou-Roubaud Theorems, a Galois Theorem, embedding results and formal ways

of getting effective descent morphisms. In order to do this, we develop the formal part of the

theory on commuting bilimits via pseudomonad theory, studying idempotent pseudomonads and

proving a 2-dimensional version of the adjoint triangle theorem. Also, we work out the concept of

pointwise pseudo-Kan extension, used as a framework to talk about bilimits, commutativity and

the descent object. As a subproduct, this formal approach can be an alternative perspective/guiding

template for the development of higher descent theory.

Introduction

Descent theory is a generalization of a solution given by Grothendieck to a problem related to modules
over rings [43]. There is a pseudofunctor Mod : Ring→ CAT which associates each ring R with the
category Mod(R) of right R-modules. The original problem of descent is the following: given a
morphism f : R→S of rings, we wish to understand what is the image of Mod( f ) : Mod(R)→
Mod(S ). The usual approach to this problem in descent theory is somewhat indirect: firstly, we
characterize the morphisms f in Ring such that Mod( f ) is a functor that forgets some “extra structure”.
Then, we would get an easier problem: verifying which objects of Mod(S ) could be endowed with
such extra structure (see, for instance, [53]).

Given a category C with pullbacks and a pseudofunctor A : C op→ CAT, for each morphism
p : E → B of C , the descent data plays the role of such “extra structure” in the basic problem (see
[51, 52, 107]). More precisely, in this context, there is a natural construction of a category DescA (p),
called descent category, such that the objects of DescA (p) are objects of A (E) endowed with
descent data, which encompasses the 2-dimensional analogue for equality/1-dimensional descent:
one invertible 2-cell plus coherence. This construction comes with a comparison functor and a
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factorization; that is to say, we have the commutative diagram below, in which DescA (p)→A (E) is
the functor which forgets the descent data (see [52]).

A (B)
φp //

A (p) %%

DescA (p)

��
A (E)

(Descent Factorization)

Therefore the problem is reduced to investigating whether the comparison functor φp is an equivalence.
If it is so, p is is said to be of effective A -descent and the image of A (p) are the objects of A (E)
that can be endowed with descent data. Pursuing this strategy, it is also usual to study cases in which
φp is fully faithful or faithful: in these cases, p is said to be, respectively, of A -descent or of almost
A -descent.

Furthermore, we may consider that the descent problem (in dimension 2) is, in a broad context,
the characterization of the image (up to isomorphism) of a given functor F : C →D. In this case,
using the strategy described above, we investigate if C can be viewed as a category of objects in D
with some extra structure (plus coherence). Thereby, taking into account the original basic problem,
we can ask, hence, if F is (co)monadic. Again, we would get a factorization, the Eilenberg-Moore
factorization:

C
φ //

F
##

(Co)Alg

��
D

And this approach leads to what is called “monadic descent theory”. Bénabou and Roubaud proved that,
if the functor F is induced by a pseudofunctor A : C op→ CAT such that every A (p) has a left adjoint
and A satisfies the Beck-Chevalley condition, then “monadic A -descent theory” coincides with
“Grothendieck A -descent theory”. More precisely, assuming the hypotheses above, the morphism that
induces F is of effective descent if and only if F is monadic [6].

Thereby, in the core of classical descent theory, there are two constructions: the category of
algebras and the descent category. These constructions are known to be examples of 2-categorical
limits (see [103, 107]). Also, in a 2-categorical perspective, we can say that the general idea of
category of objects with “extra structure (plus coherence)” is, indeed, captured by the notion of
2-dimensional limits.

Not contradicting such point of view, Street considered that (higher) descent theory is about the
higher categorical notion of limit [107]. Following this posture, we investigate whether pure formal
methods and commuting properties of bilimits are useful to prove classical and new theorems in the
classical context of descent theory of [39, 51–53].

Willing to give such formal approach, we employ the following perspective: the problems of
descent theory are usually reduced to the study of the image of a (pseudo)monadic (pseudo)functor.
We restrict our attention to idempotent pseudomonads and prove formal results on pseudoalgebra
structures, such as a biadjoint triangle theorem and lifting theorems.
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In order to apply such formal approach to get theorems on commutativity of bilimits, we employ a
bicategorical analogue of the concept of (pointwise) Kan extension: (pointwise) pseudo-Kan extension,
introduced in [77] (which corresponds to Chapter 4).

By successive applications of these formal results, we get results within the context of [51, 52],
such as the Bénabou-Roubaud theorem, embedding results and theorems on effective descent mor-
phisms of bilimits of categories. We also apply this approach to get results on effective descent
morphisms of categories of small enriched categories V -Cat provided that V satisfies suitable hypothe-
ses.

In this direction, the fundamental standpoint on “classical descent theory” of this paper is the
following: the “descent object” of a (pseudo)cosimplicial object in a given context is the image
of the initial object of the appropriate notion of Kan extension of such cosimplicial object. More
precisely, in our context of dimension 2 (which is the same context of [52]), we get the following result
(Theorem 3.4.11): The descent category of a pseudocosimplicial object A : ∆→ CAT is equivalent
to PsRanjA (0), in which j : ∆→ ∆̇ is the full inclusion of the category of finite nonempty ordinals
into the category of finite ordinals and order preserving functions, and PsRanjA denotes the right
pseudo-Kan extension of A along j. In particular, we show abstract features of the “classical theory
of descent” as a theory (of pseudo-Kan extensions) of pseudocosimplicial objects or pseudofunctors
∆̇→ CAT.

This work was motivated by three main aims. Firstly, to get formal proofs of classical results of
descent theory. Secondly, to prove new results in the classical context – for instance, formal ways of
getting sufficient conditions for a morphism to be effective descent. Thirdly, to get proofs of descent
theorems that could be recovered in other contexts, such as in the development of higher descent
theory (see, for instance, the work of Hermida [47] and Street [107] in this direction).

In Section 3.1, we give an idea of our scope within the context of [51, 52]: we show the main
results classically used to deal with the problem of characterization of effective descent morphisms
and we present classical results, which are proved using results on commutativity in Sections 3.8 and
3.9. Namely, the embedding results (Theorems 3.1.1 and 3.1.2) and the Bénabou-Roubaud Theorem
(Theorem 3.1.3). At the end of Section 3.1, we establish a theorem on pseudopullbacks of categories
(Theorem 3.1.5) which is proved in Section 3.9.

Section 3.2 contains most of the abstract results of our formal approach to descent via pseu-
domonad theory. We start by establishing our main setting: the tricategory of 2-categories, pseudo-
functors and pseudonatural transformations. In 3.2.7, we define and study basic aspects of idempotent
pseudomonads. Then, in 3.2.16, we study pseudoalgebra structures w.r.t. idempotent pseudomonads,
proving a Biadjoint Triangle Theorem (Theorem 3.2.18) and giving a result related to the study of
pseudoalgebra structures in commutative squares (Corollary 3.2.19).

We deal with the technical situation of considering objects that cannot be endowed with pseu-
doalgebra structures but have comparison morphisms belonging to a special class of morphisms in
3.2.20.

Section 3.3 explains why we do not use the usual enriched Kan extensions to study commutativity
of the 2-dimensional limits related to descent theory: the main point is that we like to have results
which works for bilimits in general (not only flexible ones). In 3.3.1, we define pseudo-Kan extensions
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and, then, we give the associated factorizations in 3.3.2. Particular cases of these factorizations are the
Eilenberg-Moore factorization of an adjunction and the descent factorization described above.

We give further background material in 3.3.5, studying weighted bilimits and proving that,
similarly to the enriched case, the appropriate notion of pointwise pseudo-Kan extension is actually a
pseudo-Kan extension in the presence of weighted bilimits.

In 3.3.17, 3.3.22 and 3.3.26, we fit the study of pseudo-Kan extensions into the perspective of
Section 3.2. We apply the results of 3.2 to the special case of weighted bilimits and pseudo-Kan
extensions: we get, then, results on commutativity of weighted bilimits/pseudo-Kan extensions and
exactness/(almost/effective) descent diagrams.

Section 3.4 studies descent objects. We prove that the classical descent object (category) is given
by the pseudo-Kan extension of a pseudocosimplicial object (as explained above). In particular,
this means that descent objects are conical bilimits of pseudocosimplicial objects. We adopt this
description as our definition of descent object of a pseudocosimplicial object. We finish Section 3.4
presenting also the strict version of a descent object, which is given by a Kan extension of a special
type of 2-diagram. We get, then, the strict factorization of descent theory.

Section 3.5 gives elementary examples of our context of effective descent diagrams. Every
weighted bilimit can be seen as an example, but we focus in examples that we use in applications. As
mentioned above, the most important examples of bilimits in descent theory are descent objects and
Eilenberg-Moore objects: thereby, Section 3.6 is dedicated to explain how Eilenberg-Moore objects
fit in our context, via the free adjunction 2-category of [97].

In Section 3.7, we study the Beck-Chevalley condition: by doctrinal adjunction [57], this is a
condition to guarantee that a pointwise adjunction between pseudoalgebras can be, actually, extended
to an adjunction between such pseudoalgebras. We show how it is related to commutativity of
weighted bilimits, giving our first version of a Bénabou-Roubaud Theorem (Theorem 3.7.4).

We apply our results to the usual context [51, 52] of descent theory in Section 3.8: we prove
a general version (Theorem 3.8.2) of the embedding results (Theorem 3.1.1), we prove another
Bénabou-Roubaud Theorem (Theorem 3.8.5) and, finally, we give a weak version of Theorem 3.1.5.

We finish the paper in Section 3.9: there, we give a stronger result on commutativity (Theorem
3.9.2) and we apply our results to descent theory, proving Theorem 3.1.5 and the Galois result of [49]
(Theorem 3.9.8). We also apply Theorem 3.1.5 to get effective descent morphisms of the category of
enriched categories V -Cat, provided that V satisfies some hypotheses. For instance, we apply this
result to Top-Cat and Cat-Cat.

This work was realized during my PhD program at University of Coimbra. I am grateful to
my supervisor Maria Manuel Clementino for her precious help, support and attention. I also thank
all the speakers of our informal seminar on descent theory for their insightful talks: Maria Manuel
Clementino, George Janelidze, Andrea Montoli, Dimitri Chikhladze, Pier Basile and Manuela Sobral.
Finally, I wish to thank Stephen Lack for our brief conversations which helped me to understand
aspects related to this work about 2-dimensional category theory, Kan extensions and coherence.
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3.1 Basic Problem

In the context of [18, 50–53, 72, 96], the very basic problem of descent is the characterization of
effective descent morphisms w.r.t. the basic fibration. As a consequence of Bénabou-Roubaud
theorem [6], this problem is trivial for suitable categories (for instance, for locally cartesian closed
categories).

However there are remarkable examples of nontrivial characterizations. The topological case,
solved by Tholen and Reiterman [96] and reformulated by Clementino and Hofmann [17, 21], is an
important example.

Below, we present some theorems classically used as a framework to deal with this basic problem.
In this paper, we show that most of these theorems are consequences of a formal theorem presented in
Section 3.2, while others are consequences of theorems about bilimits.

Firstly, the most fundamental features of descent theory are the descent category and its related
factorization. Assuming that C is a category with pullbacks, if A : C op→ CAT is a pseudofunctor,
the Descent Factorization is described by Janelidze and Tholen in [52].

We show in Section 3.4 that the concept of pseudo-Kan extension encompasses these features. In
fact, the comparison functor and the (pseudo)factorization described above come from the unit and
the triangular identity of the (bi)adjunction [t,CAT] ⊣ (Ps)Rant.

Secondly, for the nontrivial problems, the usual approach to study (basic/universal) effective/almost
descent morphisms is the embedding in well behaved categories, in which “well behaved category”
means just that we know which are the effective descent morphisms of this category. For this matter,
there are some theorems in [51] and [72]. That is to say, the embedding results:

Theorem 3.1.1 ([51]). Let U : C → D be a pullback preserving functor between categories with
pullbacks.

1. If U is faithful, then U reflects almost descent morphisms;

2. If U is fully faithful, then U reflects descent morphisms.

Theorem 3.1.2 ([51]). Let C and D be categories with pullbacks. If U : C →D is a fully faithful
pullback preserving functor and U(p) is of effective descent in D, then p is of effective descent if and
only if it satisfies the following property: whenever the diagram below is a pullback in D, there is an
object C in C such that U(C)∼= A.

U(P) //

��

A

��
U(E)

U(p)
// U(B)

We show in Section 3.8 that Theorem 3.1.1 is a very easy consequence of formal and commuting
properties of pseudo-Kan extensions (Corollary 3.3.24 and Corollary 3.3.28) that follow directly
from results of Section 3.2, while we show in Section 3.9 that Theorem 3.1.2 is a consequence of
a theorem on bilimits (Theorem 3.9.4) which also implies the generalized Galois Theorem of [49].
It is interesting to note that, since Theorems 3.1.1 and 3.1.2 are just formal properties, they can be



96 Pseudo-Kan Extensions and Descent Theory

applied in other contexts – for instance, for morphisms between pseudofunctors A : C op→ CAT and
B :Dop→ CAT, as it is explained in Section 3.8.

Finally, Bénabou-Roubaud Theorem [6, 51] is a celebrated result of Descent Theory which allows
us to understand some problems via monadicity: it says that monadic A -descent theory is equivalent
to Grothendieck A -descent theory in suitable cases, such as the basic fibration. We demonstrate in
Section 3.8 that it is also a corollary of formal results of Section 3.2.

Theorem 3.1.3 (Bénabou-Roubaud [6, 51]). Let C be a category with pullbacks. If A : C op→ CAT

is a pseudofunctor such that, for every morphism p : E→ B of C , A(p) has left adjoint A(p)! and the
invertible 2-cell induced by A below satisfies the Beck-Chevalley condition, then the factorization
described above is pseudonaturally equivalent to the Eilenberg-Moore factorization. In other words,
assuming the hypotheses above, Grothendieck A -descent theory is equivalent to monadic descent
theory.

A (B)

A (p)
��

A (p) // A (E)

��
∼=

A (E) // A (E×p E)

3.1.4 Open problems

Clementino and Hofmann [18] studied the problem of characterization of effective descent morphisms
for (T,V )-categories provided that V is a lattice. To deal with this problem, they used the embedding
(T,V )-Cat→ (T,V )-Grph and Theorems 3.1.1 and 3.1.2. However, for more general monoidal
categories V , such inclusion is not fully faithful and the characterization of effective descent morphisms
still is an open problem even for the simpler case of the category of enriched categories V -Cat.

As an application, we give some results about effective descent morphisms of V -Cat. They are
consequences of formal results given in this paper on effective descent morphisms of categories
constructed from other categories: more precisely, 2-dimensional limits of categories.

More precisely, we prove Theorem 3.1.5 in Section 3.9. We can apply it in some cases of categories
of enriched categories: if V is a cartesian closed category satisfying suitable hypotheses, there is a
full inclusion V -Cat→ Cat(V ), in which Cat(V ) is the category of internal categories. When this
happens, we conclude that the inclusion reflects effective descent morphisms by Theorem 3.1.5. Since
the characterization of effective descent morphisms for internal categories in this setting was already
done by Le Creurer [72], we get effective descent morphisms for enriched categories (provided that V
satisfies some properties).

Theorem 3.1.5. Assume that the diagram of categories with pullbacks

B
S //

Z
��

C

F
��

D

∼=

G
// E
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is a pseudopullback such that all the functors are pullback preserving functors. If p is a morphism in
B such that S(p),Z(p) are of effective descent and FS(p) is a descent morphism, then p is of effective
descent.

3.2 Formal Results

Our perspective herein is that, instead of considering the problem of understanding the image of
a generic (pseudo)functor, the main theorems of descent theory usually deal with the problem of
understanding the pseudoalgebras of (fully) property-like (pseudo)monads [60]. It is easier to study
these pseudoalgebras: they are just the objects that can be endowed with a unique pseudoalgebra
structure (up to isomorphism), or, more appropriately, the effective descent points/objects.

Thereby results on pseudoalgebra structures are in the core of our formal approach. In this
section, we give the main results of this paper in this direction, restricting the scope to idempotent
pseudomonads. This setting is sufficient to deal with the classical descent problem of [51, 52]. We
start by recalling basic results of bicategory theory [5]. Most of them can be found in [104, 105].
To fix notation, we start by giving the definitions of the tricategory of 2-categories, pseudofunctors,
pseudonatural transformations and modifications, denoted by 2-CAT.

Henceforth, in a given 2-category, we always denote by · the vertical composition of 2-cells and
by ∗ their horizontal composition.

Definition 3.2.1. [Pseudofunctor] Let A,B be 2-categories. A pseudofunctor A : A→B is a pair
(A ,a) with the following data:

– Function A : obj(A)→ obj(B);

– Functors AXY : A(X ,Y )→B(A (X),A (Y ));

– For each pair g : X →Y,h : Y → Z of 1-cells in A, an invertible 2-cell in B: ahg : A (h)A (g)⇒
A (hg);

– For each object X of A, an invertible 2-cell aX : IdA X ⇒A (IdX ) in B;

subject to associativity, identity and naturality axioms [77].

If A = (A ,a) : A→ B and (B,b) : B→ C are pseudofunctors, we define the composition
as follows: B ◦A := (BA ,(ba)), in which (ba)hg := B(ahg) ·bA (h)A (g) and (ba)X := B(aX ) ·bA (X)

.
This composition is associative and it has trivial identities. A pseudonatural transformation between
pseudofunctors A −→B is a natural transformation in which the usual (natural) commutative squares
are replaced by invertible 2-cells plus coherence.

Definition 3.2.2. [Pseudonatural transformation] If A ,B : A→B are pseudofunctors, a pseudonat-
ural transformation α : A −→B is defined by:

– For each object X of A, a 1-cell αX : A (X)→B(X) of B;

– For each 1-cell g : X → Y of A, an invertible 2-cell αg : B(g)αX ⇒ αY A (g) of B;
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such that axioms of associativity, identity and naturality hold [77].

Firstly, the vertical composition, denoted by βα , of two pseudonatural transformations α : A ⇒
B, β : B⇒ C is defined by

(βα)W := βW αW

A (W )
βW αW //

A ( f )
��

(βα) f⇐===

C (W )

:=C ( f )
��

A (W )
αW //

A ( f )
��

α f⇐=

B(W )

B( f )
��

βW //

β f⇐=

C (W )

C ( f )
��

A (X)
βX αX

// C (X) A (X)
αX

// B(X)
βX

// C (X)

Secondly, let (U ,u),(L , l) : B→ C and A ,B : A→ B be pseudofunctors. If α : A −→ B,
λ : U −→ L are pseudonatural transformations, then the horizontal composition of U with α ,

denoted by U α , is defined by: (U α)W := U (αW ) and (U α) f :=
(
u

αX A ( f )

)−1
·U (α f ) · uB( f )αW

,
while the composition λA is defined trivially. Thereby, we get the (usual) definition of the horizontal
composition,

(λ ∗α) := (λB)(U α)∼= (L α)(λA )

Similarly, we get the three types of compositions of modifications.

Definition 3.2.3. [Modification] Let A ,B : A→B be pseudofunctors. If α,β : A ⇒B are pseudo-
natural transformations, a modification Γ : α =⇒ β is defined by the following data:

– For each object X of A, a 2-cell ΓX : αX ⇒ βX of B satisfying one axiom of naturality [77].

It is straightforward to verify that 2-CAT is a tricategory which is locally a 2-category. In particular,
we denote by [A,B]PS the 2-category of pseudofunctors A→B, pseudonatural transformations and
modifications. Also, we have the bicategorical Yoneda lemma [104] and, hence, the usual Yoneda
embedding Y : A→ [Aop,CAT]PS is locally an equivalence (i.e. it induces equivalences between the
hom-categories).

A pseudofunctor A : A→ CAT is said to be birepresentable if there is an object W of A such that
A is pseudonaturally equivalent to A(W,−) : A→ CAT. In this case, W is called the birepresentation
of A . By the bicategorical Yoneda lemma, birepresentations are unique up to equivalence.

If L : A→B is a pseudofunctor and X is an object of B, a right bireflection of X along L is,
if it exists, a birepresentation of the pseudofunctor B(L−,X) : Aop→ CAT. We say that L is left
biadjoint to U : B→ A if, for every object X of B, U (X) is the right bireflection of X along L .
In this case, we say that U is right biadjoint to L . This definition of biadjunction is equivalent to
Definition 3.2.4.

Definition 3.2.4. A pseudofunctor L : A→B is left biadjoint to U : B→ A if there exist

1. pseudonatural transformations η : IdA −→U L and ε : L U −→ IdB

2. invertible modifications s : IdL =⇒ (εL ) · (L η) and t : (U ε) · (ηU ) =⇒ IdU

satisfying coherence equations [77]. In this case, (L ⊣U ,η ,ε,s, t) is a biadjunction. Sometimes we
omit the invertible modifications, denoting a biadjunction by (L ⊣U ,η ,ε).
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By the bicategorical Yoneda lemma, if L : A→B is left biadjoint, its right biadjoint is unique
up to pseudonatural equivalence. Furthermore, if L is left 2-adjoint, it is left biadjoint.

Definition 3.2.5. A pseudofunctor U is a local equivalence if it induces equivalences between the
hom-categories.

Lemma 3.2.6. A right biadjoint U is a local equivalence if and only if the counit of the biadjunction
is a pseudonatural equivalence.

3.2.7 Idempotent Pseudomonads

Since we deal only with idempotent pseudomonads, we give an elementary approach focusing on them.
The main benefit of this approach is that idempotent pseudomonads have only free pseudoalgebras.
For this reason, assuming that η is the unit of an idempotent pseudomonad T , an object X can be
endowed with a T -pseudoalgebra structure if and only if ηX : X →T (X) is an equivalence.

Recall that a pseudomonad T on a 2-category H consists of a sextuple (T ,µ,η ,Λ,ρ,Γ), in which
T : H→ H is a pseudofunctor, µ : T 2 −→T ,η : Id

H
−→T are pseudonatural transformations and

T
η

T //

Λ⇐=

T 2

µ

��

T
T ηoo

ρ⇐=

T 3 T µ //

µT
��

Γ⇐==

T 2

µ

��
T T 2

µ
// T

are invertible modifications satisfying the following coherence equations [77, 84]:

– Identity:
T 2

T ηT

}}

T ηT

!!
Id

T 2

��

T 2

T ηT
��

T 3

µT !!

ρT⇐== T 3T̂ Λ⇐==

T µ}}

T 3

µT
}}

T µ

!!
T 2

µ

��

= T 2 Γ⇐==
µ

""

T 2

µ

||
T T

– Associativity:

T 4 T 2µ //

T µT
!!

µT 2

��

T 3

T µ

!!
T̂ Γ⇐==

T 4 T 2µ //

µ−1
µ⇐==µT 2

��

T 3

µT
��

T µ

!!
T 3

µT !!

ΓT⇐== T 3 T µ //

µT
��

Γ⇐=

T 2

µ

��

= T 3 T µ //

µT !!

T 2 Γ⇐=

!!

Γ⇐=

T 2

µ

��
T 2

µ
// T T 2

µ
// T
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in which

T̂ Λ := (tT )
−1 (T Λ)

(
t
(µ)(ηT )

)
, T̂ Γ :=

(
t
(µ)(µT )

)−1
(T Γ)

(
t
(µ)(T µ)

)
.

Definition 3.2.8. [Idempotent pseudomonad] A pseudomonad (T ,µ,η ,Λ,ρ,Γ) is idempotent if
there is an invertible modification ηT ∼= T η .

Similarly to 1-dimensional monad theory, the name idempotent pseudomonad is justified by
Lemma 3.2.9, which says that multiplications of idempotent pseudomonads are pseudonatural equiva-
lences.

Lemma 3.2.9. A pseudomonad (T ,µ,η ,Λ,ρ,Γ) is idempotent if and only if the multiplication µ is
a pseudonatural equivalence. In this case, ηT is a pseudonatural equivalence inverse of µ .

Proof. Since µ(ηT )∼= IdT
∼= µ(T η), it is obvious that, if µ is a pseudonatural equivalence, then

ηT ∼= T η . Therefore T is idempotent and ηT is an equivalence inverse of µ .
Reciprocally, assume that T is idempotent. By the definition of pseudomonads, there is an

invertible modification µ(ηT )∼= IdT . And, since ηT ∼= T η , we get the invertible modifications

(ηT )µ ∼= (T µ)(ηT 2)∼= (T µ)(T ηT )∼= T (µ(ηT ))∼= Id
T 2

which prove that µ is a pseudonatural equivalence and ηT is a pseudonatural equivalence inverse.

The reader familiar with lax-idempotent/KZ-pseudomonads will notice that an idempotent pseu-
domonad is just a KZ-pseudomonad whose adjunction µ ⊣ ηT is actually an adjoint equivalence.
Hence, idempotent pseudomonads are fully property-like pseudomonads [60].

Every biadjunction induces a pseudomonad [66, 77]. In fact, we get the multiplication µ from
the counit, and the invertible modifications Λ,ρ,Γ come from the invertible modifications of Defi-
nition 3.2.4. Of course, a biadjunction L ⊣U induces an idempotent pseudomonad if and only if
its unit η is such that ηU L ∼= U L η . As a consequence of this characterization, we have Lemma
3.2.10 which is necessary to give the Eilenberg-Moore factorization for idempotent pseudomonads.

Lemma 3.2.10. If a biadjunction (L ⊣U ,η ,ε) induces an idempotent pseudomonad, then ηU :
U −→U L U is a pseudonatural equivalence.

Proof. By the triangular invertible modifications of Definition 3.2.4, if ε is the counit of the biad-
junction L ⊣U , (U ε)(ηU )∼= IdU . Also, since U L η ∼= ηU L , we have the following invertible
modifications

(ηU ) · (U ε)∼= (U L U ε)(ηU L U )∼= (U L U ε)(U L ηU )∼= U L (IdU )
∼= IdU L U

Therefore ηU is a pseudonatural equivalence.

We can avoid the coherence equations [66, 77, 84] used to define the 2-category of pseudoalgebras
of a pseudomonad T when assuming that T is idempotent.

Definition 3.2.11. [Pseudoalgebras] Let (T ,µ,η ,Λ,ρ,Γ) be an idempotent pseudomonad on a
2-category H. We define the 2-category of T -pseudoalgebras Ps-T -Alg as follows:
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– Objects: the objects of Ps-T -Alg are the objects X of H such that

ηX : X →T (X)

is an equivalence;

– The inclusion obj(Ps-T -Alg)→ obj(H) extends to a full inclusion 2-functor

I : Ps-T -Alg→ H

In other words, the inclusion I : Ps-T -Alg→ H is defined to be final among the full inclusions
Î : A→ H such that ηÎ is a pseudonatural equivalence.

If ηX : X →T (X) is an equivalence, X can be endowed with a pseudoalgebra structure and the
left adjoint a : T (X)→ X to ηX : X →T (X) is called a pseudoalgebra structure to X . Because we
could describe Ps-T -Alg by means of pseudoalgebras/pseudoalgebra structures, we often denote the
objects of Ps-T -Alg by small letters a,b.

Theorem 3.2.12 (Eilenberg-Moore biadjunction). Let (T ,µ,η ,Λ,ρ,Γ) be an idempotent pseu-
domonad on a 2-category H. There is a unique pseudofunctor L

T
such that

H T //

L
T

$$

H

Ps-T -Alg

I

::

is a commutative diagram. Furthermore, L
T

is left biadjoint to I .

Proof. Firstly, we define L
T
(X) := T (X). On one hand, it is well defined, since, by Lemma 3.2.9,

ηT : T −→T 2

is a pseudonatural equivalence. On the other hand, the uniqueness of L
T

is a consequence of the fact
that I is a monomorphism.

Now, it remains to show that L
T

is left biadjoint to I . By abuse of language, if a is an object
of Ps-T -Alg, we denote by a its pseudoalgebra structure (of Definition 3.2.11). Then we define the
equivalences inverses below

Ps-T -Alg(T (X),b)→ H(X ,I (b))

f 7→ f ηX

α 7→ α ∗ Id
ηX

H(X ,I (b))→ Ps-T -Alg(T (X),b)

g 7→ bT (g)

β 7→ Idb ∗T (β )

It completes the proof that L
T ⊣I .

Theorem 3.2.13 shows that this biadjunction L
T ⊣I satisfies the expected universal property [66]

of the 2-category of pseudoalgebras, which is the Eilenberg-Moore factorization. In other words,
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we prove that our definition of Ps-T -Alg for idempotent pseudomonads T agrees with the usual
definition [66, 73, 84, 104] of pseudoalgebras for a pseudomonad.

Theorem 3.2.13 (Eilenberg-Moore). If L ⊣U is a biadjunction which induces an idempotent pseu-
domonad (T ,µ,η ,Λ,ρ,Γ), then we have a unique comparison pseudofunctor K : B→ Ps-T -Alg
such that

B
K //

U
$$

Ps-T -Alg

I
��

A
L

T

//

L
$$

Ps-T -Alg

A B

K

OO

commute.

Proof. It is enough to define K (X) = U (X) and K ( f ) = U ( f ). This is well defined, since, by
Lemma 3.2.10, ηU : U −→T U is a pseudonatural equivalence.

Actually, in 2-CAT, every biadjunction L ⊣ U induces a comparison pseudofunctor and an
Eilenberg-Moore factorization [73] as above, in which T = U L denotes the induced pseudomonad.
When the comparison pseudofunctor K is a biequivalence, we say that U is pseudomonadic. Al-
though there is the Beck’s theorem for pseudomonads [47, 73, 77], the setting of idempotent pseu-
domonads is simpler.

Theorem 3.2.14. Let L ⊣ U be a biadjunction. The pseudofunctor U is a local equivalence (or,
equivalently, the counit is a pseudonatural equivalence) if and only if U is pseudomonadic and the
induced pseudomonad is idempotent.

Proof. Firstly, if the counit ε of the biadjunction of L ⊣ U is a pseudonatural equivalence, then
µ := U εL is a pseudonatural equivalence as well. And, thereby, the induced pseudomonad is
idempotent. Now, if a : T (X)→ X is a pseudoalgebra structure to X , we have that

K (L (X)) = T (X) ≃
a // X .

Thereby U is pseudomonadic.
Reciprocally, if L ⊣U induces an idempotent pseudomonad and U is pseudomonadic, then we

have that I ◦K = U , K is a biequivalence and I is a local equivalence. Thereby U is a local
equivalence and ε is a pseudonatural equivalence.

In descent theory, one needs conditions to decide if a given object can be endowed with a
pseudoalgebra structure. Idempotent pseudomonads provide the following simplification.

Theorem 3.2.15. Let T = (T ,µ,η ,Λ,ρ,Γ) be an idempotent pseudomonad on H. Given an object
X of H, the following conditions are equivalent:

1. The object X can be endowed with a T -pseudoalgebra structure;

2. ηX : X →T (X) is a pseudosection, i.e. there is a : T (X)→ X such that aηX
∼= IdX ;

3. ηX : X →T (X) is an equivalence.
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Proof. Assume that ηX : X →T (X) is a pseudosection. By hypothesis, there is a : T (X)→ X such
that aηX

∼= IdX . Thereby

ηX a∼= T (a)η
T (X)
∼= T (a)T (ηX )

∼= T (aηX )
∼= Id

T (X)
.

Hence ηX is an equivalence.

3.2.16 Biadjoint Triangle Theorem

The main result of this formal approach is somehow related to distributive laws of pseudomonads [84,
85]. However, we choose a more direct approach, avoiding some technicalities of distributive laws
unnecessary to our setting. To give such direct approach, we use the Biadjoint Triangle Theorem
3.2.18.

Precisely, we give a bicategorical analogue (for idempotent pseudomonads) of an adjoint triangle
theorem [2, 30, 92]. It is important to note that this bicategorical version holds for pseudomonads in
general, so that our restriction to the idempotent version is due to our scope.

Lemma 3.2.17. Let (L ⊣ U ,η ,ε) and (L̂ ⊣ Û , η̂ , ε̂) be biadjunctions. Assume that L̂ ⊣ Û

induces an idempotent pseudomonad and that there is a pseudonatural equivalence

A

≃

BEoo

C

L

__

L̂

??

If ηX is a pseudosection, then η̂X is an equivalence.

Proof. Let X be an object of C such that ηX : X →U L (X) is pseudosection. By Theorem 3.2.15,
it is enough to prove that η̂X is a pseudosection, because the pseudomonad induced by L̂ ⊣ Û is
idempotent.

To prove that η̂X is a pseudosection, we construct a pseudonatural transformation α : Û L̂ −→
U L such that there is an invertible modification

Id
C

∼=η̂
||

η

""
Û L̂ α // U L

Without losing generality, we assume that E ◦ L̂ = L . Then we define α := (U Eε̂L̂ )(ηÛ L̂ ).
Indeed,

αη̂ = (U Eε̂L̂ )
(

ηÛ L̂
)
(η̂)∼= (U Eε̂L̂ )(U L η̂)(η)∼= (U Eε̂L̂ )

(
U EL̂ η̂

)
(η)∼= η

Therefore, if ηX is a pseudosection, so is η̂X . And, as mentioned, by Theorem 3.2.15, if η̂X is a
pseudosection, it is an equivalence.
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Let T̂ be the idempotent pseudomonad induced by L̂ ⊣ Û and T the pseudomonad induced by
L ⊣U . Then Lemma 3.2.17 could be written as follows:

If X is an object of C that can be endowed with a T -pseudoalgebra structure, then X can be
endowed with a T̂ -pseudoalgebra structure, provided that there is a pseudonatural equivalence
EL̂ ≃L .

Theorem 3.2.18. Let (L ⊣ U ,η ,ε) and (L̂ ⊣ Û , η̂ , ε̂) be biadjunctions such that their right
biadjoints are local equivalences. If there is a pseudonatural equivalence

A

≃

BEoo

C

L

__

L̂

??

then E is left biadjoint to a pseudofunctor R which is a local equivalence.

Proof. It is enough to define R := L̂ U . By Lemma 3.2.17, (η̂U ) : U −→ Û L̂ U = Û R is a
pseudonatural equivalence. Thereby we get

A(E(b),a)≃A(EL̂ Û (b),a)≃A(L Û (b),a)≃C(Û (b),U (a))≃C(Û (b),Û R(a))≃B(b,R(a)).

This completes the proof that R is right biadjoint to E.

Assume that A : A→B and B : B→ C are pseudomonadic pseudofunctors, and their induced
pseudomonads are idempotent. Then it is obvious that B ◦A : A→ C is also pseudomonadic and
induces an idempotent pseudomonad. Indeed, by Theorem 3.2.14, this statement is equivalent to:
compositions of right biadjoint local equivalences are right biadjoint local equivalences as well.

Corollary 3.2.19. Assume that there is a pseudonatural equivalence

A

≃

HEoo

B

L
A

OO

CL
B

oo

L
C

OO

such that L
A
⊣A , L

B
⊣B and L

C
⊣ C are pseudomonadic biadjunctions inducing idempotent

pseudomonads TA ,TB ,TC . Then E ⊣ R and R is a local equivalence.

In particular, if (X ,a) is a TB -pseudoalgebra that can be endowed with a TA -pseudoalgebra
structure, then X can be endowed with a TC -pseudoalgebra structure as well.

Lemma 3.2.17 and Corollary 3.2.19 are results on our formal approach to descent theory, i.e. they
give conditions to decide whether a given object can be endowed with a pseudoalgebra structure.
In fact, most of the theorems proved in this paper are consequences of successive applications of
these results, including Bénabou-Roubaud theorem and other theorems within the context of [51, 52].
However it does not deal with the technical “almost descent” aspects, which follow from the results
on F-comparisons below.
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3.2.20 Comparisons inside special classes of morphisms

Instead of restricting attention to objects that can be endowed with a pseudoalgebra structure, we
often are interested in almost descent and descent objects as well. In the context of idempotent pseu-
domonads, these are objects that possibly do not have pseudoalgebra structure but have comparison
1-cells belonging to special classes of morphisms.

In this subsection, every 2-category H is assumed to be endowed with a special subclass of
morphisms F

H
satisfying the following properties:

– Every equivalence of H belongs to F
H

;

– F
H

is closed under compositions and under isomorphisms;

– If f g and f belongs to F
H

, g is also in F
H

.

If f is a morphism of H that belongs to F
H

, we say that f is an F
H

-morphism.

Definition 3.2.21. Let (T ,µ,η ,Λ,ρ,Γ) be an idempotent pseudomonad on a 2-category H. An
object X is an (F

H
,T )-object if the comparison ηX : X →T (X) is an F

H
-morphism.

We say that a pseudofunctor E : H→ H preserves (F
H
,T )-objects if it takes (F

H
,T )-objects to

(F
H
,T )-objects.

Theorem 3.2.22 is a commutativity result for (F
H
,T )-objects. Similarly to Corollary 3.2.19, it

follows from the construction given in the proof of Lemma 3.2.17, although it requires some extra
hypotheses.

Theorem 3.2.22. Let
A

≃

HEoo

B

L
A

OO

CL
B

oo

L
C

OO

be a pseudonatural equivalence such that L
A
⊣A , L

B
⊣B and L

C
⊣C are biadjunctions inducing

pseudomonads TA ,TB ,TC . Also, we denote by T the pseudomonad induced by the biadjunction
L

A
L

B
⊣BA .

Assume that all the right biadjoints are local equivalences, B takes F
B

-morphisms to F
C
-

morphisms and TC preserves (F
C
,T )-objects. If X is a (F

C
,TB)-object of C and L

B
(X) is a

(F
B
,TA )-object, then X is a (F

C
,TC )-object as well.

Proof. By the proof of Lemma 3.2.17, there is a pseudonatural transformation α : TC −→T such
that there is an invertible modification

X

∼=η
C

~~
η

��
TC

α // T
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In particular, if X is an object of C satisfying the hypotheses of the theorem, we get an isomorphism

X

∼=η
C

X||
ηX
""

T
C
(X) αX // T (X)

in which, by the hypotheses, we conclude that ηX
∼=
(
Bη

A
L

B

)
X
·ηB

X
is an F

C
-morphism.

By the properties of the subclass F
C
, it remains to prove that αX is an F

C
-morphism. Recall that αX

is defined by αX := (BA ε
C
L

C
)X · (ηTC )X , in which ε

C
is the counit of the biadjunction L

C
⊣ C .

Since (BA ε
C
L

C
)X is an equivalence and, by hypothesis, (ηTC )X is a F

C
-morphism, it follows

that αX is a F
C
-morphism.

This completes the proof that η
C

X
is also an F

C
-morphism.

3.3 Pseudo-Kan Extensions

It is known that the descent category and the category of algebras are 2-categorical limits (see, for
instance, [103, 104]). Thereby, our standpoint is to deal with the context of [52] strictly guided by
bilimits results.

For the sake of this aim, we focus our study on the pseudomonads coming from bicategorical
analogue of the notion of right Kan extension. Actually, since the concept of “right Kan extension”
plays the leading role in this work, “Kan extension” means always right Kan extension, while we
always make the word “left” explicit when we refer to the dual notion.

We explain below why we need to use a pseudo notion of Kan extension, instead of employing
the fully developed theory of enriched Kan extensions: the natural place of (classical) descent theory
is 2-CAT. Although we can construct the bilimits related to descent theory as (enriched/strict) Kan
extensions of 2-functors in the 3-category of 2-categories, 2-functors, 2-natural transformations and
modifications (see [103, 105]), the necessary replacements [67, 77] do not make computations and
formal manipulations any easier.

Further, most of the transformations between 2-functors that are necessary in the development of
the theory are pseudonatural. Thus, to work within the “strict world” without employing repeatedly
coherence theorems (such as the general coherence result of [67]), we would need to add hypotheses
to assure that usual Kan extensions of pseudonaturally equivalent diagrams are pseudonaturally
equivalent. This is not true in most of the cases: it is easy to construct examples of pseudonaturally
isomorphic diagrams such that their usual Kan extensions are not pseudonaturally equivalent. For
instance, consider the 2-category A below.

d
α //
β

// c

The 2-category A has no nontrivial 2-cells. Assume that B is the 2-category obtained from A adding
an initial object s, with inclusion t : A→B. Now, if ∗ is the terminal category and ∇2 is the category
with two objects and one isomorphism between them (i.e. ∇2 is the localization of the preorder 2 w.r.t.
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all morphisms), then there are two 2-natural isomorphism classes of diagrams A→ CAT of the type
below, while all such diagrams are pseudonaturally isomorphic.

∗ //// ∇2

These 2-natural isomorphism classes give pseudonaturally nonequivalent Kan extensions along
t. More precisely, if X ,Y : A→ CAT are such that X (d) = Y (d) = ∗, X (c) = Y (c) = ∇2,
X (α) ̸=X (β ) and Y (α) =Y (β ); then RantX (s) = /0, while RantY (s) = ∗. Therefore RantX

and RantY are not pseudonaturally equivalent, while X is pseudonaturally isomorphic to Y .

The usual Kan extensions behave well if we add extra hypotheses related to flexible diagrams (see
[8, 9, 67, 77]). However, we do not give such restrictions and technicalities. Thereby we deal with the
problems natively in the tricategory 2-CAT, without employing further coherence results. The first
step is, hence, to understand the appropriate notion of Kan extension in this tricategory.

3.3.1 The Definition

In a given tricategory, if t : a→ b, f : a→ c are 1-cells, we might consider that the formal right Kan
extension of f along t is the right 2-reflection of f along the 2-functor [t,c] : [b,c]→ [a,c]. That is to
say, if it exists for all f : a→ c, the (formal) global Kan extension along t : a→ b would be a 2-functor
[a,c]→ [b,c] right 2-adjoint to [t,c] : [b,c]→ [a,c]. But, in important cases, such concept is very
restrictive, because it does not take into account the bicategorical structure of the hom-2-categories of
the tricategory. Hence, it is possible to consider other notions of Kan extension, corresponding to the
two other important notions of adjunction between 2-categories [41], that is to say, lax adjunction and
biadjunction. For instance, Gray [42] studied the notion of lax-Kan extension.

We also consider an alternative notion of Kan extension in our tricategory 2-CAT, that is to say,
the notion of pseudo-Kan extension, introduced in [77]. In our case, the need of this concept comes
from the fact that, even with many assumptions, the (formal) Kan extension of a pseudofunctor may
not exist. Furthermore, we prove in Section 3.4 that the descent object (descent category) and the
Eilenberg-Moore object (Eilenberg-Moore category) can be easily described using our language.

Henceforth, A,B always denote small 2-categories. If t : A→B and A : A→ H are pseudo-
functors, the (right) pseudo-Kan extension of A along t, denoted by PsRantA , is, if it exists, a right
bireflection of A : A→ H along the pseudofunctor

[t,H]PS : [B,H]PS→ [A,H]PS .

A global pseudo-Kan extension along t : A→B is, hence, a right biadjoint of [t,H]PS, provided that it
exists. That is to say, a pseudofunctor PsRant : [A,H]PS→ [B,H]PS such that [t,H]PS ⊣ PsRant. Of
course, right pseudo-Kan extensions are unique up to pseudonatural equivalence.

Herein, the expression Kan extension refers to the usual notion of Kan extension in CAT-enriched
category theory. That is to say, if t : A→B and A : A→ H are 2-functors, the (right) Kan extension
of A along t, denoted by RantA : B→ H, is (if it exists) the right 2-reflection of A along the
2-functor [t,H]. And the global Kan extension is a right 2-adjoint of [t,H] : [B,H]→ [A,H] , in which
[B,H] denotes the 2-category of 2-functors B→ H, CAT-natural transformations and modifications.
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If RantA exists, it is not generally true that RantA is pseudonaturally equivalent to PsRantA .
This is a coherence problem, related to flexible diagrams [8, 9, 67, 77] and to the construction of
bilimits via strict 2-limits [103, 104]. For instance, in particular, using the results of [77], we can easily
prove, as a corollary of coherence results [9, 67, 77], that, for a given pseudofunctor A : A→ H and
a 2-functor t : A→B, we can replace A by a pseudonaturally equivalent 2-functor A ′ : A→ H such
that RantA ′ is equivalent to PsRantA ′ ≃ PsRantA , provided that H satisfies some completeness
conditions (for instance, if H is CAT-complete).

In Section 3.4 we show that the descent category, as defined in [52, 105], of a pseudocosimplicial
object D : ∆→ CAT is equivalent to PsRanjD(0), in which j : ∆→ ∆̇ is the inclusion of the category
of nonempty finite ordinals into the category of finite ordinals. Observe that the Kan extension of
a cosimplicial object does not give the descent object: it gives an equalizer (which is the notion
of descent for dimension 1), although we might give the descent object via a Kan extension after
replacing the (pseudo)cosimplicial objects by suitable strict versions of pseudocosimplicial objects as
it is done in 3.4.12.

3.3.2 Factorization

Our setting often reduces to the study of right pseudo-Kan extensions of pseudofunctors A : A→ H

along t, in which t : A→ Ȧ is the full inclusion of a small 2-category A into a small 2-category Ȧ

which has only one extra object a.

Definition 3.3.3. [a-inclusion] A 2-functor t : A→ Ȧ is called an a-inclusion, if t is an inclusion of a
small 2-category A into a small 2-category Ȧ in which

obj(Ȧ) = obj(A)∪{a}

is a disjoint union.

In this setting, we have factorizations for pseudo-Kan extensions along a-inclusions, which follow
formally from the biadjunction [t,H]PS ⊣ PsRant .

Theorem 3.3.4 (Factorization). Assume that t : A→ Ȧ is an a-inclusion and ([t,H]PS ⊣ PsRant ,η ,ε)

is a biadjunction. If A : Ȧ→ H is a pseudofunctor, a ̸= b and f : b→ a, g : a→ b are morphisms of
Ȧ, we get induced “factorizations” (actually, invertible 2-cells):

A (b) A ( f ) //

f
A

&&

A (a)

ηa

A
yy

A (a) A (g) //

ηa

A
%%

A (b)

PsRant(A ◦ t)(a)

∼=

PsRant(A ◦ t)(a)

∼= g
A

99

in which
f
A

:= PsRant(A ◦ t)( f )◦η
b
A

g
A

:= ε
b
(A ◦t)
◦PsRant(A ◦ t)(g)

and ηa
A

, εb
(A ◦t)

are the 1-cells induced by the components of η and ε .
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Proof. By the (triangular) invertible modifications of Definition 3.2.4,

g
A
◦η

a

A
= ε

b
(A ◦t)
◦PsRant(A ◦ t)(g)◦η

a

A

∼= ε
b
(A ◦t)
◦η

b
A
◦A (g)∼= A (g)

The factorization involving A ( f ) follows from the pseudonaturality of η .

3.3.5 Bilimits and pseudo-Kan extensions

Similarly to the usual approach for (enriched) Kan extensions, we define what should be called
pointwise (right) pseudo-Kan extension. Then, we prove that, whenever such pointwise pseudo-Kan
extensions exist, they are (equivalent to) the pseudo-Kan extensions.

Pointwise right pseudo-Kan extensions are defined via weighted bilimits, the bicategorical ana-
logue of (enriched) weighted limits [77, 104, 105]. Thereby we list some needed results on weighted
bilimits.

Definition 3.3.6. [Weighted bilimit] Let W : A → CAT, A : A → H be pseudofunctors. The
(weighted) bilimit of A with weight W , denoted by {W ,A }bi, if it exists, is the birepresentation of
the pseudofunctor

Aop→ CAT : X 7→ [A,CAT]PS(W ,H(X ,A−))

That is to say, if it exists, a weighted bilimit is an object {W ,A }bi of H endowed with a pseudonat-
ural equivalence (in X) H(X ,{W ,A }bi)≃ [A,CAT]PS(W ,H(X ,A−)). Since, by the bicategorical
Yoneda lemma, {W ,A }bi is unique up to equivalence, we refer to it as the bilimit.

It is clear that we have the dual notion, called weighted bicolimit. If it exists, we denote by
W ∗bi A the weighted bicolimit of A : A→H weighted by W : Aop→ CAT, which means that there
is a pseudonatural equivalence (in X)

[A,CAT]PS(W ,H(A−,X))≃ H(W ∗
bi

A ,X).

Remark 3.3.7. [Conical Bilimit] Analogously to the enriched case, if ⊤ = W : A→ CAT is the
terminal weight, {W ,A }bi is the conical bilimit of A .

The 2-category CAT is bicategorically complete, that is to say, it has all (small) weighted bilimits.
Indeed, if W ,A : A→ CAT are pseudofunctors, we have that {W ,A }bi ≃ [A,CAT]PS(W ,A ).
Moreover, from the bicategorical Yoneda lemma of [104], we get the strong bicategorical Yoneda
lemma.

Lemma 3.3.8 (Yoneda Lemma). Let A : A→ H be a pseudofunctor. There is a pseudonatural
equivalence (in X) {A(X ,−),A }bi ≃A (X).

There is one important notion remaining: we define the (pseudo)end of a pseudofunctor T :
A×Aop→ CAT by ∫

A
T := [A,CAT]PS(A(−,−),T ).

We get then some expected results: they are all analogous to the results of the enriched context of [58].
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Proposition 3.3.9. Let A ,B : A→ H be pseudofunctors. There is a pseudonatural equivalence∫
A
H(A−,B−)≃ [A,H]PS(A ,B).

Proof. Firstly, observe that a pseudonatural transformation

α : A(−,−)−→ H(A−,B−)

corresponds to a collection of 1-cells α
(W,X)

:A(W,X)→H(A (W ),B(X)) and collections of invertible
2-cells

α
(Y, f ) : H(A (Y ),B( f ))α

(Y,W )
∼= α

(Y,X)
A(Y, f )

α
( f ,Y ) : H(A ( f ),B(Y ))α

(X ,Y )
∼= α

(W,Y )A( f ,Y )

such that, for each object Y of A, α
(Y,−) and α

(−,Y ) (with the invertible 2-cells above) are pseudonat-
ural transformations. In other words, pseudonatural transformations are transformations which are
pseudonatural in each variable.

By the bicategorical Yoneda lemma, we get what we want: such a pseudonatural transformation
corresponds (up to isomorphism) to a collection of 1-cells

γW := αW,W (IdW ) : A (W )→B(W )

with (coherent) invertible 2-cells B( f )◦ γW
∼= γW ◦A ( f ).

Hence, the original bicategorical Yoneda lemma may be reinterpreted: assume that A : A→ CAT

is a pseudofunctor, then we have the pseudonatural equivalence (in X):∫
A
CAT(A(X ,−),A−)≃A (X).

We also need Theorem 3.3.10 to prove that the “pointwise” pseudo-Kan extension is, indeed, a pseudo-
Kan extension. This theorem is the bicategorical analogue to the Fubini theorem in the enriched
context.

Theorem 3.3.10 (Fubini’s Theorem). Assume that T : Aop×Bop×B×A→ CAT is a pseudofunctor.
Then there are pseudofunctors T

B
: Aop×A→ CAT and T

A
: Bop×B→ CAT such that∫

B
T := T

B
(A,B)∼=

∫
B

T (A,X ,X ,B) and
∫
A

T := T
A
(X ,Y )∼=

∫
A

T (A,X ,Y,A).

Furthermore, ∫
A×B

T ≃
∫
A

∫
B

T ≃
∫
B

∫
A

T.

Before defining pointwise pseudo-Kan extension, the following result, which is mainly used
in Section 3.4, already gives a glimpse of the relation between weighted bilimits and pseudo-Kan
extensions.
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Theorem 3.3.11. Let t : A→B, W : A→ CAT be pseudofunctors. If the left pseudo-Kan extension
PsL antW exists and A : B→ H is a pseudofunctor, then there is an equivalence

{W ,A ◦ t}bi ≃ {PsL antW ,A }bi

whenever one of the weighted bilimits exists.

Proof. Let X be an object of H. Assuming the existence of {W ,A ◦ t}bi,

H(X ,{W ,A ◦ t}bi)≃ [B,H]PS (W ,H(X ,A ◦ t−))≃ [A,H]PS (PsL antW ,H(X ,A−))

are pseudonatural equivalences (in X). Thereby

{W ,A ◦ t}bi ≃ {PsL antW ,A }bi .

The proof of the converse is analogous.

If we consider the full 2-subcategory HY of [Bop,CAT]PS such that the objects of HY are the
birepresentable pseudofunctors of a 2-category H, the Yoneda embedding Y : H→ HY is a biequiv-
alence: that is to say, we can choose a pseudofunctor I : HY → H and pseudonatural equivalences
Y I ≃ Id and IY ≃ Id.

Therefore if H is a bicategorically complete 2-category, given a pseudofunctor A : A→ H, there
is a pseudofunctor {−,A }bi : [A,CAT]op

PS→ H which is unique up to pseudonatural equivalence and
which gives the bilimits of A [77, 103]. More precisely, since we assume that H has all weighted
bilimits of A , we are assuming that the pseudofunctor L : [A,CAT]op

PS→ [Hop,CAT]PS, in which

L(W ) : Bop→ CAT : X 7→ [A,CAT]PS (W ,H(X ,A−))

is such that L(W ) has a birepresentation for every weight W : A→ CAT. Therefore L can be seen as
a pseudofunctor L : [A,CAT]op

PS→ HY . Hence we can take {−,A }bi := IL.

Definition 3.3.12. [Pointwise pseudo-Kan extension] Let t : A→B, A : A→ H be pseudofunctors.
The pointwise pseudo-Kan extension is defined by

RANtA : B → H

X 7→ {B(X , t(−)),A }bi ,

provided that the weighted bilimit {B(X , t(−)),A }bi exists in H for every object X of B.

We prove below that the pointwise pseudo-Kan extension is, actually, a pseudo-Kan extension;
that is to say, we have a pseudonatural equivalence

[A,H]PS (−◦ t,A )≃ [B,H]PS (−,RANtA ).

Theorem 3.3.13. Assume that A : A→ H, t : A→ B are pseudofunctors. If the pointwise right
pseudo-Kan extension RANtA is well defined, then RANtA ≃ PsRantA .
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Proof. By the propositions presented in this section and by the definition of a pointwise Kan extension,
we have the following pseudonatural equivalences (in S):

[B,H]PS (S,RANtA ) ≃
∫
B
H(S(b),RANtA (b))

≃
∫
B
H(S(b),{B(b, t(−)),A }bi)

≃
∫
B
[A,CAT]PS (B(b, t(−)),H(S(b),A−))

≃
∫
B

∫
A
CAT(B(b, t(a)),H(S(b),A (a)))

≃
∫
A

∫
B
CAT(B(b, t(a)),H(S(b),A (a)))

≃
∫

A
H(S◦ t(a),A (a))

≃ [A ,H]PS (S◦ t,A ).

More precisely, the first, fourth, sixth and seventh pseudonatural equivalences come from the funda-
mental equivalence of ends, while the second and third are, respectively, the definitions of the pointwise
pseudo-Kan extension and the definition of bilimit. The remaining pseudonatural equivalence follows
from Fubini’s theorem.

Remark 3.3.14. It is clear that Theorem 3.3.13 has a dual. That is to say, PsL antA (b)≃A(−,b)∗bi A

whenever the weighted bicolimit A(−,b)∗bi A exists.

Remark 3.3.15. By Remark 3.3.7 and Theorem 3.3.13, if A : A→ H is a pseudofunctor, the conical
bilimit of A is equivalent to PsRant(A )(a)≃

{
Ȧ(a, t−),A

}
bi in which t : A→ Ȧ is the a-inclusion

such that a is the initial object added to A.

In this paper, for simplicity, we always assume that H is a bicategorically complete 2-category, or
at least H has enough bilimits to construct the considered (right) pseudo-Kan extensions as pointwise
pseudo-Kan extensions.

Remark 3.3.16. The pointwise pseudo-Kan extension was studied originally in [77] using the Bi-
adjoint Triangle Theorem proved therein. The construction presented above is similar to the usual
approach of the enriched case [31, 58], while the argument via biadjoint triangles of [77] is not.

3.3.17 The pseudomonads induced by right pseudo-Kan extensions

Let t : A→B be a local equivalence (between small 2-categories) and A : A→ H a pseudofunctor.
By the (bicategorical) Yoneda lemma, if the pseudo-Kan extension PsRantA exists, it is actually a
pseudoextension. More precisely:

Theorem 3.3.18. If t : A→B is a local equivalence and there is a biadjunction [t,H]PS ⊣ PsRant,
its counit is a pseudonatural equivalence. Thereby PsRant : [A,H]PS→

[
Ȧ,H

]
PS is pseudomonadic

(a local equivalence) and the induced pseudomonad, denoted by PsRant(−◦ t), is idempotent.

Proof. It follows from the (bicategorical) Yoneda lemma. By Lemma 3.3.8, if X is an object of A,
{B(t(X), t−),A }bi ≃ {A(X ,−),A }bi ≃A (X).
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Our interest is to study the objects of [B,H]PS that can be endowed with PsRant(−◦t)-pseudoalgebra
structure, that is to say, the image of the forgetful Eilenberg-Moore 2-functor Ps-PsRant(−◦ t)-Alg→
[B,H]PS.

Definition 3.3.19. [Effective Diagrams] Let t : A→B,A : B→ H be pseudofunctors. A : B→ H

is of effective t-descent if A can be endowed with a PsRant(−◦ t)-pseudoalgebra structure.

We now can apply the results of Section 3.2 on idempotent pseudomonads. Firstly, by Theo-
rem 3.2.15, we can easily study the PsRant(−◦ t)-pseudoalgebra structures on diagrams, using the
unit of the biadjunction [t,H]PS ⊣ PsRant .

Theorem 3.3.20. Let t :A→B be a local equivalence and A : Ȧ→H a pseudofunctor. The following
conditions are equivalent:

– A is of effective t-descent;

– The component of the unit on A /comparison ηA : A → PsRant(A ◦ t) is a pseudonatural
equivalence;

– The comparison ηA : A → PsRant(A ◦ t) is a pseudonatural pseudosection.

Moreover, the component of the unit ηA : A −→ PsRant(A ◦ t) is a pseudonatural equivalence if
and only if all components of ηA are equivalences. But, by Theorem 3.3.18, assuming that t : A→ Ȧ

is an a-inclusion, ηb
A

is an equivalence for all b in A. Thereby we get:

Lemma 3.3.21. Let t : A→ Ȧ be an a-inclusion. If A : Ȧ→ H is a pseudofunctor, A is of effective
t-descent if and only if ηa

A
: A (a)→ PsRant(A ◦ t)(a) is an equivalence.

3.3.22 Commutativity

Let t : A→ Ȧ and h : B→ Ḃ be, respectively, an a-inclusion and a b-inclusion. Unless we explicit
otherwise, henceforth we always consider right pseudo-Kan extensions along such type of inclusions.

In general, we have that (see [105]):
[
Ȧ× Ḃ,H

]
PS≈

[
Ȧ,
[
Ḃ,H

]
PS

]
PS
∼=
[
Ḃ,
[
Ȧ,H

]
PS

]
PS. Thereby

every pseudofunctor A : Ȧ×Ḃ→H can be seen (up to pseudonatural equivalence) as a pseudofunctor
A : Ȧ→

[
Ḃ,H

]
PS. Also, A : Ȧ→

[
Ḃ,H

]
PS can be seen as a pseudofunctor A : Ḃ→

[
Ȧ,H

]
PS.

Applying our formal approach of Section 3.2 to our context of pseudo-Kan extensions, we get
theorems on commutativity as we show below.

Theorem 3.3.23. If A : Ȧ→ H is an effective t-descent pseudofunctor and T is an idempotent
pseudomonad on H such that A ◦ t can be factorized through Ps-T -Alg→ H, then A (a) can be
endowed with a T -pseudoalgebra structure.
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Proof. Let L ⊣U be the biadjunction induced by T and Ĥ := Ps-T -Alg (see Definition 3.2.11 and
Theorem 3.2.12). Observe that the pseudonatural equivalence[

A, Ĥ
]

PS

≃

[
Ȧ, Ĥ

]
PS

[t,Ĥ]PS
oo

[A,H]PS

[A,L ]PS

OO

[
Ȧ,H

]
PS

[t,H]PS
oo

[Ȧ,L ]PS

OO

satisfies the hypotheses of Corollary 3.2.19.
If A : Ȧ→H is an effective t-descent pseudofunctor such that all the objects of the image of A ◦ t

have T -pseudoalgebra structure, it means that A satisfies the hypotheses of Corollary 3.2.19. I.e.
A is a PsRant(−◦ t)-pseudoalgebra that can be endowed with a [A,T ]PS-pseudoalgebra structure.
Thereby, by Corollary 3.2.19, A can be endowed with a

[
Ȧ,T

]
PS-pseudoalgebra structure.

Corollary 3.3.24. Let A : Ȧ→
[
Ḃ,H

]
PS be an effective t-descent pseudofunctor such that the

diagrams in the image of A ◦ t are of effective h-descent, then A (a) is of effective h-descent as well.

Corollary 3.3.25. Assume that the pseudofunctors Â : Ȧ→
[
Ḃ,H

]
PS and ¯A : Ḃ→

[
Ȧ,H

]
PS are

mates such that the diagrams in the image of Â ◦ t and ¯A ◦ h are respectively of effective h- and
t-descent. We have that Â (a) is of effective h-descent if and only if ¯A (b) is of effective t-descent.

3.3.26 Almost descent pseudofunctors

Recall that a 1-cell in a 2-category H is called faithful/fully faithful if its images by the (covariant)
representable 2-functors are faithful/fully faithful.

Definition 3.3.27. Let t : A→ Ȧ be an a-inclusion. A pseudofunctor A : Ȧ→ H is of almost
t-descent/t-descent if ηa

A
: A (a)→ PsRant(A ◦ t)(a) is faithful/fully faithful.

Consider the class F
[Ȧ,H]PS

of pseudonatural transformations in
[
Ȧ,H

]
PS whose components are

faithful. This class satisfies the properties described in 3.2.20. Also, a pseudofunctor A : Ȧ→ H is of
almost descent if and only if A is a (F

[Ȧ,H]PS
,PsRant(A ◦ t))-object.

Analogously, if we take the class F′
[Ȧ,H]PS

of objectwise fully faithful pseudonatural transformations,

A : Ȧ→ H is of descent if and only if A is a (F′
[Ȧ,H]PS

,PsRant(A ◦ t))-object.

Since in our context of right pseudo-Kan extensions along local equivalences the hypotheses
of Theorem 3.2.22 hold, we get the corollaries below. Again, we are considering full inclusions
t : A→ Ȧ, h : B→ Ḃ as in 3.3.22.

Corollary 3.3.28. Let A : Ȧ→
[
Ḃ,H

]
PS be an almost t-descent pseudofunctor such that the pseudo-

functors in the image of A ◦ t are of almost h-descent. In this case, A (a) is also of almost h-descent.
Similarly, if A is of t-descent and the pseudofunctors of the image of A ◦ t are of h-descent, then

A (a) is of h-descent as well.



3.4 Descent Objects 115

Corollary 3.3.29. Assume that the mates Â : Ȧ→
[
Ḃ,H

]
PS and ¯A : Ḃ→

[
Ȧ,H

]
PS are such that

the diagrams in the image of Â ◦ t and ¯A ◦h are respectively of almost h- and t-descent. In this case,

Â (a) is of almost h-descent if and only if ¯A (b) is of almost t-descent.

If, furthermore, the pseudofunctors in the image of Â ◦ t and ¯A ◦h are respectively of h- and t-descent,
then:

Â (a) is of h-descent if and only if ¯A (b) is of t-descent.

3.4 Descent Objects

In this section, we give a description of the descent category, as defined in classical descent theory, via
pseudo-Kan extensions. The results of the first part of this section is hence important to fit the context
of [51, 52] within our framework.

Let j : ∆→ ∆̇ be the full inclusion of the category of finite nonempty ordinals into the category of
finite ordinals and order preserving functions. Recall that ∆̇ is generated by its degeneracy and face
maps. That is to say, ∆̇ is generated by the diagram

0
d=d0

// 1
d0 //

d1 //
2s0oo

d0 //
d1 //
d2 //

3

s0

��

s1

^^

//////// · · ·gg\\

{{

with the following relations:

dkdi = didk−1, if i < k;

sksi = sisk+1, if i≤ k;

skdi = disk−1, if i < k;

d0d = d1d;

skdi = id, if i = k and i = k+1;

skdi = di−1sk, if i > k+1.

Remark 3.4.1. The category ∆̇ has an obvious strict monoidal structure (+,0) that turns (∆̇,+,0,1)

into the initial object of the category of monoidal categories with a chosen monoid.

Remark 3.4.2. There is a full inclusion ∆̇→ CAT such that the image of each n is the corresponding
ordinal. This is the reason why we may consider that ∆̇ is precisely the full subcategory of CAT of the
finite ordinals (considered as partially ordered sets). In this context, the object n is often confused
with its image which is the category

0→ 1→ 2→ ···n−1.

It is important to keep in mind that ∆̇ is a category, but we often consider it inside the tricategory
2-CAT. More precisely, by abuse of language, ∆̇ and ∆ denote respectively the images of the categories
∆̇ and ∆ by the inclusion CAT→ 2-CAT. Hence ∆̇ is locally discrete and is not a full sub-2-category
of CAT. In fact, it is clear that ∆(1,n) is the image of n by the comonad induced by the right adjoint
forgetful functor between the category of small categories and the category of sets, the counit of which
is denoted by εd.
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Definition 3.4.3. A pseudofunctor A : ∆→H is called a pseudocosimplicial object of H. The descent
object of such a pseudocosimplicial object A is PsRanjA (0).

Remark 3.4.4. Since 0 is the initial object of ∆̇, the weight ∆̇(0, j−) is terminal. By Remark 3.3.7
and Theorem 3.3.13, it implies that the descent object of A : ∆→ H is its conical bilimit.

Theorem 3.4.11 shows that our definition of descent object agrees with Definition 3.4.6, which is
the usual definition of the descent object [51, 105].

Definition 3.4.5. The category ∆̇3 is generated by the diagram:

0
d // 1

d0
//

d1
//
2s0oo

∂ 0
//

∂ 1 //

∂ 2
//
3

such that:

d1d = d0d; ∂
kdi = ∂

idk−1 if i < k; s0d0 = s0d1 = id.

We denote by j3 : ∆3 → ∆̇3 the full inclusion of the subcategory ∆3 in which obj(∆3) = {1,2,3}.
Still, there are obvious inclusions: ṫ3 : ∆̇3 → ∆̇ and t3 : ∆3 → ∆. Again, ∆̇3 herein usually denotes the
respective locally discrete 2-category.

Definition 3.4.6. We denote by W : ∆3 → CAT the weight below (defined in [105]), in which ∇n

denotes the localization of the category/finite ordinal n w.r.t all the morphisms.

∇1
//

//
∇2oo

//
//
//
∇3

Following [105], if A : ∆→ H is a pseudofunctor, we define

Desc(A ) := {W,A ◦ t3}bi .

Remark 3.4.7. The weight W is pseudonaturally equivalent to the terminal weight. Therefore,
Desc(A ) is by definition (equivalent to) the conical bilimit of A ◦ t3 .

In order to prove Theorem 3.4.10, we need:

Proposition 3.4.8. Let Y be any category and Y : ∆op
3
→ CAT the constant 2-functor n 7→ Y . Given

any (strict) 2-functor B : ∆op
3
→ H and a pseudonatural transformation α : A −→ Y , the following

equations hold:

Y oo
IdY // Y Y

B(1) α−1
d1

==⇒

α
1

::

B(1)
α

d0
==⇒

α−1
d1

==⇒

α
1

dd
α
1

::

=

=

B(1) =
α

d0
==⇒

α
1

dd

B(1) α−1
d1

==⇒

α
1

::

B(1)
α

d0
==⇒

α
1

dd

B(2)
B(d1)

cc

B(d0)

;;
α
2

OO

B(3)
B(∂ 2)
oo

B(∂ 0)
// B(2)

B(d1)

cc

B(d0)

;;
α
2

OO

B(2)
B(d1)

cc

B(d0)

;;
α
2

OO

B(3)
B(∂ 1)
oo

(associativity codescent equation)
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Y Y

B(1)

α
1

::

α−1
d1

==⇒ B(1)
α

d0
==⇒

α
1

dd

B(2)
B(d1)

cc

B(d0)

;;
α
2

OO

B(1)

B(s0)

OO

B(1)

= = α
1

VV

α
1

HH

(identity of codescent)

Proof. We start by proving the identity of codescent. Indeed, by Definition 3.2.2 of pseudonatural
transformation (see [77]), since d0s0 = d1s0 = id1 , B is a 2-functor and Y is constant equal to Y , we
have that α

d0s0 = Id
α1

= α
d1s0 which implies in particular that

B(1)

α
s0

=⇒

B(s0) //

α
1

��

B(2)

α
2

��

B(d0) // B(1)

α
d0

==⇒
α
1

��

=

B(1)

= α
1

��

α
1

��

B(1)

α
s0

=⇒

B(s0) //

α
1

��

=

B(2)

α
2

��

B(d1) // B(1)

α
d1

==⇒
α
1

��
Y Y Y

and therefore:

B(1)

α−1
d1

==⇒
α
1

��

B(2)
B(d1)oo

α
2

��

B(1)
B(s0)oo

α−1
s0

==⇒
α
1

��

α
s0

=⇒

B(s0) //

α
1

��

=

B(2)

α
2

��

B(d0) // B(1)

α
d0

==⇒
α
1

��

=

B(2)

α
2

��

B(d0)
##

B(d1)
{{

B(1)
B(s0)oo

B(1) α−1
d1

==⇒
α
1

$$

B(1)

α
1

zz

α
d0

==⇒

Y oo
IdY

// Y Y

is equal to the identity on α1 . This proves that the identity of codescent holds.
It remains to prove that the associativity codescent equation holds. Since, by the definition of

pseudonatural transformation, we have that(
α

d0 ∗ Id
B(∂2)

)
·α

∂2 = α
d0∂2 = α

d1∂0 =
(

α
d1 ∗ Id

B(∂0)

)
·α

∂0 ,

we conclude that

Y oo
IdY // Y

=

Y
IdY //

α−1
∂2

==⇒

Y

α
∂0

==⇒B(1)
α

d0
==⇒

=

=

α−1
d1

==⇒

α
1

::
α
1

dd

B(2)

α
2

OO

B(d0)

;;

B(3)
B(∂ 2)
oo

B(∂ 0)
// B(2)

α
2

OO

B(d1)

cc

B(2)

α
2

OO

B(3)
B(∂ 2)
oo

α
3

cc

B(∂ 0)
//

α
3

;;

=

B(2)

α
2

OO
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holds. Since α
d0∂0 = α

d1∂0 , α
d1∂2 = α

d1∂1 , by the equality above, the left side of the associativity
codescent equation is equal to

Y
IdY //

α−1
∂2

==⇒

Y

α
∂0

==⇒

Y
IdY //

α−1
∂1

==⇒

Y

α
∂1

==⇒B(1)

α
1

>>

α−1
d1

==⇒ B(1)

α
1

``

α
d0

==⇒ = B(1)

α
1

>>

α−1
d1

==⇒ B(1)

α
1

``

α
d0

==⇒

B(2)
B(d1)

__
α
2

OO

B(3)
B(∂ 2)
oo

α
3

``

B(∂ 0)
//

α
3

==

=

B(2)

α
2

OO

B(d0)

??

B(2)
B(d1)

__
α
2

OO

B(3)
B(∂ 1)
oo

α
3

``

B(∂ 1)
//

α
3

==

=

B(2)

α
2

OO

B(d0)

??

which is clearly equal to the right side of the associativity codescent equation.

Remark 3.4.9. One important difference between (pointwise) pseudo-Kan extensions (weighted
bilimits) and (pointwise) Kan extensions (strict 2-limits) is the following: if we consider the inclusion
t2 : ∆2 → ∆ of the full subcategory with only 1 and 2 as objects into the category ∆, then L ant2⊤

∼=⊤
while PsL ant2⊤ ̸≃ ⊤, where, by abuse of language, ⊤ always denotes the appropriate 2-functor
constantly equal to the terminal category. Actually, PsL ant2⊤(3) is equivalent to the category with
only one object and one nontrivial automorphism.

Theorem 3.4.10. Let ⊤ : ∆3 → CAT and ⊤ : ∆→ CAT be the terminal weights. We have that
PsL ant3⊤≃⊤.

Proof. We prove below that, given a constant 2-functor Y : ∆3 → CAT,

[∆3 ,CAT]PS (∆(t3−,n),Y )≃ CAT(∇n,Y )

which, by the dual of Theorem 3.3.13 given in Remark 3.3.14, completes our argument since it proves
that ∆(t3−,n)∗bi⊤≃ ∇n≃⊤(n).

Let εd be the counit of the discrete comonad on the category of small categories (see 3.4.2), we
define the functor

CAT(∇n,Y )→
[
∆3 ,CAT

]
PS (∆(t3−,n),Y ), A 7→ ξ

A, (x : A→ B) 7→
(
ξ
x : ξ

A =⇒ ξ
B)

in which, given a functor A : ∇n→ Y and a natural transformation x : A→ B, ξ A and ξ x are defined
by:

ξ
A
1

:= A◦ ε
d
n
,

ξ
A
2

:= A◦ ε
d
n
◦∆(t3(d

1),n),

ξ
A
3

:= A◦ ε
d
n
◦∆(t3(d

1
∂

2),n),

ξ
A
d1

:= Id
ξ2
,

ξ
A
s0

:= Id
ξ2
,

ξ
A
∂1

:= Id
ξ2
,

(
ξ

A
d0

)
f :2→n

:= A( f (0)≤ f (1)),

ξ
A
∂0

:= Id
∆(t3 (∂

2),n)
∗ξ

A
d0
.

ξ
x
1

:= x∗ Id
εd
n
, ξ

x
2

:= x∗ Id
εd
n ◦∆(t3 (d

1),n)
, ξ

x
3

:= x∗ Id
εd
n ◦∆(t3 (d

1∂2),n)
.

We prove that this functor is actually an equivalence. Firstly, we define the inverse equivalence[
∆3 ,CAT

]
PS (∆(t3−,n),Y )→ CAT(∇n,Y ), α 7→℘

α , (y : α =⇒ β ) 7→
(
℘

y :℘
α =⇒℘

β

)
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where (℘y)
j
:= (y1)j and ℘α(i≤ j) is the component of the natural transformation below on the object

(i, j) : 2→ n of ∆(t3(2),n).

Y

∆(t3(1),n)
α−1

d1
==⇒

α
1

77

∆(t3(1),n)
α

d0
==⇒

α
1

gg

∆(t3(2),n)
∆(d1,n)

ff

∆(d0,n)

88
α
2

OO

It remains to show that ℘α defines a functor ∇n→ Y . Indeed, this follows from the associativity
codescent equation and the identity of codescent of Proposition 3.4.8. More precisely, α satisfies the
equations of this proposition, since ∆(t3−,n) is a 2-functor. Given i≤ j≤ k of ∇n, by the definition
of ℘α , ℘α(j ≤ k)℘α(i ≤ j) is the component of the natural transformation of the left side of the
associativity codescent equation on (i, j,k) : 3→ n, while the component of the right side on (i, j,k) is
equal to ℘α(i≤ k). Analogously, the identity of codescent implies that ℘α(idi) = id

℘α (i)
.

Finally, since it is clear that ℘ξ (−)
= Id

CAT(∇n,Y ) , the proof is completed by showing the natural
isomorphism

Γ : ξ
℘(−)

=⇒ Id
[∆3 ,CAT]PS

(∆(t3−,n),Y )

where each component is the invertible modification defined by:

(Γ
α
)
1

:= Id
α1
, (Γ

α
)
2

:= α
d1 , (Γ

α
)
3

:= α
d1∂2 .

Theorem 3.4.11 (Descent Objects). Let A : ∆→ H be a pseudofunctor. We have that Desc(A )≃
PsRanjA (0).

Proof. By Remarks 3.4.4 and 3.4.7, we need to prove that the conical bilimit of A is equivalent to
the conical bilimit of A ◦ t3 . Indeed, by Theorems 3.3.11 and 3.4.10,

{⊤,A ◦ t3}bi ≃
{

PsL ant3⊤,A
}

bi
≃ {⊤,A }bi .

Observe that, by Theorem 3.4.11, if A : ∆̇→H is a pseudofunctor, then A is of (almost/effective)
j-descent if and only if A ◦ ṫ3 is of (almost/effective) j3-descent.

3.4.12 Strict Descent Objects

To finish this section, we show how we can see descent objects via (strict/enriched) Kan extensions
of 2-diagrams. Although this construction gives a few strict features of descent theory (such as the
strict factorization), we do not use the results of this part in the rest of the paper (since, as explained in
Section 3.3, we avoid coherence technicalities).
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Clearly, unlike the general viewpoint of this paper, we have to deal closely with coherence
theorems. Most of the coherence replacements used here follow from the 2-monadic approach to
general coherence results [9, 67, 77]. Also, to formalize some observations of free 2-categories, we
use the concept of computad, defined in [103].

The first step is actually older than the general coherence results: the strictification of a bicategory.
We take the strictification of the 2-category ∆̇3 and denote it by ∆̇Str . More precisely, this is defined
herein as follows:

Definition 3.4.13. We denote by ∆̇Str the locally preordered 2-category freely generated by the diagram

0
d // 1

d0
//

d1
//
2s0oo

∂ 0
//

∂ 1 //

∂ 2
//
3

with the invertible 2-cells:

σ01 : ∂
1d0 ∼= ∂

0d0

σ02 : ∂
2d0 ∼= ∂

0d1

σ12 : ∂
2d1 ∼= ∂

1d1

n0 : s0d0 ∼= Id1

n1 : Id1
∼= s0d1

ϑ : d1d ∼= d0d

We consider the full inclusion jStr : ∆Str → ∆̇Str in which obj(∆Str) = {1,2,3}.

Remark 3.4.14. Observe that the diagram and the invertible 2-cells described above define a com-
putad [103] which we denote by �. Thereby Definition 3.4.13 is precise in the following sense: there
is a forgetful functor between the category of locally groupoidal and preordered 2-categories and the
category of computads. This forgetful functor has a left adjoint which gives the locally preordered
and groupoidal 2-categories freely generated by each computad. The (locally groupoidal) 2-category
∆̇Str is, by definition, the image of the computad � by this left adjoint functor.

Remark 3.4.15. [[80]] ∆Str is the locally groupoidal 2-category freely generated by the corresponding
diagram and invertible 2-cells σ01, σ02, σ12, n0, n1, since there are no equations involving just these
2-cells.

Indeed, ∆̇Str and ∆Str are strict replacements of our 2-categories ∆̇3 and ∆3 respectively. Actually,
jStr is the strictification of j3 . By the construction of ∆̇Str , we get the desired main coherence result of
this subsection:

Proposition 3.4.16. There are obvious biequivalences ∆Str ≈ ∆3 and ∆̇Str ≈ ∆̇3 which are bijective on
objects. Also, if H is any 2-category, [∆Str ,H]→ [∆Str ,H]PS is essentially surjective.

Moreover, for any 2-functor C : ∆Str → CAT, we have an equivalence

[∆Str ,CAT] (∆̇Str(0, jStr(−)),C )≃ [∆Str ,CAT]PS (∆̇Str(0, jStr(−)),C ).

Corollary 3.4.17. If A : ∆Str → H is a 2-functor,

PsRanj3
ˇA ≃ PsRanjStr

A ≃RanjStr
A
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provided that the pointwise Kan extension RanjStr
A exists, in which ˇA is the composition of A with

the biequivalence ∆3 ≈ ∆Str .

Assuming that the pointwise Kan extension RanjStr
A exists, RanjStr

A (0) is called the strict
descent diagram of A . By the last result, the descent object of A is equivalent to its strict descent
object provided that A has a strict descent object.

Remark 3.4.18. Using the strict descent object, we can construct the “strict” factorization described
in Section 3.1. If A : ∆̇Str → H is a 2-functor and H has strict descent objects, we get the factorization
from the universal property of the right Kan extension of A ◦ jStr : ∆Str → H along jStr . More precisely,
since jStr is fully faithful, we can consider that RanjStr

A ◦ jStr is actually a strict extension of A ◦ jStr .
Thereby we get the factorization

RanjStr
(A ◦ jStr)(0)

RanjStr
(A ◦jStr )(d)

��
A (0)

η0
A

99

A (d)
// A (1)

in which η0
A

is the comparison induced by the unit/comparison ηA : A −→RanjStr
(A ◦ jStr).

Remark 3.4.19. As observed in Section 3.3.1, the Kan extension of a 2-functor A : ∆→ H along j
gives the equalizer of A (d0) and A (d1). This is a consequence of the isomorphism L ant2

⊤∼=⊤ of
Remark 3.4.9.

We get a glimpse of the explicit nature of the (strict) descent object at Theorem 3.4.20 which
gives a presentation to ∆̇Str . We denote by �̇ the locally groupoidal 2-category freely generated by
the diagram and 2-cells described in Definition 3.4.13. It is important to note that �̇ is not locally
preordered. Moreover, there is an obvious 2-functor �̇→ ∆̇Str , induced by the unit of the adjunction
between the category of locally groupoidal 2-categories and the category of locally groupoidal and
preordered 2-categories.

Theorem 3.4.20 ([80]). Let H be a 2-category. There is a bijection between 2-functors A : ∆̇Str → H

and 2-functors A : �̇→ H satisfying the following equations:

– Associativity:

A(0)
A(d) //

A(d)
��

A(ϑ)
===⇒

A(1)

A(d0)��

A(d0) //

A(σ01)====⇒

A(2)

A(∂ 0)��
=

A(3)
A(σ02)====⇒

A(2)
A(∂ 0)oo

A(ϑ)
===⇒

A(2)

A(1) A(d1) //

A(d1) ��
A(σ12)====⇒

A(2) A(∂ 1) // A(3)

A(id3 )��

A(2)

A(ϑ)
===⇒

A(∂ 2)

OO

A(1)A(d0)oo
A(d1)

OO

A(2)
A(∂ 2)

// A(3) A(1)

A(d1)

OO

A(0)
A(d)
oo

A(d)
OO

A(d)
// A(1)

A(d0)

OO
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– Identity:

A(0)
A(d) //

A(d)

��

A(1)

A(d1)

��
A(n1)⇐===

A(0)

A(d)

��

= A(d)

��

A(ϑ)⇐===

A(1) A(d0) //
A(n0)⇐===

A(2)

A(s0)!!
A(1)

=

A(1)

Remark 3.4.21. [[77]] The 2-category CAT is CAT-complete. In particular, CAT has strict descent
objects. More precisely, if A : ∆Str → CAT is a 2-functor, then{

∆̇Str(0, jStr(−)),A
}∼= [∆Str ,CAT]

(
∆̇Str(0, jStr(−)),A

)
.

Thereby, we can describe the category the strict descent object of A : ∆Str → CAT explicitly as follows:

1. Objects are 2-natural transformations W : ∆̇Str(0,−)−→A . We have a bijective correspondence
between such 2-natural transformations and pairs (W,ρ

W
) in which W is an object of A (1) and

ρ
W

: A (d1)(W )→A (d0)(W ) is an isomorphism in A (2) satisfying the following equations:

– Associativity:(
A (∂ 0)(ρ

W
)
)(

A (σ02)W

)(
A (∂ 2)(ρ

W
)
)(

A (σ12)
−1
W

)
=
(
A (σ01)W

)(
A (∂ 1)(ρ

W
)
)

– Identity:
(A (n0)W )

(
A (s0)(ρ

W
)
)
(A (n1)W ) = idW

If W : ∆̇(0,−) −→A is a 2-natural transformation, we get such pair by the correspondence
W 7→ (W1(d),W2(ϑ)).

2. The morphisms are modifications. In other words, a morphism m : W→ X is determined by a
morphism m : W → X such that A (d0)(m)ρ

W
= ρX A (d1)(m).

3.5 Elementary Examples

We use some particular elementary examples of inclusions t : A→ Ȧ for which we can study the
Ps-Rant(−◦ t)-pseudoalgebras/effective t-descent diagrams in the setting of Section 3.2. These
examples are given herein.

Let H be a 2-category with enough bilimits to construct our pseudo-Kan extensions as global
pointwise pseudo-Kan extensions. The most simple example is taking the final category 1 and the
inclusion 0→ 1 of the empty category/empty ordinal. In this case, a pseudofunctor A : 1→ H is of
effective descent if and only if this pseudofunctor (which corresponds to an object of H) is equivalent
to the pseudofinal object of H.

If, instead, we take the inclusion d0 : 1→ 2 of the ordinal 1 into the ordinal 2 such that d0 is the
inclusion of the codomain object, then a pseudofunctor A : 2→ H corresponds to a 1-cell of H and
A is of effective d0-descent if and only if its image is an equivalence 1-cell. Moreover, A is almost
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d0-descent/d0-descent if and only if its image is faithful/fully faithful. Precisely, the comparison
morphism would be the image A (0

d→ 1) of the only nontrivial 1-cell of 2.

Furthermore, we may consider the following 2-categories Ḃ. The first one corresponds to the
bilimit notion of lax-pullback, while the second corresponds to the notion of pseudopullback.

b //

��

e

��

b //

��

e

��
c

⇒

// o c // o

As explained in Remark 3.3.15, the examples above are all conical bilimits: it is clear that we
can get every conical bilimit via pseudo-Kan extension. Actually, we can study the exactness of any
weighted bilimit in our setting. More precisely, if W : A→ CAT is a weight, we can define Ȧ adding
an extra object a and defining

Ȧ(a,a) := ∗ Ȧ(a,b) := W (b) Ȧ(b,a) := /0

for each object b of A. Hence, it remains just to define the unique nontrivial composition, that is to
say, we define the functor composition ◦ : Ȧ(b,c)× Ȧ(a,b)→ Ȧ(a,c) for each pair of objects b,c of
A to be the “mate” of

Wbc : Ȧ(b,c)→ CAT(W (b),W (c)).

Thereby, a pseudofunctor A : Ȧ → H is of effective t-descent/t-descent/almost t-descent if the
canonical comparison 1-cell A (a)→{W ,A ◦ t}bi is an equivalence/fully faithful/faithful.

3.6 Eilenberg-Moore Objects

Let H be a 2-category as in the last sections. The 2-category Adj such that an adjunction in a 2-category
corresponds to a 2-functor Adj→ H is described in [97]. There is a full inclusion m : Mnd→ Adj

such that monads of H correspond to 2-functors Mnd→ H. We describe this 2-category below, and
we show how it (still) works in our setting. The 2-category Adj has two objects: alg and b. The
hom-categories are defined as follows:

Adj(b,b) := ∆̇ Adj(alg,b) := ∆− Adj(alg,alg) := ∆
+
− Adj(b,alg) := ∆

+

in which ∆− denotes the subcategory of ∆ with the same objects such that its morphisms preserve initial
objects and, analogously, ∆+ is the subcategory of ∆ with the same objects and last-element-preserving
arrows. Finally, ∆

+
− is just the intersection of both ∆− and ∆+.

Then the composition of Adj is such that Adj(b,w)×Adj(c,b)→ Adj(c,w) is given by the usual
“ordinal sum” + (given by the usual strict monoidal structure of ∆) for every objects c,w of Adj and

Adj(alg,w)×Adj(c,alg) → Adj(c,w)

(x,y) 7→ x+ y−1

(φ : x→ x′,υ : y→ y′) 7→ φ ⊕υ
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in which

φ ⊕υ(i) :=

υ(i), if i < y

φ(i−m)−1+ y′ otherwise.

It is straightforward to verify that Adj is a 2-category. We denote by u the 1-cell 1 ∈ Adj(alg,b)

and by l the 1-cell 1 ∈ Adj(b,alg). Also, we consider the following 2-cells

∆̇(0,1) ∋ n : id
b
⇒ ul, ∆

+
−(1,2) ∋ e : lu⇒ id

alg
.

The 2-category Mnd is defined to be the full sub-2-category of Adj with the unique object b. As
mentioned above, we denote its full inclusion by m : Mnd→ Adj.

Firstly, observe that (l ⊣ u,n,e) is an adjunction in Adj, therefore the image of (l ⊣ u,n,e) by a
2-functor is an adjunction. Also, if (L ⊣U,η ,ε) is an adjunction in H, then there is a unique 2-functor
A : Adj→ H such that A (u) := U , A (l) := L, A (e) := ε and A (u) := η . Thereby, it gives a
bijection between adjunctions in H and 2-functors Adj→ H [97].

Secondly, as observed in [97], there is a similar bijection between 2-functors Mnd→H and monads
in the 2-category H. Also, if the pointwise (enriched) Kan extension of a 2-functor Mnd→H along m
exists, it gives the usual Eilenberg-Moore adjunction. Moreover, given a 2-functor A : Adj→H, if the
pointwise Kan extension Ranm (A ◦m) exists, the usual comparison A (alg)→Ranm (A ◦m)(alg)

is the Eilenberg-Moore comparison 1-cell.
If, instead, A : Adj→ H is a pseudofunctor, we also get that A (l) ⊣A (u) and(

A (l) ⊣A (u),a−1
ul

A (n)a
b
,a−1

alg
A (e)alu

)
is an adjunction in H. The unique 2-functor A ′ corresponding to this adjunction is pseudonaturally
isomorphic to A . Furthermore, the Eilenberg-Moore object is a flexible limit as it is shown in [8].

Proposition 3.6.1 ([8]). If H is any 2-category, [Adj,H]→ [Adj,H]PS is essentially surjective. More-
over, for any 2-functor C : Adj→ CAT, we have an equivalence

[Adj,CAT] (Adj(alg,m(−)),C )≃ [Adj,CAT]PS (Adj(alg,m(−)),C ).

Corollary 3.6.2. If A : Mnd→ H is a pseudofunctor,

PsRanj3
A ≃ PsRanm ˇA ≃Ranm ˇA

provided that the pointwise Kan extension Ranm ˇA exists, in which ˇA is a 2-functor pseudonaturally
isomorphic to A .

Therefore, if H has Eilenberg-Moore objects, a pseudofunctor A : Adj→ H is of effective m-
descent/m-descent/almost m-descent if and only if A (u) is monadic/premonadic/almost monadic.
Also, the “factorizations”

A (b) A (l) //

l
A

&&

A (alg) A (alg) A (u) //

ηalg
A

&&

A (b)

PsRanm(A ◦m)(alg)

∼= ηalg
A

88

PsRanm(A ◦m)(alg)

∼= u
A

88
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described in Theorem 3.3.4 are pseudonaturally equivalent to the usual Eilenberg-Moore factorizations.
Henceforth, these factorizations are called Eilenberg-Moore factorizations (even if the 2-category H

does not have the strict version of it).

3.7 The Beck-Chevalley Condition

With this elementary examples, we already can give generalizations of Theorems 3.8.2 and 3.1.1. We
keep our setting in which t : A→ Ȧ is an a-inclusion as in 3.3.22.

Let T be an idempotent pseudomonad over the 2-category H. The most obvious consequence of
the commutativity results of Section 3.2 is the following: if an object X of H can be endowed with
a T -pseudoalgebra structure and there is an equivalence X →W , then W can be endowed with a
T -pseudoalgebra as well.

In the case of pseudo-Kan extensions, we have the following: let A ,B : Ȧ→H be pseudofunctors.
A pseudonatural transformation α : A −→B can be seen as a pseudofunctor Cα : 2→

[
Ȧ,H

]
PS. By

Corollaries 3.3.24 and 3.3.28, we get the following: if Cα(1) is of effective t-descent/t-descent/almost
t-descent and the images of the mate Ȧ→ [2,H]PS of Cα are of effective d0-descent/d0-descent/almost
d0-descent as well, then Cα(0) is also of effective t-descent/t-descent/almost t-descent. In Section 3.8,
we show that Theorem 3.1.1 is a particular case of:

Proposition 3.7.1. Let α : A −→ B be a pseudonatural transformation. If B is of effective
t-descent/t-descent/almost t-descent and α is a pseudonatural equivalence/objectwise fully faith-
ful/objectwise faithful, then A is of effective t-descent/t-descent/almost t-descent as well.

Definition 3.7.2. [Beck-Chevalley condition] A pseudonatural transformation α : A −→B satisfies
the Beck-Chevalley condition if every 1-cell component of α is left adjoint and, for each 1-cell
f : w→ c of the domain of A , the mate of the invertible 2-cell α f : B( f )αw ⇒ αcA ( f ) w.r.t. the
adjunctions α̂

w ⊣ αw and α̂
c ⊣ αc is invertible.

By doctrinal adjunction [57], α : A −→B satisfies the Beck-Chevalley condition if and only if
α is itself a right adjoint in the 2-category

[
Ȧ,H

]
PS. In other words, we get:

Lemma 3.7.3. Let α : A −→ B be a pseudonatural transformation and Cα : 2→
[
Ȧ,H

]
PS the

corresponding pseudofunctor. Consider the inclusion u : 2→ Adj of the morphism u. There is a
pseudofunctor Ĉα : Adj→

[
Ȧ,H

]
PS such that Ĉα ◦u=Cα if and only if α satisfies the Beck-Chevalley

condition.

Thereby, as straightforward consequences of Corollaries 3.3.25 and 3.3.29, using the terminology
of Lemma 3.7.3, we get what can be called a generalized version of Bénabou-Roubaud Theorem:

Theorem 3.7.4. Assume that α : A −→B is a pseudonatural transformation satisfying the Beck-
Chevalley condition and all components of αt = α ∗ Idt are monadic.

– If B is of almost t-descent, then: αa is of almost m-descent if and only if A is of almost
t-descent;

– If B is of t-descent, then: αa is premonadic if and only if A is of t-descent;
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– If B is of effective t-descent, then: αa is monadic if and only if A is of effective t-descent.

Proof. Indeed, by the hypotheses, for each item, there is a pseudofunctor Ĉα : Adj→
[
Ȧ,H

]
PS

satisfying the hypotheses of Corollary 3.3.25 or Corollary 3.3.29.

Remark 3.7.5. It is important to observe that the hypothesis of the theorem obviously does not
include the monadicity of αa , since t : A→ Ȧ is an a-inclusion.

3.8 Descent Theory

In this section, we establish the setting of [52] and prove all the classical results mentioned in Section
3.1 for pseudocosimplicial objects, except Theorem 3.1.2 which is postponed to Section 3.9.

Henceforth, let C ,D be categories with pullbacks and H be a 2-category with the weighted bilimits
whenever needed as in the last sections. In the context of [52], given a pseudofunctor A : C op→ H,
the morphism p : E→ B of C is of effective A -descent/A -descent/almost A -descent if Ap : ∆̇→ H

is of effective j-descent/j-descent/almost j-descent, where Ap is the composition of the diagram

Dp : ∆̇
op→ C

· · · // //
//
// E×p E×p E

// ////
vv
hh
{{

E×p E
ss

mm
//
// Eoo p // B

with the pseudofunctor A , in which the diagram above is given by the pullbacks of p along itself, its
projections and diagonal morphisms. By the results of Section 3.4, for H= CAT, this definition of
effective A -descent morphism coincides with the classical one in the context of [51, 52].

We get the usual factorizations of (Grothendieck) A -descent theory [52] from Theorem 3.3.4,
although the usual strict factorization comes from Remark 3.4.18. More precisely, if p : E→ B is a
morphism of C , we get:

Ap(0) = A (B) A (p) //

η0

A ◦Dp
**

Ap(1) = A (E)

DescA (p)≃ PsRanj(Ap ◦ j)(0)

∼= d
Ap

44

In descent theory, a morphism (U,α) between pseudofunctors A : C op→ H and B :Dop→ H

is a pullback preserving functor U : C →D with a pseudonatural transformation α : A −→B ◦U .
Such a morphism is called faithful/fully faithful if α is objectwise faithful/fully faithful.

For each morphism p : E→ B of C , a morphism (U,α) between pseudofunctors A : C op→ H

and B : Dop → H induces a pseudonatural transformation α
p

: Ap −→ BU(p). Of course, α
p

is
objectwise faithful/fully faithful if (U,α) is faithful/fully faithful.

We say that such a morphism (U,α) between pseudofunctors A : C op→ H and B :Dop→ H

reflects almost descent/descent/effective descent morphisms if, whenever U(p) is of almost B-
descent/B-descent/effective B-descent, p is of almost A -descent/A -descent/effective A -descent.

Remark 3.8.1. Consider the pseudofunctor given by the basic fibration ( )∗ : C op→ CAT in which

(p)∗ : C /B→ C /E
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is the change of base functor, given by the pullback along p : E→ B. For short, we say that a morphism
p : E→ B is of effective descent if p is of effective ( )∗-descent.

In this case, a pullback preserving functor U : C → D induces a morphism (U,u) between
the basic fibrations ( )∗ : C op → CAT and ( )∗ : Dop → CAT in which, for each object B of C ,
uB : C /B→D/U(B) is given by the evaluation of U . If U is faithful/fully faithful, so is the induced
morphism (U,u) between the basic fibrations.

We study pseudocosimplicial objects A : ∆̇→ H and verify the obvious implications within the
setting described above. We start with the embedding results (which are particular cases of 3.7.1):

Theorem 3.8.2 (Embedding Results). Let α : A −→B be a pseudonatural transformation. If α is
objectwise faithful and B is of almost j-descent, then so is A . Furthermore, if B is of j-descent and
α is objectwise fully faithful, then A is of j-descent as well.

Of course, we have that, if A ≃B, then A is of almost j-descent/j-descent/effective j-descent if
and only if B is of almost j-descent/j-descent/effective j-descent as well.

Corollary 3.8.3. Let (U,α) be a morphism between the pseudofunctors A : C op→H and B :Dop→
H (as defined above).

– If (U,α) is faithful, it reflects almost descent morphisms;

– If (U,α) is fully faithful, it reflects descent morphisms;

– If α is a pseudonatural equivalence, (U,α) reflects and preserves effective descent morphisms,
descent morphisms and almost descent morphisms.

We finish this section by proving Bénabou-Roubaud theorems. A functor F is a pseudosection if
there is G such that G◦F is naturally isomorphic to the identity. We use the following straightforward
result:

Lemma 3.8.4 (Monadicity of pseudosections). If a pseudosection is right adjoint, then it is monadic.
In particular, if A is a pseudocosimplicial object, then A (di : n→ n+1) is monadic whenever it is
right adjoint.

Proof. Assume that G ◦F is isomorphic to the identity. Given an absolute colimit diagram F ◦D,
it follows that G ◦F ◦D ∼= D is an absolute colimit diagram. The result follows, then, from the
monadicity theorem [4].

The second part of the lemma follows from the fact that di is a retraction and, hence, since A is a
pseudofunctor, A (d0 : n→ n+1) is a pseudosection for any i≤ n.

Recall that 1 is a monoid of ∆̇, as explained in Remark 3.4.1. On one hand, the monad induced
by this monoid, considered, for instance, in [104] and [71], is denoted by suc := (−+1) on ∆̇. On
the other hand, this monad induces a pseudomonad Suc := [suc,H]PS on the 2-category [suc,H]PS of
pseudocosimplicial objects of H. This is the 2-dimensional (dual) analogue of the notion of décalage
of simplicial sets as in [32].
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In particular, for each A : ∆̇→ H the component of the unit of Suc on A gives a pseudonatural
transformation SucA : A −→A ◦Suc whose correspondent pseudofunctor is denoted by CA : 2→[
∆̇,H

]
PS.

Observe that, CA : 2→
[
∆̇,H

]
PS is given by the mate of A ◦n : 2× ∆̇→H, in which n is the mate

of the unit of suc viewed as a functor 2→
[
∆̇, ∆̇

]
, defined by

n : 2× ∆̇→ ∆̇

(a,b) 7→ b+a (d, idb) 7→
(
d0 : b→ (b+1)

)
(ida ,d

i) 7→

di : b→ (b+1), if a = 0

di+1 : (b+1)→ (b+2), otherwise

(ida ,s
i) 7→

si : b→ (b+1), if a = 0

si+1 : (b+1)→ (b+2), otherwise.

0

d
��

d // 1

d0

��

//
// 2

d0

��

oo
//
//
// 3

d0

��

s0
ww

s1

�� //////// · · ·
s0ss
s1

{{

s2

��

d0

��
1

d1
// 2 d1 //

d2 // 3s1oo d1 //
d2 //
d3 // 4

s1
gg

s2

^^

//////// · · ·
s1

kk

s2

cc

s3

\\

We say that a pseudofunctor A : ∆̇→ H satisfies the descent shift property (or just shift property
for short) if A ◦Suc is of effective j-descent. We get, then, a version of Bénabou-Roubaud Theorem
for pseudocosimplicial objects:

Theorem 3.8.5. Let A : ∆̇→ H be a pseudofunctor satisfying the shift property. If the pseudonatural
transformation SucA satisfies the Beck-Chevalley condition, then the Eilenberg-Moore factorization
of A (d) is pseudonaturally equivalent to its usual factorization of j-descent theory. In particular,

– A is of effective j-descent iff A (d) is monadic;

– A is of j-descent iff A (d) is premonadic;

– A is of almost j-descent iff the A (d) is almost monadic.

Proof. By Lemma 3.8.4, the components of SucA j = (SucA )∗ Idj are monadic.

It is known that in the context of [52] introduced in this section, the natural morphism E×p E→ E
is always of effective A -descent. It follows from this fact that Ap always satisfies the shift property.
More precisely:

Lemma 3.8.6. Let A : C op→ CAT be a pseudofunctor, in which C is a category with pullbacks. If
p is a morphism of C , Ap (defined above as Ap := A ◦Dp) satisfies the shift property.
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Proof. This follows from the fact that, for any pseudofunctor A : C op→ CAT, given a morphism
p : E→ B of C , the natural morphism E×p E→ E between the pullback of p along p and E (being
a split epimorphism) is of effective A -descent. In particular, Ap ◦Suc ≃AE×BE→E is of effective
j-descent.

Thereby, by Theorem 3.8.5, the usual Bénabou-Roubaud Theorem (Theorem 3.1.3) follows from
Theorem 3.8.5, as it is shown below.

Proof. Assuming that A : C op→ H satisfies the hypotheses of Theorem 3.1.3, we have that, given
a morphism p of C , the Beck Chevalley condition of the theorem implies, in particular, that SucAp

satisfies the Beck Chevalley condition. Therefore, since Ap satisfies the shift property, Ap(d) =A (p)
is monadic/premonadic/almost monadic iff A is of effective j-descent/j-descent/almost j-descent.

Finally, the most obvious consequence of the commutativity properties is that bilimits of effective
j-descent diagrams are effective j-descent diagrams. For instance, taking into account Remark 3.8.1
and realizing that pseudopullbacks of functors induce pseudopullback of overcategories we already
get a weak version of Theorem 3.1.5.

Next section, we study stronger results on bilimits and apply them to descent theory.

3.9 Further on Bilimits and Descent

Henceforth, let t : A→ Ȧ,h : B→ Ḃ be inclusions as in 3.3.22 and let H be a bicategorically complete
2-category.

Definition 3.9.1. [Pure Structure] A morphism f : a→ b of Ȧ is called a t-irreducible morphism if
b ̸= a and f is not in the image of

◦ : Ȧ(c,b)× Ȧ(a,c)→ Ȧ(a,b),

for every b ̸= c in A.
An object c of A is called a t-pure structure object if each 1-cell g of Ȧ(a,c) can be factorized

through some t-irreducible morphism f : a→ b such that b ̸= c. That is to say, c is a t-pure structure
object if, for all g ∈ Ȧ(a,c), there are a morphism g′ and a t-irreducible morphism f such that g′ f = g.

The full sub-2-category of the t-pure structure objects of A is denoted by St , while the full
sub-2-category of Ȧ of the objects that are not in St (including a) is denoted by It . We have the full
inclusion it : It → Ȧ.

In particular, if f : a→ b is a t-irreducible morphism of Ȧ, then b is an object of It . We denote by
gt : It×2→ It×2 the full inclusion in which

obj
(
It×2

)
:= obj(It×2)−{(a,0)} .

Theorem 3.9.2. Let α : A −→ B be an objectwise fully faithful pseudonatural transformation
such that B is of effective t-descent. We consider the mate of α , denoted by Cα : Ȧ×2→ H. The



130 Pseudo-Kan Extensions and Descent Theory

pseudofunctor A is of effective t-descent if and only if Cα ◦ (it× Id2) : It × 2→ H is of effective
gt-descent.

Proof. Without losing generality, we prove it to H=CAT and get the general result via representable 2-
functors. We just need to prove that PsRantA ◦t(a) is equivalent to PsRangt

(Cα ◦ (it× Id2)◦gt)(a,0).
The category of pseudonatural transformations ρ ′ : Ȧ(a, t(−))→A ◦ t is equivalent to the category

of pseudonatural transformations ρ : Ȧ(a, t(−))−→B ◦ t that can be factorized through αt, since αt
is objectwise fully faithful. Also, given ρ : Ȧ(a, t(−))−→B ◦ t, there exists ρ ′ : Ȧ(a, t(−))→A ◦ t
such that ρ ∼= (αt)ρ ′ if and only if the image of (αt)b is essentially surjective in the image of ρb for
every b of A. Also, if such ρ ′ exists, it is unique up to isomorphism: it is the pseudopullback of ρ

along (αt).
Actually, we claim that, for the existence of such ρ ′, it is (necessary and) sufficient (αt)b be

essentially surjective onto the image of ρb for every object b of It . That is to say, we just need to
verify the lifting property for the objects in It .

Indeed, assume that ρit can be lifted by αtit . Given an object c of St and a morphism g : a→ c,
we prove that ρc(g) is in the image of (αt)

c
up to isomorphism. Actually, there is a t-irreducible

morphism f : a→ b such that g′ f = f for some g′ : b→ c morphism of A, and, by hypothesis, there
is an object u of A (b) such that (αt)

b
(u)∼= ρb( f ), thereby:

ρc(g) = ρc ·
(
Ȧ(a, t(g′))

)
( f )∼= B(g′)ρb( f )∼= B(g′)(αt)

b
(u)∼= (αt)

c
(A (g′)(u)).

This completes the proof that it is enough to test the lifting property for the objects in It . Now,
one should observe that, since B is of effective t-descent, a pseudonatural transformation

It×2((a,0),gt−)−→ Cα ◦ (it× Id2)◦gt

is precisely determined (up to isomorphism) by a pseudonatural transformation

ρ : Ȧ(a, t(−))−→B ◦ t.

(i.e., an object of B(a)), such that ρit can be lifted by αtit . That is to say, as we proved, this is just a
pseudonatural transformation

ρ
′ : Ȧ(a, t(−))→A ◦ t.

Remark 3.9.3. Definition 3.9.1 and Theorem 3.9.2 are part of a general perspective over generaliza-
tions of classical theorems of cubes and pullbacks. The exhaustive exposition of such is outside the
scope of this paper.

We return to the context of Section 3.2. Let T be an idempotent pseudomonad on a 2-category H

and X be an object of H. We say that X is of T -descent if the comparison ηX : X → T (X) is fully
faithful. It is important to note that, if A : Ȧ→ H is of t-descent (following Definition 3.3.27), then
A is of PsRant(−◦ t)-descent.
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Corollary 3.9.4. Let T be an idempotent pseudomonad on H and A : Ȧ→ H a pseudofunctor such
that all the objects in the image of A ◦ t are T -descent objects. Assume that both A ,T ◦A are
of effective t-descent. We assume that A (b) can be endowed with a T -pseudoalgebra structure for
every object b ̸∈St in A. Then A (a) can be endowed with a T -pseudoalgebra structure.

Corollary 3.9.5. Let A : Ȧ→
[
Ḃ,H

]
PS be an effective t-descent pseudofunctor such that all the

pseudofunctors in the image of A ◦ t are of h-descent. Furthermore, we assume that A (b) is of
effective h-descent for every b ̸∈St in A. Then A (a) is of effective h-descent.

Recall the following full inclusion of 2-categories h : B→ Ḃ described in Section 3.5.

e

��
7→

b

��

// e

��
c // o c // o

(P)

As explained there, a diagram Ḃ→ H is of effective h-descent if and only if it is a pseudopullback. In
this case, the unique object in Sh is o. Thereby we get:

Corollary 3.9.6. Assume that A : Ḃ→ [Ȧ,H]PS is a pseudopullback diagram. If A (c),A (e) : Ȧ→H

are of effective t-descent and A (o) : Ȧ→ H is of t-descent, then A (b) is of effective t-descent.

Taking into account Remark 3.8.1 and realizing that pseudopullbacks of functors induce pseudop-
ullback of overcategories, we get Theorem 3.1.5 as a corollary.

3.9.7 Applications

In this subsection, we finish the paper giving applications of our results and proving the remaining
theorems presented in Section 3.1. Firstly, considering our inclusion j : ∆→ ∆̇, it is important to
observe that 1 ̸∈Sj , while all the other objects of ∆ belong to Sj . We start proving Theorem 4.2 of
[49], which is presented therein as a generalized Galois Theorem.

Theorem 3.9.8 (Galois). Let A ,B : ∆̇→ CAT be pseudofunctors and α : A −→B be an object-
wise fully faithful pseudonatural transformation. We assume that B is of effective j-descent. The
pseudofunctor A is also of effective j-descent if and only if the diagram below is a pseudopullback.

A (0)

α
0

��

A (d) //

αd=⇒

A (1)

α
1

��
B(0)

B(d)
// B(1)

Proof. Since, in this case, Ij = 2 and the inclusion gj : Ij×2→ Ij × 2 is precisely equal to the
inclusion described in the diagram P, by Theorem 3.9.2, the proof is complete.

As a consequence of Theorem 3.9.8, we get a generalization of Theorem 3.1.2. More precisely, in
the context of Section 3.8 and using the definitions presented there, we get:
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Corollary 3.9.9. Let (U,α) be a fully faithful morphism between pseudofunctors A : C op→ H and
B : Dop→ H, in which C and D are categories with pullbacks. Assume that U(p) is an effective
B-descent morphism of D. Then p : E→ B is of effective A -descent if and only if, whenever there
are u ∈B(B),v ∈A (E) such that α

p

1
(u)∼= BU(p)(d)(v), there is w ∈A (B) such that α

p

0
(w)∼= u.

Proof. Recall the definitions of Ap ,BU(p) ,α
p
. Since we already know that Ap is j-descent, the

condition described is precisely the condition necessary and sufficient to conclude that the diagram of
Theorem 3.9.8 is a pseudopullback.

Indeed, taking into account Remark 3.8.1, we conclude that Theorem 3.1.2 is actually a immediate
consequence of last corollary.

Given a category with pullbacks V , we denote by Cat(V ) the category of internal categories in V .
If V is a category with products, we denote by V -Cat the category of small categories enriched over V .
We give a simple application of the Theorem 3.1.5 below.

Lemma 3.9.10. If (V,×, I) is an infinitary lextensive category such that

J : Set→ V

A 7→ ∑
a∈A

Ia

is fully faithful, then the pseudopullback of the projection of the object of objects U0 : Cat(V )→V
along J is the category V -Cat.

Proof. We denote by Span(V ) the usual bicategory of objects of V and spans between them and
by V -Mat the usual bicategory of sets and V -matrices between them. Let Span

Set
(V ) be the full

sub-bicategory of Span(V ) in which the objects are in the image of Set.
Assuming our hypotheses, we have that Span

Set
(V ) is biequivalent to V -Mat. Indeed, we define

“identity” on the objects and, if A,B are sets, take a matrix M : A×B→ obj(V ) to the obvious span
given by the coproduct ∑

(x,y)∈A×B
M(x,y), that is to say, the morphism ∑(x,y)∈A×B M(x,y)→A is induced

by the morphisms M(x,y)→ Ix and the morphism ∑(x,y)∈A×B M(x,y)→ B is analogously defined.
Since V is lextensive, this defines a biequivalence. Thereby this completes our proof.

Corollary 6.2.5 of [72] says in particular that, for lextensive categories, effective descent mor-
phisms of Cat(V ) are preserved by the projection U0 : Cat(V )→V to the objects of objects. Thereby,
by Theorem 3.1.5, we get:

Theorem 3.9.11. If (V,×, I) is an infinitary lextensive category such that each arrow of V can be
factorized as a regular epimorphism followed by a monomorphism and

J : Set→ V

A 7→ ∑
a∈A

Ia

is fully faithful, then I : V -Cat→ Cat(V ) reflects effective descent morphisms.
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Proof. We denote by U : V -Cat→ Set the forgetful functor and by U0 : Cat(V )→V the projection
defined above. We have that U0,U,J and I are pullback preserving functors.

If p : E → B is a morphism of V -Cat such that I(p) is of effective descent, then U0I(p) is of
descent (by Corollary 5.2.1 of [72]). Therefore JU(p) is of descent.

Since J is fully faithful, by Theorem 3.8.3, U(p) is of descent. Therefore, since descent morphisms
of Set are of effective descent, we conclude that U(p) is of effective descent. This completes the
proof.

For instance, Theorem 6.2.8 of [72] and Proposition 3.9.11 can be applied to the cases of V = Cat

or V = Top:

Corollary 3.9.12. A 2-functor F between Cat-categories is of effective descent in Cat-Cat, if

– F is surjective on objects;

– F is surjective on composable triples of 2-cells;

– F induces a functor surjective on composable pairs of 2-cells between the categories of com-
posable pairs of 1-cells;

– F induces a functor surjective on 2-cells between the categories of composable triples of 1-cells.

Corollary 3.9.13. A Top-functor F between Top-categories is of effective descent in Top-Cat, if F
induces

– effective descent morphisms between the discrete spaces of objects and between the spaces of
morphisms in Top;

– a descent continuous map between the spaces of composable pairs of morphisms in Top;

– an almost descent continuous map between the spaces of composable triples of morphisms in
Top.

Since the characterization of (effective/almost) descent morphisms in Top is known [17, 21, 96],
the result above gives effective descent morphisms of Top-Cat.

Remark 3.9.14. We can give further formal results on (basic) effective descent morphisms (context
of Remark 3.8.1). The main technique in this case is to understand our overcategory as a bilimit of
other overcategories.

For instance, we study below the categories of morphisms of a given category C with pullbacks.
Consider the full inclusion of 2-categories t : A→ Ȧ

0

d
��
7→

a

pro0

��

pro1 //

ξ

=⇒

0

d
��

1 1
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Given a morphism of C , i.e. a functor F : 2→ C , we take the overcategory Fun(2,C )/F and define
A : Ȧ→ CAT in which

A (a) :=Fun(2,C )/F, A (0) :=C /F(1), A (1) :=C /F(0).

Finally, A (pro0),A (pro1) are given by the obvious projections, A (d) := F(d)∗ and the component
A (ξ ) in a morphism ϖ : H→ F is given by the induced morphism from H(0) to the pullback.

Observe that A is of effective t-descent, that is to say, we have that the overcategory Fun(2,C )/F
is a bilimit constructed from overcategories C /F(0) and C /F(1). Also, given a natural transformation
ϖ : F → G between functors 2→ C , i.e. a morphism of Fun(2,C ), taking Remark 3.8.1, we can
extend A to a 2-functor A : Ȧ→ [∆̇,CAT] in which A (a) := ( )∗ϖ , A (0) := ( )∗ϖ1

and A (1) := ( )∗ϖ0
.

The 2-functor A is also of effective t-descent. Therefore, by our results, we conclude that, if the
components ϖ1,ϖ0 are of (basic) effective descent, so is ϖ . Analogously, considering the category of
spans in C , the morphisms between spans which are objectwise of effective descent are of effective
descent.



Chapter 4

On Biadjoint Triangles

We prove a biadjoint triangle theorem and its strict version, which are 2-dimensional analogues

of the adjoint triangle theorem of Dubuc. Similarly to the 1-dimensional case, we demonstrate

how we can apply our results to get the pseudomonadicity characterization (due to Le Creurer,

Marmolejo and Vitale). Furthermore, we study applications of our main theorems in the context

of the 2-monadic approach to coherence. As a direct consequence of our strict biadjoint triangle

theorem, we give the construction (due to Lack) of the left 2-adjoint to the inclusion of the strict

algebras into the pseudoalgebras. In the last section, we give two brief applications on lifting

biadjunctions and pseudo-Kan extensions.

Introduction

Assume that E :A→ C, J :A→B, L :B→ C are functors such that there is a natural isomorphism

A
J //

E ��

B

L��
C

∼=

Dubuc [30] proved that if L :B→ C is precomonadic, E :A→ C has a right adjoint and A has some
needed equalizers, then J has a right adjoint. In this paper, we give a 2-dimensional version of this
theorem, called the biadjoint triangle theorem. More precisely, let A, B and C be 2-categories and
assume that

E : A→ C,J : A→B,L : B→ C

are pseudofunctors such that L is pseudoprecomonadic and E has a right biadjoint. We prove that,
if we have the pseudonatural equivalence below, then J has a right biadjoint G, provided that A has
some needed descent objects.

A
J //

E ��

B

L��
C

≃

135
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We also give sufficient conditions under which the unit and the counit of the obtained biadjunction are
pseudonatural equivalences, provided that E and L induce the same pseudocomonad. Moreover, we
prove a strict version of our main theorem on biadjoint triangles. That is to say, we show that, under
suitable conditions, it is possible to construct (strict) right 2-adjoints.

Similarly to the 1-dimensional case [30], the biadjoint triangle theorem can be applied to get the
pseudo(co)monadicity theorem due to Le Creurer, Marmolejo and Vitale [73]. Also, some of the
constructions of biadjunctions related to two-dimensional monad theory given by Blackwell, Kelly
and Power [9] are particular cases of the biadjoint triangle theorem.

Furthermore, Lack [67] proved what may be called a general coherence result: his theorem states
that the inclusion of the strict algebras into the pseudoalgebras of a given 2-monad T on a 2-category
C has a left 2-adjoint and the unit of this 2-adjunction is a pseudonatural equivalence, provided that
C has and T preserves strict codescent objects. This coherence result is also a consequence of the
biadjoint triangle theorems proved in Section 4.4.

Actually, although the motivation and ideas of the biadjoint triangle theorems came from the
original adjoint triangle theorem [30, 109] and its enriched version stated in Section 4.1, Theorem
4.4.3 may be seen as a generalization of the construction, given in [67], of the right biadjoint to the
inclusion of the 2-category of strict coalgebras into the 2-category of pseudocoalgebras.

In Section 4.1, we give a slight generalization of Dubuc’s theorem, in its enriched version
(Proposition 4.1.1). This version gives the 2-adjoint triangle theorem for 2-pre(co)monadicity, but
it lacks applicability for biadjoint triangles and pseudopre(co)monadicity. Then, in Section 4.2 we
change our setting: we recall some definitions and results of the tricategory 2-CAT of 2-categories,
pseudofunctors, pseudonatural transformations and modifications. Most of them can be found in
Street’s articles [104, 105].

Section 4.3 gives definitions and results related to descent objects [104, 105], which is a very
important type of 2-categorical limit in 2-dimensional universal algebra. Within our established
setting, in Section 4.4 we prove our main theorems (Theorem 4.4.3 and Theorem 4.4.6) on biadjoint
triangles, while, in Section 4.5, we give consequences of such results in terms of pseudoprecomonadic-
ity (Corollary 4.5.10), using the characterization of pseudoprecomonadic pseudofunctors given by
Proposition 4.5.7, that is to say, Corollary 4.5.9.

In Section 4.6, we give results (Theorem 4.6.3 and Theorem 4.6.5) on the counit and unit of the
obtained biadjunction J ⊣ G in the context of biadjoint triangles, provided that E and L induce the
same pseudocomonad. Moreover, we demonstrate the pseudoprecomonadicity characterization of
[73] as a consequence of our Corollary 4.5.9.

In Section 4.7, we show how we can apply our main theorem to get the pseudocomonadicity
characterization [47, 73] and we give a corollary of Theorem 4.6.5 on the counit of the biadjunction
J ⊣ G in this context. Furthermore, in Section 4.8 we show that the theorem of [67] on the inclusion
T -CoAlg

s
→ Ps-T -CoAlg is a direct consequence of the theorems presented herein, giving a brief

discussion on consequences of the biadjoint triangle theorems in the context of the 2-(co)monadic
approach to coherence. Finally, we discuss a straightforward application on lifting biadjunctions in
Section 4.9.

Since our main application in Section 4.9 is about construction of right biadjoints, we prove
theorems for pseudoprecomonadic functors instead of proving theorems on pseudopremonadic func-
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tors. But, for instance, to apply the results of this work in the original setting of [9], or to get the
construction of the left biadjoint given in [67], we should, of course, consider the dual version: the
Biadjoint Triangle Theorem 4.4.4.

I wish to thank my supervisor Maria Manuel Clementino for her support, attention and useful
feedback during the preparation of this work, realized in the course of my PhD program at University
of Coimbra.

4.1 Enriched Adjoint Triangles

Consider a cocomplete, complete and symmetric monoidal closed category V . Assume that L : B→C

is a V -functor and (L ⊣U,η ,ε) is a V -adjunction. We denote by

χ : C (L−,−)∼= B(−,U−)

its associated V -natural isomorphism, that is to say, for every object X of B and every object Z of C ,
χ

(X ,Z) = B(ηX ,UZ)◦ULX ,Z .

Proposition 4.1.1 (Enriched Adjoint Triangle Theorem). Let (L ⊣ U,η ,ε), (E ⊣ R,ρ,µ) be V -
adjunctions such that

A
J //

E   

B

L~~
C

is a commutative triangle of V -functors. Assume that, for each pair of objects (A ∈A ,Y ∈B), the
induced diagram

B(JA,Y )
LJA,Y // C (EA,LY )

C (EA,L(ηY ))
//

L
JA,ULY

◦ χ
(JA,LY ) //

C (EA,LULY )

is an equalizer in V . The V -functor J has a right V -adjoint G if and only if, for each object Y of B,
the V -equalizer of

RLY
RL(U(µLY )ηJRLY )ρRLY //

RL(ηY )
// RLULY

exists in the V -category A . In this case, this equalizer gives the value of GY .

Proof. For each pair of objects (A ∈A ,Y ∈B), the V -natural isomorphism C (E−,−)∼= A (−,R−)
gives the components of the natural isomorphism

B(JA,Y )
LJA,Y // C (EA,LY )

∼=

��

C (EA,L(ηY ))

//
L

JA,ULY
◦ χ

(JA,LY ) //
C (EA,LULY )

∼=

��
B(JA,Y ) // A (A,RLY )

A (A,rY ) //
A (A,qY )

// A (A,RLULY )
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in which qY = RL(ηY ) and rY = RL(U(µLY )ηJRLY )ρRLY . Thereby, since, by hypothesis, the top row is
an equalizer, B(JA,Y ) is the equalizer of (A (A,qY ),A (A,rY )).

Assuming that the pair (qY ,rY ) has a V -equalizer GY in A for every Y of B, we have that
A (A,GY ) is also an equalizer of (A (A,qY ),A (A,rY )). Therefore we get a V -natural isomorphism
A (−,GY )∼= B(J−,Y ).

Reciprocally, if G is right V -adjoint to J, since A (−,GY )∼= B(J−,Y ) is an equalizer of

(A (−,qY ),A (−,rY )) ,

GY is the V -equalizer of (qY ,rY ). This completes the proof that the V -equalizers of qY ,rY are also
necessary.

The results on (co)monadicity in V -CAT are similar to those of the classical context of CAT
(see, for instance, [31, 100]). Actually, some of those results of the enriched context can be seen as
consequences of the classical theorems because of Street’s work [100].

Our main interest is in Beck’s theorem for V -precomonadicity. More precisely, it is known that the
2-category V -CAT admits construction of coalgebras [100]. Therefore every left V -adjoint L : B→ C
comes with the corresponding Eilenberg-Moore factorization.

B
φ //

L
""

CoAlg

��
C

If V = Set, Beck’s theorem asserts that φ is fully faithful if and only if the diagram below is an
equalizer for every object Y of B. In this case, we say that L is precomonadic.

Y
ηY // ULY

UL(ηY )
//

ηULY //
ULULY

With due adaptations, this theorem also holds for enriched categories. That is to say, φ is V -fully
faithful if and only if the diagram above is a V -equalizer for every object Y of B. This result gives
what we need to prove Corollary 4.1.2, which is the enriched version for Dubuc’s theorem [30].

Corollary 4.1.2. Let (L ⊣U,η ,ε), (E ⊣ R,ρ,µ) be V -adjunctions and J be a V -functor such that

A
J //

E   

B

L~~
C

commutes and L is V -precomonadic. The V -functor J has a right V -adjoint G if and only if, for each
object Y of B, the V -equalizer of

RLY
RL(U(µLY )ηJRLY )ρRLY //

RL(ηY )
// RLULY
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exists in the V -category A . In this case, these equalizers give the value of the right adjoint G.

Proof. The isomorphisms induced by the V -natural isomorphism χ : C (L−,−)∼= B(−,U−) are the
components of the natural isomorphism

B(JA,Y )
LJA,Y // C (EA,LY )

χ
(JA,LY )

��

C (EA,L(ηY ))
//

L
JA,ULY

◦ χ
(JA,LY ) //

C (EA,LULY )

χ
(JA,LULY )

��
B(JA,Y )

B(JA,ηY )
// B(JA,ULY )

B(JA,ηULY )
//

B(JA,UL(ηY ))
// B(JA,ULULY )

Since L is V -precomonadic, by the previous observations, the top row of the diagram above is an
equalizer. Thereby, for every object A of A and every object Y of B, the bottom row, which is the
diagram DJA

Y , is an equalizer. By Proposition 4.1.1, this completes the proof.

Proposition 4.1.1 applies to the case of CAT-enriched category theory. But it does not give results
about pseudomonad theory. For instance, the construction above does not give the right biadjoint
constructed in [9, 67]

Ps-T -CoAlg→T -CoAlg
s
.

Thereby, to study pseudomonad theory properly, we study biadjoint triangles, which cannot be
dealt with only CAT-enriched category theory. Yet, a 2-dimensional version of the perspective given
by Proposition 4.1.1 is what enables us to give the construction of (strict) right 2-adjoint functors in
Subsection 4.4.5.

4.2 Bilimits

We denote by 2-CAT the tricategory of 2-categories, pseudofunctors (homomorphisms), pseudonatural
transformations (strong transformations) and modifications. Since this is our main setting, we recall
some results and concepts related to 2-CAT. Most of them can be found in [104], and a few of them
are direct consequences of results given there.

Firstly, to fix notation, we set the tricategory 2-CAT, defining pseudofunctors, pseudonatural
transformations and modifications. Henceforth, in a given 2-category, we always denote by · the
vertical composition of 2-cells and by ∗ their horizontal composition.

Definition 4.2.1. [Pseudofunctor] Let B,C be 2-categories. A pseudofunctor L : B→ C is a pair
(L, l) with the following data:

• Function L : obj(B)→ obj(C);

• For each pair (X ,Y ) of objects in B, functors LX ,Y : B(X ,Y )→ C(LX ,LY );

• For each pair g : X → Y,h : Y → Z of 1-cells in B, an invertible 2-cell of C:

lhg : L(h)L(g)⇒ L(hg);
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• For each object X of B, an invertible 2-cell in C:

lX : idLX ⇒ L(idX );

such that, if ĝ,g : X →Y, ĥ,h : Y → Z, f : W → X are 1-cells of B, and x : g⇒ ĝ,y : h⇒ ĥ are 2-cells
of B, the following equations hold:

1. Associativity:
LW

L( f ) //

L(hg f )

��

L(g f )

��

LX

L(g)

��

lg f⇐==

LW
L( f ) //

L(hg f )

��

l
(hg) f⇐====

LX

L(g)

��

L(hg)

��

=

LZ

lh(g f )⇐====

LY
L(h)

oo LZ LY
L(h)

oo

lhg⇐==

2. Identity:

LW
L( f ) //

L(idX f )

��

LX

L(idX )

��

lX⇐== idLX

��

LW

L( f idW )

��

LW

L(idW )

��

lW⇐== idLW

��

LW

L( f )

��

= L( f )

��

lidX f
⇐====

=
l f idW⇐====

=

LX LX LX LW
L( f )

oo LX

3. Naturality:

LX

L(ĥĝ)

��

LX

L(ĝ)

��

LX

L(g)

��

LX

L(ĥĝ)

��

LX
L(g) //

L(hg)

��

LY

L(h)

��

L(x)⇐===

LYl
ĥĝ⇐==

L(ĥ)

��

LY

L(h)

��

= L(y∗x)⇐====
lhg⇐====

L(y)⇐===

LZ LZ LZ LZ LZ LZ

The composition of pseudofunctors is easily defined. Namely, if (J, j) : A→B,(L, l) : B→ C are
pseudofunctors, we define the composition by L◦ J := (LJ,(lj)), in which (lj)hg := L(jhg) · lJ(h)J(g) and
(lj)X := L(jX ) · lJX . This composition is associative and it has trivial identities.

Furthermore, recall that a 2-functor L : B→ C is just a pseudofunctor (L, l) such that its invertible
2-cells l f (for every morphism f ) and lX (for every object X) are identities.

Definition 4.2.2. [Pseudonatural transformation] If L,E : B→ C are pseudofunctors, a pseudonatural
transformation α : L−→ E is defined by:

• For each object X of B, a 1-cell αX : LX → EX of C;
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• For each 1-cell g : X → Y of B, an invertible 2-cell αg : E(g)αX ⇒ αY L(g) of C;

such that, if g, ĝ : X → Y, f : W → X are 1-cells of A, and x : g⇒ ĝ is a 2-cell of A, the following
equations hold:

1. Associativity:

LW

L(g f )

��

LW
αW //

L( f )

��

EW

E( f )

��

LW

L(g f )

��

αW // EW
E( f ) //

E(g f )

��

EX

E(g)

��

α f⇐==

LXlg f⇐==

L(g)

��

αX

// EX

E(g)

��

=
αg f⇐==

eg f⇐====

αg⇐==

LY LY
αY

// EY LY
αY

// EY EY

2. Identity:
LW

L(idW )

��

lW⇐==
idLW

��

αW // EW

idEW

��

LW
αW //

L(idW )

��

EW

E(idW )

��

eW⇐== idEW

��

= =
αidW⇐====

LW
αW

// EW LW
αW

// EW

3. Naturality:
LX

L(ĝ)

��

L(x)⇐=== L(g)

��

αX // EX

E(g)

��

LX
αX //

L(ĝ)

��

EX

E(ĝ)

��

E(x)⇐=== E(g)

��

αg⇐== =
αĝ⇐==

LY
αY

// EY LY
αY

// EY

Firstly, we define the vertical composition, denoted by βα , of two pseudonatural transformations
α : L−→ E,β : E −→U by

(βα)W := βW αW

LW
βW αW //

L( f )

��
(βα) f⇐====

UW

:=U( f )

��

LW
αW //

L( f )

��
α f⇐==

EW

E( f )

��

βW //

β f⇐==

UW

U( f )

��
LX

βX αX

// UX LX
αX

// EX
βX

// UX

Secondly, assume that L,E :B→C and G,J :A→B are pseudofunctors. We define the horizontal
composition of two pseudonatural transformations α : L−→ E,λ : G−→ J by (α ∗λ ) := (αJ)(Lλ ),

in which αJ is trivially defined and (Lλ ) is defined by: (Lλ )W := L(λW ) and (Lλ ) f :=
(
l

λX G( f )

)−1
·

L(λ f ) · lJ( f )λW
.
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Also, recall that a 2-natural transformation is just a pseudonatural transformation α : L −→ E
such that its components αg : E(g)αX ⇒ αY L(g) are identities (for all morphisms g).

Definition 4.2.3. [Modification] Let L,E : B→ C be pseudofunctors. If α,β : L−→ E are pseudo-
natural transformations, a modification Γ : α =⇒ β is defined by the following data:

• For each object X of B, a 2-cell ΓX : αX ⇒ βX of C;

such that: if f : W → X is a 1-cell of B, the equation below holds.

LW

αW

��

ΓW==⇒ βW

��

L( f ) // LX

βX

��

LW
L( f ) //

αW

��

LX

αX

��

ΓX==⇒ βX

��

β f
==⇒ =

α f
==⇒

EW
E( f )

// EX EW
E( f )

// EX

The three types of compositions of modifications are defined in the obvious way. Thereby, it
is straightforward to verify that, indeed, 2-CAT is a tricategory, lacking strictness/2-functoriality
of the whiskering. In particular, we denote by [A,B]PS the 2-category of pseudofunctors A→B,
pseudonatural transformations and modifications.

The bicategorical Yoneda Lemma [104] says that there is a pseudonatural equivalence

[S,CAT]PS(S(a,−),D)≃Da

given by the evaluation at the identity.

Lemma 4.2.4 (Yoneda Embedding [104]). The Yoneda 2-functor Y : A→ [Aop,CAT]PS is locally an
equivalence (i.e. it induces equivalences between the hom-categories).

Considering pseudofunctors L : B→ C and U : C→B, we say that U is right biadjoint to L if we
have a pseudonatural equivalence C(L−,−)≃B(−,U−). This concept can be also defined in terms
of unit and counit as it is done at Definition 4.2.5.

Definition 4.2.5. Let U : C→B,L : B→ C be pseudofunctors. L is left biadjoint to U if there exist

1. pseudonatural transformations η : IdB −→UL and ε : LU −→ IdC

2. invertible modifications s : idL =⇒ (εL)(Lη) and t : (Uε)(ηU) =⇒ idU



4.2 Bilimits 143

such that the following 2-cells are identities [41]:

IdB
η //

η

��

UL

ηUL

��

tL
=⇒

LU

l−1
U (Lt)l

(Uε)(ηU)
=========⇒LηU

""

sU
=⇒

η(η)
===⇒ LULU LUε //

εLU

��

LU

ε

��

UL
ULη

//

u−1
(Lη)(εL)

(Us)uL
=========⇒

ULUL

UεL

""

ε(ε)
==⇒

UL LU
ε

// IdC

Remark 4.2.6. By definition, if a pseudofunctor L is left biadjoint to U , there is at least one associated
data (L ⊣U,η ,ε,s, t) as described above. Such associated data is called a biadjunction.

Also, every biadjunction (L ⊣ U,η ,ε,s, t) has an associated pseudonatural equivalence χ :
C(L−,−)≃B(−,U−), in which

χ
(X ,Z) :C(LX ,Z) →B(X ,UZ)

f 7→U( f )ηX

m 7→U(m)∗ id
ηX

(
χ

(g,h)

)
f

:=
(
u
(h f )Lg ∗ id

ηX

)
·
(
uh f ∗η

−1
g

)

Reciprocally, such a pseudonatural equivalence induces a biadjunction (L ⊣U,η ,ε,s, t).

Remark 4.2.7. Similarly to the 1-dimensional case, if (L ⊣U,η ,ε,s, t) is a biadjunction, the counit
ε : LU −→ idC is a pseudonatural equivalence if and only if, for every pair (X ,Y ) of objects of C,
UX ,Y : C(X ,Y )→B(UX ,UY ) is an equivalence (that is to say, U is locally an equivalence).

The proof is also analogous to the 1-dimensional case. Indeed, given a pair (X ,Y ) of objects in B,
the composition of functors

B(X ,Y )
B(εX ,Y )// B(LUX ,Y )

χ
(UX ,Y ) // B(LX ,LY )

is obviously isomorphic to UX ,Y : C(X ,Y )→B(UX ,UY ). Since χ
(UX ,Y ) is an equivalence, εX is an

equivalence for every object X (that is to say, it is a pseudonatural equivalence) if and only if U is
locally an equivalence. Dually, the unit of this biadjunction is a pseudonatural equivalence if and only
if L is locally an equivalence.

Remark 4.2.8. Recall that, if the modifications s, t of a biadjunction (L ⊣U,η ,ε,s, t) are identities,
L,U are 2-functors and η ,ε are 2-natural transformations, then L is left 2-adjoint to U and (L⊣U,η ,ε)

is a 2-adjunction.

If it exists, a birepresentation of a pseudofunctor U : C→ CAT is an object X of C endowed
with a pseudonatural equivalence C(X ,−) ≃ U . When U has a birepresentation, we say that U

is birepresentable. Moreover, in this case, by Lemma 4.2.4, its birepresentation is unique up to
equivalence.
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Lemma 4.2.9 ([104]). Assume that U : C→ [Bop,CAT]PS is a pseudofunctor such that, for each
object X of C, U X has a birepresentation eX : U X ≃B(−,UX). Then there is a pseudofunctor
U : C→ B such that the pseudonatural equivalences eX are the components of a pseudonatural
equivalence U ≃B(−,U−), in which B(−,U−) denotes the pseudofunctor

C→ [Bop,CAT]PS : X 7→B(−,UX)

As a consequence, a pseudofunctor L : B→ C has a right biadjoint if and only if, for each object
X of C, the pseudofunctor C(L−,X) is birepresentable. Id est, for each object X , there is an object
UX of B endowed with a pseudonatural equivalence C(L−,X)≃B(−,UX).

The natural notion of limit in our context is that of (weighted) bilimit [104, 105]. Namely, assuming
that S is a small 2-category, if W : S→ CAT,D : S→ A are pseudofunctors, the (weighted) bilimit,
denoted herein by {W ,D}bi, when it exists, is a birepresentation of the 2-functor

Aop→ CAT : X 7→ [S,CAT]PS(W ,A(X ,D−)).

Since, by the (bicategorical) Yoneda Lemma, {W ,D}bi is unique up to equivalence, we sometimes
refer to it as the (weighted) bilimit.

Finally, if W and D are 2-functors, recall that the (strict) weighted limit {W ,D} is, when it
exists, a 2-representation of the 2-functor X 7→ [S,CAT](W ,A(X ,D−)), in which [S,CAT] is the
2-category of 2-functors S→ CAT, 2-natural transformations and modifications [103].

It is easy to see that CAT is bicategorically complete. More precisely, if W : S→ CAT and
D : S→ CAT are pseudofunctors, then

{W ,D}bi ≃ [S,CAT]PS(W ,D).

Moreover, from the bicategorical Yoneda Lemma of [104], we get the (strong) bicategorical Yoneda
Lemma.

Lemma 4.2.10 ((Strong) Yoneda Lemma). Let D : S→ A be a pseudofunctor between 2-categories.
There is a pseudonatural equivalence {S(a,−),D}bi ≃Da.

Proof. By the bicategorical Yoneda Lemma, we have a pseudonatural equivalence (in X and a)

[S,CAT]PS(S(a,−),A(X ,D−))≃ A(X ,Da).

Therefore Da is the bilimit {S(a,−),D}bi.

Recall that the usual (enriched) Yoneda embedding A → [Aop,CAT] preserves and reflects
weighted limits. In the 2-dimensional case, we get a similar result.

Lemma 4.2.11. The Yoneda embedding Y : A→ [Aop,CAT]PS preserves and reflects weighted
bilimits.

Proof. By definition, a weighted bilimit {W ,D}bi exists if and only if, for each object X of A,

A(X ,{W ,D}bi)≃ [A,CAT]PS (W ,A(X ,D−))≃ {W ,A(X ,D−)}bi .
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By the pointwise construction of weighted bilimits, this means that {W ,D}bi exists if and only if
Y {W ,D}bi ≃ {W ,Y ◦D}bi. This proves that Y reflects and preserves weighted bilimits.

Remark 4.2.12. Let S be a small 2-category and D : S→ A be a pseudofunctor. Consider the
pseudofunctor

[S,C]PS→ [Aop,CAT]PS : W 7→DW

in which the 2-functor DW is given by X 7→ [S,CAT]PS(W ,A(X ,D−)). By Lemma 4.2.9, we
conclude that it is possible to get a pseudofunctor {−,D}bi defined in a full sub-2-category of
[S,CAT]PS of weights W : S→ CAT such that A has the bilimit {W ,D}bi.

4.3 Descent Objects

In this section, we describe the 2-categorical limits called descent objects. We need both constructions,
strict descent objects and descent objects [105]. Our domain 2-category, denoted by ∆, is the dual of
that defined at Definition 2.1 in [73].

Definition 4.3.1. We denote by ∆̇ the 2-category generated by the diagram

0
d // 1

d0
//

d1
//
2s0oo

∂ 0
//

∂ 1 //

∂ 2
//
3

with the invertible 2-cells σ12 : ∂ 2d1 ∼= ∂ 1d1, σ02 : ∂ 2d1 ∼= ∂ 0d1, σ01 : ∂ 1d0 ∼= ∂ 0d0, n0 : s0d0 ∼= id1

n1 : id1
∼= s0d1 and ϑ : d1d ∼= d0d satisfying the equations below:

• Associativity:

0
d //

d
��

ϑ
=⇒

1

d0

��

d0
//

σ01==⇒

2

∂ 0

��
=

3

σ02==⇒

2
∂ 0
oo

ϑ
=⇒

2

1 d1 //

d1

��
σ12==⇒

2 ∂ 1 // 3

id3
��

2

ϑ
=⇒

∂ 2

OO

1d0oo

d1

OO

2
∂ 2

// 3 1

d1

OO

0
d
oo

d

OO

d
// 1

d0

OO

• Identity:

0
d //

d

��

1

d1

��

n1⇐=

0

d

��

= d

��

ϑ⇐=

1
d0

//

n0⇐=

2

s0

��
1

=

1

The 2-category ∆ is, herein, the full sub-2-category of ∆̇ with objects 1,2,3. We denote the inclusion
by j : ∆→ ∆̇.
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Remark 4.3.2. In fact, the 2-category ∆̇ is the locally preordered 2-category freely generated by
the diagram and 2-cells described above. Moreover, ∆ is the 2-category freely generated by the
corresponding diagram and the 2-cells σ01,σ02,σ12,n0,n1.

Let A be a 2-category and A : ∆→ A be a 2-functor. If the weighted bilimit
{

∆̇(0, j−),A
}

bi
exists, we say that

{
∆̇(0, j−),A

}
bi is the descent object of A . Analogously, when it exists, we call

the (strict) weighted 2-limit
{

∆̇(0, j−),A
}

the strict descent object of A .
Assuming that D : ∆̇→A is a pseudofunctor, we have a pseudonatural transformation ∆̇(0, j−)−→

A(D0,D ◦ j−) given by the evaluation of D . By the definition of weighted bilimit, if D ◦ j has a
descent object, this pseudonatural transformation induces a comparison 1-cell

D0→
{

∆̇(0, j−),D ◦ j
}

bi .

Analogously, if D is a 2-functor, we get a comparison D0→
{

∆̇(0, j−),D ◦ j
}

, provided that the strict
descent object of D ◦ j exists.

Definition 4.3.3. [Effective Descent Diagrams] We say that a 2-functor D : ∆̇→ A is of effective
descent if A has the descent object of D ◦ j and the comparison D0→

{
∆̇(0, j−),D ◦ j

}
bi is an

equivalence.
We say that D is of strict descent if A has the strict descent object of D ◦ j and the comparison

D0→
{

∆̇(0, j−),D ◦ j
}

is an isomorphism.

Lemma 4.3.4. Strict descent objects are descent objects. Thereby, strict descent diagrams are of
effective descent as well.

Also, if A has strict descent objects, a 2-functor D : ∆̇→A is of effective descent if and only if the
comparison D0→

{
∆̇(0, j−),D ◦ j

}
is an equivalence.

Lemma 4.3.5. Assume that A ,B,D : ∆̇→ A are 2-functors. If there are a 2-natural isomorphism
A −→B and a pseudonatural equivalence B −→D , then

• A is of strict descent if and only if B is of strict descent;

• B is of effective descent if and only if D is of effective descent.

We say that an effective descent diagram D : ∆̇→B is preserved by a pseudofunctor L : B→ C

if L◦D is of effective descent. Also, D : ∆̇→B is said to be an absolute effective descent diagram if
L◦D is of effective descent for any pseudofunctor L.

In this setting, a pseudofunctor L : B→ C is said to reflect absolute effective descent diagrams
if, whenever a 2-functor D : ∆̇→B is such that L◦D is an absolute effective descent diagram, D

is of effective descent. Moreover, we say herein that a pseudofunctor L : B→ C creates absolute
effective descent diagrams if L reflects absolute effective descent diagrams and, whenever a diagram
A : ∆→B is such that L◦A ≃D ◦ j for some absolute effective descent diagram D : ∆̇→ C, there
is a diagram B : ∆̇→B such that L◦B ≃D and B ◦ j = A .

Recall that right 2-adjoints preserve strict descent diagrams and right biadjoints preserve effective
descent diagrams. Also, the usual (enriched) Yoneda embedding A→ [Aop,CAT] preserves and
reflects strict descent diagrams, and, from Lemma 4.2.11, we get:
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Lemma 4.3.6. The Yoneda embedding Y : A→ [Aop,CAT]PS preserves and reflects effective descent
diagrams.

Remark 4.3.7. The dual notion of descent object is that of codescent object, described by Lack [67]
and Le Creurer, Marmolejo, Vitale [73]. It is, of course, the descent object in the opposite 2-category.

Remark 4.3.8. The 2-category CAT is CAT-complete. In particular, CAT has strict descent objects.
More precisely, if A : ∆→ CAT is a 2-functor, then{

∆̇(0, j−),A
}∼= [∆,CAT]

(
∆̇(0, j−),A

)
.

Thereby, we can describe the strict descent object of A : ∆→ CAT explicitly as follows:

1. Objects are 2-natural transformations f : ∆̇(0, j−)−→A . We have a bijective correspondence
between such 2-natural transformations and pairs ( f ,ρ

f
) in which f is an object of A 1 and

ρ
f

: A (d1) f →A (d0) f is an isomorphism in A 2 satisfying the following equations:

• Associativity:(
A (∂ 0)(ρ

f
)
)(

A (σ02) f

)(
A (∂ 2)(ρ

f
)
)(

A (σ12)
−1
f

)
=
(
A (σ01) f

)(
A (∂ 1)(ρ

f
)
)

• Identity: (
A (n0) f

)(
A (s0)(ρ

f
)
)(

A (n1) f

)
= id f

If f : ∆̇(0, j−) −→ A is a 2-natural transformation, we get such pair by the correspondence
f 7→ (f1(d), f2(ϑ)).

2. The morphisms are modifications. In other words, a morphism m : f→ h is determined by a
morphism m : f → h such that A (d0)(m)ρ

f
= ρhA (d1)(m).

4.4 Biadjoint Triangles

In this section, we give our main theorem on biadjoint triangles, Theorem 4.4.3, and its strict
version, Theorem 4.4.6. Let L : B→ C and U : C→B be pseudofunctors, and (L ⊣U,η ,ε,s, t) be a
biadjunction. We denote by χ : C(L−,−)≃B(−,U−) its associated pseudonatural equivalence as
described in Remark 4.2.6.

Definition 4.4.1. In this setting, for every pair (X ,Y ) of objects of B, we have an induced diagram
DX

Y : ∆̇→ CAT

B(X ,Y )

LX ,Y

��
C(LX ,LY )

C(LX ,L(ηY ))
//

L
X ,ULY

◦ χ
(X ,LY ) //

C(LX ,LULY )C(LX ,εLY )oo

C(LX ,LUL(ηY ))
//

C(LX ,L(ηULY )) //

L
X ,(UL)2Y

◦ χ
(X ,LULY )

//

C(LX ,L(UL)2Y )

(DX
Y )
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in which the images of the 2-cells of ∆̇ by DX
Y : ∆̇→ CAT are defined as:

DX
Y (ϑ)g :=L

(
η
−1
g

)
· l

ηY g

DX
Y (σ12) f :=(Lη)

ηY
∗ id f

DX
Y (n1) f :=sY ∗ id f

DX
Y (σ01) f :=lUL(U( f )ηX )ηX

· (Lη)−1
U( f )ηX

DX
Y (σ02) f :=L

(
uL(ηY ) f ∗ id

ηX

)
· lUL(ηY )L(U( f )ηX )

DX
Y (n0) f :=

(
id f ∗ s−1

X

)
·
(

ε
−1
f
∗ id

ηX

)
·
(

id
εLY
∗ l−1

U( f )ηX

)

We claim that DX
Y is well defined. In fact, by the axioms of naturality and associativity of

Definition 4.2.2 (of pseudonatural transformation), for every morphism g ∈B(X ,Y ), we have the
equality

LX
L(ηX )

��

L(g) //

γ⇐=

LY
L(ηY )
��

L(ηY )

''

LX
L(ηX )

��

L(g) //

L(ηX )
&&

γ⇐=
(Lη)−1

ηX⇐====

LY
L(ηY )

''
LULX

LUL(g)
//

LUL(ηX ) &&
L̂U(γ)⇐===

LULY
LUL(ηY )

''

(Lη)−1
ηY⇐==== LULY

L(ηULY )
��

= LULX

LUL(ηX ) &&

LULX
L(ηULX )
��

LUL(g) //

(Lη)−1
UL(g)⇐=====

LULY
L(ηULY )
��

LULULX
LULUL(g)

// LULULY LULULX
LULUL(g)

// LULULY

in which:

γ := l−1
UL(g)ηX

·DX
Y (ϑ)g = (Lη)−1

g , L̂U(γ) := (lu)−1
LUL(g)L(ηX )

·LU(γ) · (lu)L(ηX )L(g) .

By the definition of DX
Y given above, this is the same as saying that the equation

DX
Y 3

DX
Y (σ12)

−1

======⇒

DX
Y 3

DX
Y (σ02)

====⇒

DX
Y 2

DX
Y (ϑ)

===⇒

DX
Y (∂ 0)oo DX

Y 2

=

DX
Y 0

DX
Y (d) //

DX
Y (d)

��

DX
Y (ϑ)

===⇒

DX
Y 1

DX
Y (d0)

��

DX
Y (d0) //

DX
Y (σ01)

====⇒

DX
Y 2

DX
Y (∂ 0)

��

DX
Y 2

DX
Y (ϑ)

===⇒

DX
Y (∂ 2)

OO

DX
Y 1

DX
Y (d0)
oo

DX
Y (d1)

OO

DX
Y 2

DX
Y (∂ 1)

OO

DX
Y 1

DX
Y (d1)

oo

DX
Y (d1)

OO

DX
Y 0

DX
Y (d)
oo

DX
Y (d)

OO

DX
Y (d)
// DX

Y 1

DX
Y (d0)

OO

DX
Y 1

DX
Y (d1)
// DX

Y 2
DX

Y (∂ 1)
// DX

Y 3

holds, which is equivalent to the usual equation of associativity given in Definition 4.3.1. Also, by
the naturality of the modification s : idL =⇒ (εL)(Lη) (see Definition 4.2.3), for every morphism
g ∈B(X ,Y ), the pasting of 2-cells

LX
L(g) //

L(ηX )
$$

LY
L(ηY )
{{

LULXs−1
X⇐= LUL(g) //

εLX
zz

(Lη)−1
g⇐====

(εL)−1
g⇐===

LULY sY⇐=
εLY

##
LX

L(g)
// LY
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is equal to the identity L(g)⇒ L(g) in C. This is equivalent to say that

DX
Y 0

DX
Y (d) //

DX
Y (d)

��

DX
Y 1

DX
Y (d1)

��

DX
Y (n1)⇐====

DX
Y 0

DX
Y (d)

��

= DX
Y (d)

		

DX
Y (ϑ)
⇐====

DX
Y 1 DX

Y (d0) //

DX
Y (n0)⇐====

DX
Y 2

DX
Y (s0)

""
DX

Y 1

=

DX
Y 1

holds, which is the usual identity equation of Definition 4.3.1. Thereby it completes the proof that
indeed DX

Y is well defined.

As in the enriched case, we also need to consider another special 2-functor induced by a biadjoint
triangle.

Definition 4.4.2. Let (E ⊣ R,ρ,µ,v,w) and (L ⊣U,η ,ε,s, t) be biadjunctions such that we have a
commutative triangle of pseudofunctors LJ = E. In this setting, for each object Y of B, we define the
2-functor AY : ∆→ A,

RLY

RL(ηY )
//

RL(U(µLY )ηJRLY )ρRLY //

RLULYR(εLY )oo

RLUL(ηY )
//

RL(ηULY ) //

RL(U(µLULY )ηJRLULY )ρRLULY //

RLULULY (AY )

in which:

AY (σ12) := (RLη)
ηY

AY (n1) := r−1
εLY ·L(ηY )

R(sY ) · rLY

AY (n0) := (wLY )

·
(

idR(µLY )
∗
(
r−1

ERLY
·R(s−1

JRLY
) · r

εERLY L(ηJRLY )

)
· id

ρRLY

)
·
(
(Rε)−1

µLY
∗ idRL(ηJRLY )ρRLY

)
·
(

idR(εLY )
∗ (rl)−1

U(µLY )ηJRLY
∗ id

ρRLY

)
AY (σ02) :=

(
(rl)U(µRLULY )ηJRLULY

∗ id
ρRLULY RL(ηY )

)
· ((RLUµL)(RLηJRL)(ρRL))

ηY

·
(

idRLUL(ηY )
∗ (rl)−1

U(µLY )ηJRLY
∗ id

ρRLY

)
AY (σ01) :=

(
(rl)U(µLULY )ηJRLULY

∗ρRL(U(µLY )ηJRLY )
∗ id

ρRLY

)
·
(
((RLUµL)(RLηJRL))

U(µLY )ηJRLY
∗ρ

ρRLY

)
·
(

idRLUL(U(µLY )ηJRLY )RLU(µERLY )
∗ (RLηJ)

ρRLY
∗ id

ρRLY

)
·
(

idRLUL(U(µLY )ηJRLY )
∗
(
(rlu)−1

µERLY E(ρRLY )
·RLU(vRLY ) · (rlu)ERLY

)
∗ idRL(ηJRLY )ρRLY

)
·
(
(RLη)−1

U(µLY )ηJRLY
∗ id

ρRLY

)
.
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Theorem 4.4.3 (Biadjoint Triangle). Let (E ⊣ R,ρ,µ,v,w) and (L ⊣U,η ,ε,s, t) be biadjunctions
such that

A
J //

E ��

B

L��
C

is a commutative triangle of pseudofunctors. Assume that, for each pair of objects (Y ∈B,A ∈ A),
the 2-functor

B(JA,Y )

LJA,Y

��
C(LJA,LY )

C(LJA,L(ηY ))
//

L
JA,ULY

◦ χ
(JA,LY ) //

C(LJA,LULY )C(LJA,εLY )
oo

C(LJA,LUL(ηY ))
//

C(LJA,L(ηULY ))
//

L
JA,(UL)2Y

◦ χ
(JA,LULY )

//

C(LJA,L(UL)2Y )

(DJA
Y )

is of effective descent. The pseudofunctor J has a right biadjoint if and only if, for every object Y of B,
the descent object of the diagram AY : ∆→ A exists in A. In this case, J is left biadjoint to G, defined
by GY :=

{
∆̇(0, j−),AY

}
bi .

Proof. We denote by ξ : C(E−,−) ≃ A(−,R−) the pseudonatural equivalence associated to the
biadjunction (E ⊣ R,ρ,µ,v,w) (see Remark 4.2.6). For each object A of A and each object Y of B,
the components of ξ induce a pseudonatural equivalence

ψ : DJA
Y ◦ j−→ A(A,AY−)

in which:

ψ1 := ξ
(A,LY ) : C(EA,LY )→ A(A,RLY )

ψ2 := ξ
(A,LULY ) : C(EA,LULY )→ A(A,RLULY )

ψ3 := ξ
(A,LULULY ) : C(EA,LULULY )→ A(A,RLULULY )(

ψ
s0

)
f

:= r
εLY f ∗ id

ρA(
ψ

d1

)
f

:= rL(ηY ) f ∗ id
ρA

(
ψ

∂1

)
f

:= rL(ηULY ) f ∗ id
ρA(

ψ
∂2

)
f

:= rLUL(ηY ) f ∗ id
ρA(

ψ
d0

)
f

:=
(
(rl)U( f )ηJA

∗ id
ρA

)
·
(

idRLU( f ) ∗
(
(rlu)−1

EA
·RLU(v−1

A
) · (rlu)

µEA E(ρA )

)
∗ idRLU(ηJA )ρA

)
·
(

idRLU( f )RL(µ
EA)
∗ ((RLηJ)ρ)−1

ρA

)
·
(
((RLUµ)(RLηJR)(ρR))−1

f
∗ id

ρA

)
·
(
(rl)−1

U(µ
LY )ηJRLY

∗ id
ρRLY R( f )ρA

)
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(
ψ

∂0

)
f

:=
(
(rl)U( f )ηJA

∗ id
ρA

)
·
(

idRLU( f ) ∗
(
(rlu)−1

EA
·RLU(v−1

A
) · (rlu)

µEA E(ρA )

)
∗ idRLU(ηJA )ρA

)
·
(

idRLU( f )RL(µ
EA)
∗ ((RLηJ)ρ)−1

ρA

)
·
(
((RLUµ)(RLηJR)(ρR))−1

f
∗ id

ρA

)
·
(
(rl)−1

U(µ
LULY )ηJRLULY

∗ id
ρRLULY R( f )ρA

)
.

First of all, we assume that DJA
Y is of effective descent for every object A of A and every object Y

of B. Then the descent object of DJA
Y ◦ j≃ A(A,AY−) is DJA

Y 0. Moreover, since this is true for all
objects A of A, we conclude that the descent object of Y ◦AY is C(J−,Y ) : Aop→ CAT.

If, furthermore, A has the descent object of AY , we get that Y
{

∆̇(0, j−),AY
}

bi is also a descent
object of Y ◦AY . Therefore we get a pseudonatural equivalence

C(J−,Y )≃ A
(
−,
{

∆̇(0, j−),AY
}

bi

)
.

This proves that J is left biadjoint to G, provided that the descent object of AY exists for every object
Y of B.

Reciprocally, if J is left biadjoint to a pseudofunctor G, since C(−,GY )≃ C(J−,Y ) is the descent
object of A(−,AY−), we conclude that GY is the descent object of AY .

We establish below the obvious dual version of Theorem 4.4.3, which is the relevant theorem to
the usual context of pseudopremonadicity [73]. For being able to give such dual version, we have to
employ the observations given in Remark 4.3.7 on codescent objects. Also, if (L ⊣U,η ,ε,s, t) is a
biadjunction, we need to consider its associated pseudonatural equivalence τ :C(−,U−)→B(L−,−).
In particular,

τ
(X ,Z) : C(X ,UZ)→B(LX ,Z) : f 7→ εZ L( f ); m 7→ id

εZ
∗L(m).

Theorem 4.4.4 (Biadjoint Triangle). Let (E ⊣ R,ρ,µ,v,w) and (L ⊣U,η ,ε,s, t) be biadjunctions
such that

A
J //

R ��

B

U��
C

is a commutative triangle of pseudofunctors. Assume that, for each pair of objects (Y ∈B,A ∈ A),
the 2-functor

∆̇→ CAT

B(Y,JA)

UY,JA

��
C(UY,UJA)

C(U(εA ),UJA)
//

U
LUY,JA

◦ τ
(UY,JA)

//
C(ULUY,UJA)C(ηUY ,UJA)oo

C(ULU(εY ),UJA)
//

C(U(εLUY ),UJA) //

U
(LU)2Y,JA

◦ τ
(ULUY,JA)

//
C(U(LU)2Y,UJA)
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(with omitted 2-cells) is of effective descent. We have that J has a left biadjoint if and only if, for every
object Y of B, A has the codescent object of the diagram (with the obvious 2-cells)

∆
op→ A

EUY E(ηUY )
// EULUY

EU(εY )oo

µEUY EU(εJEUY L(ρUY ))
oo

EULULUY

EULU(εY )oo
EU(εLUY )

oo

µEULUY EU(εJEULUY L(ρULUY ))
oo

4.4.5 Strict Version

The techniques employed to prove strict versions of Theorem 4.4.3 are virtually the same. We just
need to repeat the same constructions, but, now, by means of strict descent objects and 2-adjoints. For
instance, we have:

Theorem 4.4.6 (Strict Biadjoint Triangle). Let (L ⊣U,η ,ε,s, t) be a biadjunction between 2-functors
and (E ⊣ R,ρ,µ) be a 2-adjunction such that the triangle of 2-functors

A
J //

E ��

B

L��
C

commutes and (ηJ) : J −→UE is a 2-natural transformation. We assume that, for every pair of
objects (A ∈ A,Y ∈B), the diagram DJA

Y : ∆̇→ CAT induced by (L ⊣U,η ,ε,s, t) is of strict descent.
The 2-functor J has a right 2-adjoint if and only if, for every object Y of B, the strict descent object of
AY : ∆→ A exists in A.

Proof. In particular, we have the setting of Theorem 4.4.3. Therefore, again, we can define ψ :
DJA

Y ◦ j−→ A(A,AY−) as it was done in the proof of Theorem 4.4.3. However, since (E ⊣ R,ρ,µ)
is a 2-adjunction, J,E,R,L,U are 2-functors and (ηJ) is a 2-natural transformation, the components
ψ

d0 , ψ
d1 , ψ

s0 , ψ
∂0 , ψ

∂1 , ψ
∂2 are identities. Thereby ψ is a 2-natural transformation. Moreover, since

(E ⊣ R,ρ,µ) is a 2-adjunction, ψ is a pointwise isomorphism. Thus it is a 2-natural isomorphism.

Firstly, we assume that DJA
Y is of strict descent for every object A of A and every object Y of B.

Then the strict descent object of A(A,AY−) is DJA
Y 0.

If, furthermore, A has the strict descent object of AY , we get a 2-natural isomorphism

C(J−,Y )∼= A
(
−,
{

∆̇(0, j−),AY
})

.

This proves that J is left 2-adjoint, provided that the strict descent object of AY exists for every object
Y of B.

Reciprocally, if J is left 2-adjoint to a 2-functor G, since C(−,GY )∼= C(J−,Y ) is the strict descent
object of A(−,AY−), we conclude that GY is the strict descent object of AY .
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4.5 Pseudoprecomonadicity

A pseudomonad [66, 84] is the same as a doctrine, whose definition can be found in page 123 of
[104], while a pseudocomonad is the dual notion. Similarly to the 1-dimensional case, for each
pseudocomonad T on a 2-category C, there is an associated right biadjoint to the forgetful 2-functor
L : Ps-T -CoAlg→ C, in which Ps-T -CoAlg is the 2-category of pseudocoalgebras [66] of Definition
4.5.2. Also, every biadjunction (L⊣U,η ,ε,s, t) induces a comparison pseudofunctor and an Eilenberg-
Moore factorization [73]

B
K //

L
%%

Ps-T -CoAlg

��
C

in which T denotes the induced pseudocomonad. Before proving Corollary 4.5.10 which is a
consequence of Theorem 4.4.3 in the context of pseudocomonads, we sketch some basic definitions
and known results needed to fix notation and show Lemma 4.5.6. Some of them are related to the
formal theory of pseudo(co)monads developed by Lack [66]. There, it is employed the coherence
result of tricategories [40] (and, hence, with due adaptations, the formal theory developed therein
works for any tricategory).

Definition 4.5.1. [Pseudocomonad] A pseudocomonad T = (T ,ϖ ,ε,Λ,δ ,s) on a 2-category C is a
pseudofunctor (T , t) : C→ C with

1. Pseudonatural transformations:

ϖ : T −→T 2
ε : T −→ id

C

2. Invertible modifications:

Λ : (ϖT )(ϖ) =⇒ (T ϖ)(ϖ)

s : (εT )(ϖ) =⇒ idT

δ : idT =⇒ (T ε)(ϖ)

such that the following equations hold:

• Associativity:

T

ϖ

��

ϖ //

Λ⇐=

T 2

ϖT

��

ϖT

��

T

ϖ

��

ϖ //

ϖ

��

Λ⇐=
Λ⇐=

T 2

ϖT

��
T 2

T ϖ

//

T ϖ
��

T̂ Λ⇐==

T 3

T ϖT

��

ΛT⇐== T 3

ϖT 2

��

= T 2

T ϖ
��

T 2

ϖT

��

T ϖ //

ϖ−1
ϖ⇐==

T 3

ϖT 2

��
T 3

T 2ϖ

// T 4 T 3
T 2ϖ

// T 4
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• Identity:
T

ϖ

}}

ϖ

!!
Λ⇐=

T

ϖ

��
T 2

T ϖ !!

T 2

ϖT}}

T 2

T ϖ

}}
ϖT

!!
T 3

T εT
��

= T 3 δT⇐==
T εT

!!

T 3

T εT

}}

T̂ s⇐=

T 2 T 2

in which T̂ s,T̂ Λ denote “corrections” of domain and codomain given by the isomorphisms induced
by the pseudofunctor T . That is to say,

T̂ s := t−1
(εT )(ϖ)

(T s)t
T 2 T̂ Λ := t−1

(T ϖ)(ϖ)
(T Λ)t

(ϖT )(ϖ)

Definition 4.5.2. [Pseudocoalgebras] Let T = (T ,ϖ ,ε,Λ,δ ,s) be a pseudocomonad in C. We define
the objects, 1-cells and 2-cells of the 2-category Ps-T -CoAlg as follows:

1. Objects: pseudocoalgebras are defined by z= (Z,ρz ,ςz ,Ωz) in which ρz : Z→ T Z is a mor-
phism in C and

ςz : idZ ⇒ εZ ρz Ωz : ϖZ ρz ⇒T (ρz)ρz

are invertible 2-cells of C such that the equations

Z

ρz

��

ρz //

Ωz⇐=

T Z

ϖZ
��

ϖZ

##

Z

ρz

��

ρz //

ρz

##
Ωz⇐=

Ωz⇐=

T Z
ϖZ

##
T Z

T (ρz )
//

T (ρz ) ""
T̂ (Ωz )⇐===

T 2Z

(T ϖ)Z
##

ΛZ⇐= T 2Z

ϖ
T Z
��

= T Z

T (ρz ) ""

T Z

ϖZ
��

T (ρz ) //

ϖ−1
ρz⇐==

T 2Z

ϖ
T Z
��

T 2Z
T 2(ρz )

// T 3Z T 2Z
T 2(ρz )

// T 3Z

Z
ρz

{{

ρz

##
Ωz⇐=

Z

ρz

��
T Z

T (ρz ) ##

T Z

ϖZ{{

T Z

T (ρz )

{{
ϖZ
##

T 2Z

(T ε)Z
��

= T 2Z T̂ (ςz )⇐===
(T ε)Z

##

T 2Z

(T ε)Z
{{

δZ⇐=

T Z T Z

are satisfied, in which

T̂ (ςz) := t−1
εZ ρz

T (ςz)tZ T̂ (Ωz) := t−1
ϖZ ρz

T (Ωz)tT (ρz )ρz
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2. Morphisms: T -pseudomorphisms f : x→ z are pairs f = ( f ,ρ−1
f
) in which f : X → Z is a

morphism in C and ρ
f
: T ( f )ρx⇒ ρz f is an invertible 2-cell of C such that, defining T̂ (ρ−1

f
) :=

t−1
T ( f )ρx

T (ρ−1
f

)t
ρz f ,

X

ρx

��

f //

ρ−1
f⇐==

Z

ρz

��

ρz

$$

X

ρx

��

f //

ρx

##
ρ−1
f⇐==

Ωx⇐=

Z
ρz

$$
T X

T ( f )
//

T (ρx ) ##
̂

T (ρ−1
f

)

⇐====

T Z

T (ρz )
##

Ωz⇐= T Z

ϖZ
��

= T X

T (ρx ) ##

T X

ϖX
��

T ( f ) //

ϖ−1
f⇐==

T Z

ϖZ
��

T 2X
T 2( f )

// T 2Z T 2X
T 2( f )

// T 2Z

holds and the 2-cell below is the identity.

X f //

ρx

!!

Z

ρz

}}
T Xςx⇐= T ( f ) //

εX

}}

ρf⇐=

(ε)−1
f⇐===

T Z ς−1
z⇐==
εZ

!!
X f // Y

3. 2-cells: a T -transformation between T -pseudomorphisms m : f⇒ h is a 2-cell m : f ⇒ h in C

such that the equation below holds.

X

f

��

m
=⇒ h

��

ρx // T X

T (h)

��

X
ρx //

f

��

T X

T ( f )

��

T (m)
====⇒ T (h)

��

ρh==⇒ =
ρ f
==⇒

Z
ρz

// T Z Z
ρz

// T Z

Remark 4.5.3. If T = (T ,ϖ ,ε,Λ,δ ,s) is a pseudocomonad on C, then T induces a biadjunction
(L ⊣ U,ρ,ε,s, t) in which L,U are defined by

L : Ps-T -CoAlg→ C

z= (Z,ρz ,ςz ,Ωz) 7→ Z

f = ( f ,ρ−1
f
) 7→ f

m 7→m

U : C→ Ps-T -CoAlg

Z 7→ (T (Z),ϖZ ,sZ ,ΛZ )

f 7→
(
T ( f ),ϖ−1

f

)
m 7→T (m)

Reciprocally, we know that each biadjunction (L ⊣U,η ,ε,s, t) induces a pseudocomonad

T = (LU,LηU,ε,(Lη)−1
ηU
, (̂Lt),sU).

Lemma 4.5.4 gives some further aspects of these constructions (which follows from calculations on
the formal theory of pseudocomonads in 2-CAT).
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Lemma 4.5.4. Let L : B→ C be a pseudofunctor. A biadjunction (L ⊣U,η ,ε,s, t) induces commuta-
tive triangles

B
K //

L
%%

Ps-T -CoAlg

L

��

C
U //

U
%%

B

K
��

C Ps-T -CoAlg

in which T = (T ,ϖ ,ε,Λ,δ ,s) is the pseudocomonad induced by (L ⊣U,η ,ε,s, t), (L ⊣ U,ρ,ε,s, t)
is the biadjunction induced by T and K : B→ Ps-T -CoAlg is the unique (up to pseudonatural
isomorphism) comparison pseudofunctor making the triangles above commutative. Namely,

K : B → Ps-T -CoAlg

Y 7→
(

LY,L(ηY ),s
−1
Y

,(Lη)−1
ηY

)
g 7→

(
L(g),(Lη)−1

g

)
m 7→ L(m)

Furthermore, we have the obvious equalities

L(ηY ) = ρ
K Y ϖLY = (LηU)LY .

Proposition 4.5.5. Let T =(T ,ϖ ,ε,Λ,δ ,s) be a pseudocomonad on C. Given T -pseudocoalgebras

x= (X ,ρx ,ςx ,Ωx),z= (Z,ρz ,ςz ,Ωz),

the category Ps-T -CoAlg(x,z) is the strict descent object of the diagram Tx
z : ∆→ CAT

C(Lx,Lz)

C(Lx,ρz )
//

C(ρx ,T Lz)◦ T
(Lx,Lz) //

C(Lx,T Lz)C(Lx,ε
Lz
)oo

C(Lx,T (ρz ))
//

C(Lx,ϖ
Lz
) //

C(ρx ,T Lz)◦ T
(Lx,T Lz) //

C(Lx,T 2Lz) (Tx
z)

such that

Tx
z(σ02) f :=

(
t

ρz f ∗ id
ρx

)
Tx
z(σ12) f :=

(
Ω
−1
z
∗ id f

)
Tx
z(n1) f :=

(
ς
−1
z
∗ id f

)
Tx
z(σ01) f :=

(
t
T ( f )ρx

∗ id
ρx

)
·
(

id
T 2( f )

∗Ωx

)
·
(

ϖ
−1
f
∗ id

ρx

)
Tx
z(n0) f :=

(
id f ∗ ςx

)
·
(

ε
−1
f
∗ id

ρx

)

Proof. It follows from Definition 4.5.2 and Remark 4.3.8.

Recall that every biadjunction induces diagrams DX
Y : ∆̇→ CAT (Definition 4.4.1). Also, for

every pseudocomonad T and objects x,z of Ps-T -CoAlg, we defined in Proposition 4.5.5 a diagram
Tx
z : ∆→ CAT whose strict descent object is Ps-T -CoAlg(x,z). Now, we give the relation between

these two diagrams.

Lemma 4.5.6. Let L : B→ C be a pseudofunctor, (L ⊣ U,η ,ε,s, t) be a biadjunction and T =

(T ,ϖ ,ε,Λ,δ ,s) be the induced pseudocomonad. For each pair (X ,Y ) of objects in B, (L ⊣
U,η ,ε,s, t) induces the diagram DX

Y : ∆̇→ CAT and T induces the diagram TK X
K Y : ∆→ CAT
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defined in Proposition 4.5.5, in which K : B→ Ps-T -CoAlg is the comparison pseudofunctor. In
this setting, there is a pseudonatural isomorphism β : DX

Y ◦ j−→ TK X
K Y for every such pair (X ,Y ) of

objects in B. Moreover, if L is a 2-functor, β is actually a 2-natural isomorphism.

Proof. We can write TK X
K Y : ∆→ CAT as follows

C(LX ,LY )

C(LX ,L(ηY ))
//

C(L(ηX ),LULY )◦ (LU)LX ,LY//

C(LX ,LULY )C(LX ,εLY )oo

C(LX ,LUL(ηY ))
//

C(LX ,L(ηLY )) //

C(L(ηX ),LULY )◦ (LU)LX ,LULY //

C(LX ,LULULY )

Furthermore, by Lemma 4.5.4 and the observations given in this section, we can define a pseudonatural
isomorphism

β : DX
Y ◦ j−→ TK X

K Y

such that β1 ,β2 ,β3 are identity functors, β
d1 ,β∂1 ,β∂2 ,βs0 are identity natural transformations,

(
β

d0

)
f
:=

lU( f )ηX
and

(
β

∂0

)
f

:= lU( f )ηX
. This completes the proof.

Let (L ⊣U,η ,ε,s, t) be a biadjunction and T be the induced pseudocomonad. By Lemma 4.3.4,
Proposition 4.5.5 and Lemma 4.5.6, Ps-T -CoAlg(K X ,K Y ) is a descent object of DX

Y ◦ j for every
pair of objects (X ,Y ) of B. Moreover, KX ,Y : B(X ,Y )→ Ps-T -CoAlg(K X ,K Y ) is the comparison
DX

Y 0→
{

∆̇(0, j−),DX
Y ◦ j

}
. Thereby we get:

Proposition 4.5.7. Let (L ⊣U,η ,ε,s, t) be a biadjunction, T be the induced pseudocomonad and
K : B→ Ps-T -CoAlg be the comparison pseudofunctor. For each pair of objects (X ,Y ) in B,
DX

Y : ∆̇→ CAT is of effective descent if and only if

KX ,Y : B(X ,Y )→ Ps-T -CoAlg(K X ,K Y )

is an equivalence. Furthermore, if L is a 2-functor, DX
Y is of strict descent if and only if KX ,Y is an

isomorphism.

4.5.8 Biadjoint Triangles

In this subsection, we reexamine the results of Section 4.4 in the context of pseudocomonad theory.
More precisely, we prove Corollary 4.5.10 of our main theorems in Section 4.4, Theorem 4.4.3 and
Theorem 4.4.6.

Let (L,U,η ,ε,s, t) be a biadjunction and T be its induced pseudocomonad. We say that L :B→C

is pseudoprecomonadic, if its induced comparison pseudofunctor K : B→ Ps-T -CoAlg is locally an
equivalence. As a consequence of Proposition 4.5.7, we get a characterization of pseudoprecomonadic
pseudofunctors.

Corollary 4.5.9 (Pseudoprecomonadic). Let (L ⊣U,η ,ε,s, t) be a biadjunction. The pseudofunctor
L : B→ C is pseudoprecomonadic if and only if DX

Y : ∆̇→ CAT is of effective descent for every pair
of objects (X ,Y ) of B.
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By Corollary 4.5.9, assuming that (L ⊣U,η ,ε,s, t) is a biadjunction and J : A→B is a pseud-
ofunctor, if L : B→ C is pseudoprecomonadic, then, in particular, DJA

Y : ∆̇→ CAT is of effective
descent for every object A of A and every object Y of B. Thereby, as a consequence of Theorem 4.4.3,
Theorem 4.4.6 and Propostion 4.5.7, we get:

Corollary 4.5.10 (Biadjoint Triangle Theorem). Assume that (E ⊣ R,ρ,µ,v,w),(L ⊣U,η ,ε,s, t) are
biadjunctions such that the triangle of pseudofunctors

A
J //

E ��

B

L��
C

is commutative and L is pseudoprecomonadic. Then J has a right biadjoint if and only if, for every
object Y of B, A has the descent object of the diagram AY : ∆→ A. In this case, J is left biadjoint to
GY :=

{
∆̇(0, j−),AY

}
bi.

If, furthermore, E,R,J,L,U are 2-functors, (E ⊣ R,ρ,µ) is a 2-adjunction, (ηJ) is a 2-natural
transformation and the comparison 2-functor K : B→ Ps-T -CoAlg induced by the biadjunction
L ⊣U is locally an isomorphism, then J is left 2-adjoint if and only if the strict descent object of AY

exists for every object Y of B. In this case, GY :=
{

∆̇(0, j−),AY
}

defines the right 2-adjoint to J.

4.6 Unit and Counit

In this section, we show that the pseudoprecomonadicity characterization given in Theorem 3.5 of
[73] is a consequence of Corollary 4.5.9. Secondly, we study again biadjoint triangles. Namely, in
the context of Corollary 4.5.10, we give necessary and sufficient conditions under which the unit and
the counit of the obtained biadjunction J ⊣ G are pseudonatural equivalences, provided that E and L
induce the same pseudocomonad. In other words, we prove the appropriate analogous versions of
Corollary 1 and Corollary 2 of page 76 in [30] within our context of biadjoint triangles.

Again, we need to consider another type of 2-functors induced by biadjunctions. The definition
below is given in Theorem 3.5 of [73].

Definition 4.6.1. Assume that L : B→ C is a pseudofunctor and (L ⊣U,η ,ε,s, t) is a biadjunction.
For each object Y of B, we get the 2-functor VY : ∆̇→B

Y
ηY // ULY

UL(ηY )
//

ηULY //

ULULYU(εLY )oo

ULUL(ηY )
//

UL(ηULY ) //

ηULULY //

ULULULY (VY )

in which VY (ϑ) :=
(

η
ηY

: UL(ηY )ηY
∼= ηULY ηY

)
is the invertible 2-cell component of the unit η at

the morphism ηY . Analogously, the images of the 2-cells σik,n0,n1 are defined below.

VY (σ01) := η
ηULY

VY (σ02) := ηUL(ηY )

VY (σ12) := (ULη)
ηY

VY (n0) := tLY

VY (n1) :=
(
u

εLY ,L(ηY )

)−1
·U(sY ) ·uULY
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We verify below that VY is well defined. That is to say, we have to prove that VY satisfies the
equations given in Definition 4.3.1. Firstly, the associativity and naturality equations of Definition
4.2.2 give the following equality

VY0 VY (d) //

VY (d)
��

VY (d)

ww

VY (ϑ)⇐===

VY1

VY (d1)

��
=

VY0 VY (d) //

VY (ϑ)⇐===VY (d)
��

VY1

VY (d1)

��
VY (d1)

''
VY1 VY (ϑ)⇐===

VY (d0)

''

VY1 VY (d0) //

VY (d1)

��
VY (σ02)⇐====

VY2

VY (∂
2)

��

VY1 VY (d0) //

VY (d0)

��
VY (σ01)⇐====

VY2 VY (σ12)⇐====
VY (∂

1)

��

VY2

VY (∂
2)

ww
VY2 VY (∂

0) // VY3 VY2 VY (∂
0) // VY3

which is the associativity equation of Definition 4.3.1. Furthermore, by Definition 4.2.5 of biadjunction,
we have that

VY0
VY (d)=ηY //

VY (d)=ηY

��

VY1

VY (d1)=UL(ηY )

��

VY (n1)⇐===

VY0

VY (d)

��

= VY (d)

��

VY (ϑ)⇐=== =

VY1)
VY (d0)=ηULY

//

VY (n0)⇐===

VY2

VY (s0)

!!
VY1 VY1

which proves that VY satisfies the identity equation of Definition 4.3.1.

As mentioned before, Corollary 4.6.2 is Theorem 3.5 of [73]. Below, it is proved as a consequence
of Corollary 4.5.9.

Corollary 4.6.2 ([73]). Let (L ⊣U,η ,ε,s, t) be a biadjunction. The pseudofunctor L is pseudopre-
comonadic if and only if, for every object Y of B, the 2-functor VY : ∆̇→B is of effective descent.

Proof. On one hand, by Corollary 4.5.9, L is pseudoprecomonadic if and only if DX
Y : ∆̇→ CAT is of

effective descent for every pair (X ,Y ) of objects in B. On the other hand, by Lemma 4.3.6, VY is of
effective descent if and only if B(X ,VY−) : ∆̇→ CAT is of effective descent for every object X in B.

Therefore, by Lemma 4.3.5, to complete our proof, we just need to verify that DX
Y ≃B(X ,VY−).

Indeed, there is a pseudonatural equivalence

ι : DX
Y −→B(X ,VY−)

induced by χ : C(L−,−)≃B(−,U−) such that

ι0 := Id
B(X ,Y )

ι1 := χ
(X ,LY ) : C(LX ,LY )→B(X ,ULY )

ψ2 := χ
(X ,LULY ) : C(LX ,LULY )→B(X ,ULULY )

ψ3 := χ
(X ,LULULY ) : C(LX ,LULULY )→B(X ,ULULULY )
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(ιd ) f
:= η

−1
f(

ι
d0

)
f

:= η
−1
U( f )ηX(

ι
d1

)
f

:= uL(ηY ) f ∗ id
ηX

(
ι

∂0

)
f

:= η
−1
U( f )ηX(

ι
∂1

)
f

:= uL(ηULY ) f ∗ id
ηX

(
ι

∂2

)
f

:= uLUL(ηY ) f ∗ id
ηX(

ι
s0

)
f

:= u
εLY f ∗ id

ηX

We assume the existence of a biadjunction J ⊣ G in the commutative triangles below and study its
counit and unit, provided that the biadjunctions (E ⊣ R,ρ,µ,v,w),(L ⊣U,η ,ε,s, t) induce the same
pseudocomonad. We start with the unit.

Theorem 4.6.3 (Unit). Assume that (E ⊣ R,ρ,µ,v,w),(L ⊣U,η ,ε,s, t),(J ⊣ G, η̄ , ε̄, s̄, t̄) are biad-
junctions such that the triangles

A
J //

E ��

B

L��

A
J // B

C C

R

__

U

??

are commutative. If (E ⊣ R,ρ,µ,v,w), (L ⊣U,η ,ε,s, t) induce the same pseudocomonad T , then the
following statements are equivalent:

1. The unit η : Id
A
−→ GJ is a pseudonatural equivalence;

2. E is pseudoprecomonadic;

3. The following 2-functor is of effective descent for every pair of objects (A,B) in A

D̂A
B : ∆̇→ CAT

A(A,B)

EA,B
��

C(EA,EB)

C(EA,E(ρB ))
//

E
A,REB

◦ ξ
(A,EB) //

C(EA,EREB)C(EA,µEB )
oo

C(EA,ERE(ρB ))
//

C(EA,E(ρREB ))
//

E
A,(RE)2B

◦ ξ
(A,EREB)

//
C(EA,E(RE)2B)

in which ξ : C(E−,−)≃ A(−,R−) is the pseudonatural equivalence induced by the biadjunc-
tion (E ⊣ R,ρ,µ,v,w) described in Remark 4.2.6.

4. For each object B of A, the following diagram is of effective descent.

V̂B : ∆̇→ A

B
ρB // REB

RE(ρB )
//

ρREB //
REREYR(µEB )

oo

RERE(ρB )
//

RE(ρREB )
//

ρREREB //
REREREB

Proof. By Remark 4.2.7, the unit η̄ is a pseudonatural equivalence if and only if J is locally an equiv-
alence. Moreover, by the hypothesis and the universal property of the 2-category of pseudocolagebras,



4.6 Unit and Counit 161

we have the following diagram

A J //

K̃

##
∼=

E

))

B K //

L

%%

Ps-T -CoAlg

L

��
C

such that K̃ ,K are the comparison pseudofunctors.
Since, by hypothesis, we know that K is locally an equivalence, we conclude that J is locally

an equivalence if and only if K̃ is locally an equivalence. Thereby, to conclude, we just need to
apply the characterizations of pseudoprecomonadic pseudofunctors: that is to say, Corollary 4.5.9 and
Corollary 4.6.2.

Before studying the counit, for future references, we need the following result about the diagram
VY : ∆̇→B in the context of biadjoint triangles.

Lemma 4.6.4. Let
A

J //

E ��

B

L��

A
J // B

C C

R

__

U

??

be commutative triangles of pseudofunctors such that we have biadjunctions (E ⊣ R,ρ,ε,v,w) and
(L ⊣U,η ,ε,s, t) inducing the same pseudocomonad T = (T ,ϖ ,ε,Λ,δ ,s). We consider the diagram
AY : ∆→ A. Then, for each object Y of B, there is a pseudonatural isomorphism

ζ
Y

: J ◦AY −→ VY ◦ j.

Proof. Again, we have the same diagram of the proof of Theorem 4.6.3. In particular, for each object
Y of B, there is an invertible 2-cell yY : J(ρRLY )⇒ ηULY . Thereby, we can define ζ

Y
: J ◦AY −→ VY ◦ j

such that the components ζ1 ,ζ2 ,ζ3 are identity 1-cells, the components ζ
Y

d1
, ζ

Y

s0
, ζ

Y

∂1
, ζ

Y

∂2
are identity 2-

cells,
(

ζ
Y

d0

)
:= yY ·J

((
(rl)−1

LY
·RL(tLY )

)
∗ id

ρRLY

)
and

(
ζ

Y

∂0

)
:= yULY ·J

((
(rl)−1

LULY
·RL(tLY )

)
∗ id

ρRLULY

)
.

Theorem 4.6.5 (Counit). Let (E ⊣ R,ρ,ε,v,w) and (L ⊣U,η ,ε,s, t) be biadjunctions inducing the
same pseudocomonad T = (T ,ϖ ,ε,Λ,δ ,s) such that the triangles of pseudofunctors

A
J //

E $$

B

Lyy

A
J // B

C C
R

dd

U

99

commute. We assume that (J ⊣ G, η̄ , ε̄, s̄, t̄) is a biadjunction and L is pseudoprecomonadic. We
consider the diagram AY : ∆→ A. Then J

{
∆̇(0, j−),AY

}
bi is the descent object of J ◦AY for every

object Y of B if and only if the counit ε : JG−→ Id
B

is a pseudonatural equivalence.

Proof. Actually, this is a corollary of Lemma 4.6.4, Corollary 4.5.10 and Corollary 4.6.2. More
precisely, by Lemma 4.6.4, J ◦AY ≃ VY ◦ j. By Corollary 4.6.2, since L is pseudoprecomonadic, VY
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is of effective descent. Moreover, by the constructions of Theorem 4.4.3 (which proves Corollary
4.5.10), the counit is pointwise defined by the comparison 1-cells

J
{

∆̇(0, j−),AY
}

bi→ Y = VY0≃
{

∆̇(0, j−),VY ◦ j
}
.

This completes the proof.

4.7 Pseudocomonadicity

Similarly to the 1-dimensional case, to prove the characterization of pseudocomonadic pseudofunctors
employing the biadjoint triangle theorems, we need two results: Lemma 4.7.1 and Proposition 4.7.2,
which are proved in [73] in Lemma 2.3 and Proposition 3.2 respectively.

We start with Lemma 4.7.1, which is a basic and known property of the diagram VY . It follows
from explicit calculations using the definition of descent objects: we give a sketch of the proof below.

Lemma 4.7.1 ([73]). Let (L ⊣U,η ,ε,s, t) be a biadjunction. For each object Y of B, the diagram
L◦VY is of absolute effective descent.

Proof. Trivially, given a pseudofunctor F : C→ Z, we can see F ◦L◦VY as a 2-functor, taking, if
necessary, the obvious pseudonaturally equivalent version of F ◦L◦VY . Then, for each objects Z of
Z, by Remark 4.3.8, we can consider the strict descent object of the 2-functor explicitly

Z(Z,F ◦L◦VY ◦ j−) : ∆→ CAT

Z(Z,FLULY )

Z(Z,FLUL(ηY ))
//

Z(Z,FL(ηULY ))
//

Z(Z,FLULULY )Z(Z,FLU(εLY ))oo

Z(Z,FLULUL(ηY ))
//

Z(Z,FLUL(ηULY )) //

Z(Z,FL(ηULULY ))
//

Z(Z,FLULULULY )

Thereby, by straightforward calculations, taking Remark 4.3.8 into account, we conclude that

Z(Z,FLY ) →
{

∆̇(0, j−),Z(Z,F ◦L◦VY ◦ j−)
}

f 7→ (FL(ηY ) f ,(FLη)
ηY
∗ id f )

m 7→ id
FL(ηY )

∗m

gives an equivalence of categories (and it is the comparison functor). This completes the proof.

Proposition 4.7.2 ([73]). Let T = (T ,ϖ ,ε,Λ,δ ,s) be a pseudocomonad on C. The forgetful pseud-
ofunctor L : Ps-T -CoAlg→ C creates absolute effective descent diagrams.

In this section, henceforth we work within the following setting (and notation): given a biad-
junction (E ⊣ R,ρ,µ,v,w), recall that, by Lemma 4.5.4, it induces a biadjunction, herein denoted by
(L ⊣U,η ,ε,s, t). We also get commutative triangles

A
K //

E
%%

Ps-T -CoAlg

L
��

C
R //

U
%%

A

K
��

C Ps-T -CoAlg
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in which, clearly, the biadjunctions E ⊣ R, L ⊣U induce the same pseudocomonad T . In this context,
if the comparison pseudofunctor K is a biequivalence, we say that E is pseudocomonadic. In other
words, we say that E is pseudocomonadic if there is a pseudofunctor G : Ps-T -CoAlg→ A such that
G◦K ≃ Id

A
and K ◦G≃ Id

Ps-T -CoAlg .
Of course, in the triangle above, the forgetful pseudofunctor L is always pseudocomonadic. In

particular, L is always pseudoprecomonadic. Therefore the triangle satisfies the basic hypothesis of
Corollary 4.5.10.

Observe that, to verify the pseudocomonadicity of a left biadjoint pseudofunctor L, we can do it in
three steps:

1. Verify whether K has a right biadjoint via Corollary 4.5.10;

2. If it does, the next step would be to verify whether the counit of the biadjunction K ⊣ G is a
pseudonatural equivalence via Theorem 4.6.5;

3. The final step would be to verify whether the unit of the biadjunction K ⊣G is a pseudonatural
equivalences via Theorem 4.6.3.

These are precisely the steps used below.

Theorem 4.7.3 (Pseudocomonadicity [73]). A left biadjoint pseudofunctor E : A→ C is pseudo-
comonadic if and only if it creates absolute effective descent diagrams.

Proof. By Proposition 4.7.2, pseudocomonadic pseudofunctors create absolute effective descent
diagrams. Reciprocally, assume that E creates absolute effective descent diagrams.

1. K has a right biadjoint G:

In this proof, we take a biadjunction (E ⊣ R,ρ,ε,v,w) and assume that T is its induced pseu-
docomonad. Also, we denote by (L ⊣ U,η ,ε,s, t) the biadjunction induced by T (as described
above).

On one hand, by Lemma 4.6.4 and Lemma 4.7.1, for each object z of Ps-T -CoAlg, the diagram
Az : ∆ → A is such that E ◦Az ≃ L ◦ Vz ◦ j is an absolute effective descent diagram, in which
Vz : ∆̇→ Ps-T -CoAlg is induced by the biadjunction L ⊣U .

Therefore, since E creates absolute effective diagrams, we conclude that there is an effective
descent diagram Bz such that Az = Bz ◦ j and E ◦Bz ≃ L ◦Vz. Thus, by Corollary 4.5.10, we
conclude that K has a right biadjoint G.

2. The counit of the biadjunction K ⊣ G is a pseudonatural equivalence:

Since L◦K ◦Bz = E ◦Bz ≃ L◦Vz is of absolute effective descent and L creates absolute effective
descent diagrams, we conclude that K ◦Bz is of effective descent. By Theorem 4.6.5, it completes
this second step.

3. The unit of the biadjunction K ⊣ G is a pseudonatural equivalence:
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By Lemma 4.7.1, for every object A of A, E ◦ V̂A : ∆̇→ C is of absolute effective descent, in which V̂A

is induced by the biadjunction E ⊣ R. Since E creates absolute effective descent diagrams, we get
that V̂A is of effective descent. Therefore, by Corollary 4.6.2, E is pseudoprecomonadic. By Theorem
4.6.3, it completes the proof of the final step.

As a consequence of Theorem 4.7.3, within the setting of Theorem 4.4.3, if J has a right biadjoint
and E,L are pseudocomonadic, then J is pseudocomonadic as well. Furthermore, it is worth to point
out that the second step of the proof of Theorem 4.7.3 follows directly from the fact that E preserves
the effective descent diagrams Bz and from the pseudocomonadicity of L. More precisely, as direct
consequence of Lemma 4.7.1, Theorem 4.6.5 and Proposition 4.7.2, we get:

Corollary 4.7.4 (Counit). Let (E ⊣ R,ρ,µ,v,w),(L ⊣U,η ,ε,s, t) be biadjunctions inducing the same
pseudocomonad T = (T ,ϖ ,ε,Λ,δ ,s) such that

A
J //

E ��

B

L��
C

commutes. Assume that L is pseudocomonadic, J ◦R =U and (J,G,ε,η ,s, t) is a biadjunction. The
counit ε : JG −→ Id

B
is a pseudonatural equivalence if and only if, for every object Y of B, E

preserves the descent object of AY : ∆→ A.

Proof. By Corollary 4.5.10, since J is left biadjoint, for each object Y of B, there is an effective
descent diagram BY : ∆̇→ A such that BY ◦ j≃AY . By the commutativity of the triangles L◦ J = E
and J ◦R =U , since (E ⊣ R,ρ,µ) and (L ⊣U,η ,ε,s, t) induce the same pseudocomonad, our setting
satisfies the hypotheses of Lemma 4.6.4. Thus, for each object Y of B, there is a pseudonatural
equivalence

J ◦BY ◦ j≃ J ◦AY ≃ VY ◦ j.

By Theorem 4.6.5, to complete this proof, it is enough to show that J ◦BY is of effective descent
if and only if E ◦BY is of effective descent.

Firstly, we assume that J ◦BY is of effective descent. In this case, since J ◦BY ◦ j≃ VY ◦ j and VY

is of effective descent, we conclude that VY ≃ J ◦BY . Thus, by Lemma 4.7.1,

L◦VY ≃ L◦ J ◦BY = E ◦BY

is, in particular, of effective descent.

Reciprocally, we assume that E ◦BY is of effective descent. Again, since E ◦BY ◦ j≃ L◦VY ◦ j
and L◦VY is of absolute effective descent, we conclude that E ◦BY ≃ L◦VY is of absolute effective
descent. Therefore, since L is pseudocomonadic, by Proposition 4.7.2, we conclude that J ◦BY is of
effective descent.
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4.8 Coherence

A 2-(co)monadic approach to coherence consists of studying the inclusion of the 2-category of
strict (co)algebras into the 2-category of pseudo(co)algebras of a given 2-(co)monad to get general
coherence results [9, 67, 93]. More precisely, one is interested, firstly, to understand whether the
inclusion of the 2-category of strict coalgebras into the 2-category of pseudocoalgebras has a right
2-adjoint G (what is called a “coherence theorem of the first type” in [67]). Secondly, if there is such
a right 2-adjoint, one is interested in investigating whether every pseudocoalgebra z is equivalent to
the strict replacement G(z) (what is called a “coherence theorem of the second type” in [67]).

We fix the notation of this section as follows: we have a 2-comonad T = (T ,ϖ ,ε) on a
2-category C. We denote by T -CoAlg

s
the 2-category of strict coalgebras, strict morphisms and

T -transformations, that is to say, the usual CAT-enriched category of coalgebras of the CAT-comonad
T . The 2-adjunction E ⊣ R : T -CoAlg

s
→ C induces the Eilenberg-Moore factorization w.r.t. the

pseudocoalgebras:

T -CoAlg
s

J //

E ''

Ps-T -CoAlg

L
��
C

in which J : T -CoAlg
s
→ Ps-T -CoAlg is the usual inclusion.

Firstly, Corollary 4.5.10 gives, in particular, necessary and sufficient conditions for which a
2-comonad satisfies the “coherence theorem of the first type” and a weaker version of it, that is to say,
it also studies when J has a right biadjoint G. Secondly, Corollary 4.7.4 gives necessary and sufficient
conditions for getting a stronger version of the “coherence theorem of the second type”, that is to say,
it studies when the counit of the obtained biadjunction/2-adjunction is a pseudonatural equivalence.

Corollary 4.8.1 (Coherence Theorem). Let T = (T ,ϖ ,ε) be a 2-comonad on a 2-category C. It
induces a 2-adjunction (E ⊣ R,ρ,ε) and a biadjunction (L ⊣U,η ,ε,s, t) such that

T -CoAlg
s

J //

E
''

Ps-T -CoAlg

L
��
C

commutes. The inclusion J : T -CoAlg
s
→ Ps-T -CoAlg has a right biadjoint if and only if T -CoAlg

s

has the descent object of

RLz

RL(ηz )
//

ρRLz //

RT LzR(εLz )
oo

RT L(ηz )
//

RL(ηULz )
//

ρRT Lz //

RT 2Lz (Az)

for every pseudocoalgebra z of Ps-T -CoAlg. In this case, J is left biadjoint to G, given by Gz :={
∆̇(0, j−),Az

}
bi. Moreover, assuming the existence of the biadjunction (J ⊣ G,ε,η ,s, t), the counit

ε : JG−→ id
Ps-T -CoAlg is a pseudonatural equivalence if and only if E preserves the descent object of

Az for every pseudocoalgebra z.
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Furthermore, J has a genuine right 2-adjoint G if and only if T -CoAlg
s

admits the strict descent
object of Az for every T -pseudocoalgebra z. In this case, the right 2-adjoint is given by Gz :={

∆̇(0, j−),Az

}
.

Proof. Since (E ⊣ R,ρ,ε) and (L ⊣U,η ,ε,s, t) induce the same pseudocomonad and (ηJ) = (Jρ) is
a 2-natural transformation, it is enough to apply Corollary 4.7.4 and Corollary 4.5.10 to the triangle
L◦ J = E.

We say that a 2-comonad T satisfies the main coherence theorem if there is a right 2-adjoint
Ps-T -CoAlg→ T -CoAlg

s
to the inclusion and the counit of such 2-adjunction is a pseudonatural

equivalence.
To get the original statement of [67], we have to employ the following well known result (which

is a consequence of a more general result on enriched comonads):
Let T be a 2-comonad on C. The forgetful 2-functor T -CoAlg

s
→ C creates all those strict

descent objects which exist in C and are preserved by T and T 2.
Employing this result and Corollary 4.8.1, we prove Theorem 3.2 and Theorem 4.4 of [67]. For

instance, we get:

Corollary 4.8.2 ([67]). Let T be a 2-comonad on a 2-category C. If C has and T preserves strict
descent objects, then T satisfies the main coherence theorem.

4.9 On lifting biadjunctions

One of the most elementary corollaries of the adjoint triangle theorem [30] is about lifting adjunctions
to adjunctions between the Eilenberg-Moore categories. In our case, let T : A→ A and S : C→ C

be 2-comonads (with omitted comultiplications and counits), if

T -CoAlg
s

L̂
��

J // S -CoAlg
s

L
��

A
E

// C

is a commutative diagram, such that E has a right 2-adjoint R, then Proposition 4.1.1 gives necessary
and sufficient conditions to construct a right 2-adjoint to J. Also, of course, as a consequence of
Corollary 4.5.10, we have the analogous version for pseudocomonads.

Corollary 4.9.1. Let T : A→ A and S : C→ C be pseudocomonads. If the diagram

Ps-T -CoAlg

L̂
��

J // Ps-S -CoAlg

L
��

A
E

// C

commutes and E has a right biadjoint, then J has a right biadjoint provided that Ps-T -CoAlg has
descent objects.
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Recall that Ps-T -CoAlg has descent objects if A has and T preserves descent objects. Therefore
the pseudofunctor J of the last result has a right biadjoint in this case.

4.9.2 On pseudo-Kan extensions

One simple application of Corollary 4.9.1 is about pseudo-Kan extensions. In the tricategory 2-
CAT, the natural notion of Kan extension is that of pseudo-Kan extension. More precisely, a right
pseudo-Kan extension of a pseudofunctor D : S→ A along a pseudofunctor h : S→ Ṡ, denoted by
Ps-RanhD , is (if it exists) a birepresentation of the pseudofunctor W 7→ [S,A]PS(W ◦h,D). Recall
that birepresentations are unique up to equivalence and, therefore, right pseudo-Kan extensions are
unique up to pseudonatural equivalence.

Assuming that h : S→ Ṡ is a pseudofunctor between small 2-categories, in the setting described
above, the following are natural problems on pseudo-Kan extensions: (1) investigating the left
biadjointness of the pseudofunctor W →W ◦h, namely, investigating whether all right pseudo-Kan
extensions along h exist; (2) understanding pointwise pseudo-Kan extensions (that is to say, proving
the existence of right pseudo-Kan extensions provided that A has all bilimits).

It is shown in [9] that, if S0 denotes the discrete 2-category of the objects of S, the restriction
[S,A]→ [S0,A] is 2-comonadic, provided that [S,A]→ [S0,A] has a right 2-adjoint RanS→S0 . It
is also shown there that the 2-category of pseudocoalgebras of the induced 2-comonad is [S,A]PS. It
actually works more generally: [S,A]PS→ [S0,A]PS = [S0,A] is pseudocomonadic whenever there
is a right biadjoint Ps-RanS0→S : [S0,A]PS→ [S,A]PS because existing bilimits of A are constructed
objectwise in [S,A]PS (and, therefore, the hypotheses of the pseudocomonadicity theorem [73] are
satisfied). Thus, we get the following commutative square:

[Ṡ,A]PS

��

[h,A]PS // [S,A]PS

��
[Ṡ0,A]

[h,A]PS

// [S0,A]

Thereby, Corollary 4.9.1 gives a way to study pseudo-Kan extensions, even in the absence of strict
2-limits. That is to say, on one hand, if the 2-category A is complete, our results give pseudo-Kan
extensions as descent objects of strict 2-limits. On the other hand, in the absence of strict 2-limits and,
in particular, assuming that A is bicategorically complete, we can construct the following pseudo-Kan
extensions:

Ps-Ran
S0→Ṡ0

: [S0,A] → [Ṡ0,A]PS

D 7→ Ps-Ran
S0→Ṡ0

D :

(
x 7→ ∏

h(a)=x
Da

)

Ps-Ran
Ṡ0→Ṡ

: [Ṡ0,A] → [Ṡ,A]PS

D 7→ Ps-Ran
Ṡ0→Ṡ

D :

x 7→ ∏
y∈Ṡ0

Ṡ(x,y) t Dy


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Ps-Ran
S0→S

: [S0,A] → [S,A]PS

D 7→ Ps-Ran
S0→S

D :

(
a 7→ ∏

b∈S0

S(a,b) t Db

)

in which ∏ and t denote the bilimit versions of the product and cotensor product, respectively.
Thereby, by Corollary 4.9.1, the pseudo-Kan extension Ps-Ranh can be constructed pointwise as
descent objects of a diagram obtained from the pseudo-Kan extensions above. Namely, Ps-RanhDx
is the descent object of a diagram

a0
//
// a1oo

//
//
// a2

in which, by Theorem 4.4.3 and the last observations,

a0 = ∏
y∈Ṡ0

(
Ṡ(x,y) t ∏

h(a)=y
Da

)
≃ ∏

a∈S0

(
Ṡ(x,h(a)) t Da

)

a1 =

(
Ṡ(x,y) t ∏

h(a)=y

(
∏

b∈S0

S(a,b) t Db

))

≃ ∏
a∈S0

(
Ṡ(x,h(a)) t

(
∏

b∈S0

S(a,b) t Db

))
≃ ∏

(a,b)∈S0×S0

((
S(a,b)× Ṡ(x,h(a))

)
t Db

)
a2 ≃ ∏

(a,b,c)∈S0×S0×S0

((
S(b,c)×S(a,b)× Ṡ(x,h(a))

)
t Dc

)
This implies that, indeed, if A is bicategorically complete, then Ps-RanhD exists and, once we assume
the results of [105] related to the construction of weighted bilimits via descent objects, we conclude
that:

Proposition 4.9.3 (Pointwise pseudo-Kan extension). Let S,Ṡ be small 2-categories and A be a
bicategorically complete 2-category. If h : S→ Ṡ is a pseudofunctor, then

Ps-RanhDx =
{
Ṡ(x,h−),D

}
bi

Corollary 4.9.4. If A : ∆ → A is a pseudofunctor and A has the descent object of A , then
Ps-RanjA 0 is the descent object of A .

Moreover, by the bicategorical Yoneda Lemma, we get:

Corollary 4.9.5. If h : S→ Ṡ is locally an equivalence and there is a biadjunction [h,A] ⊣ Ps-Ranh,
its counit is a pseudonatural equivalence.

Finally, let A be a 2-category with all descent objects and T be a pseudocomonad on A. Recall
that, if T preserves all effective descent diagrams, Ps-T -CoAlg has all descent objects. Therefore, if
h : S→ Ṡ is a pseudofunctor, in this setting, the commutative diagram below satisfies the hypotheses
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of Corollary 4.9.1 (and, thereby, it can be used to lift pseudo-Kan extensions to pseudocoalgebras).

[Ṡ,Ps-T -CoAlg]PS

��

// [S,Ps-T -CoAlg]PS

��
[Ṡ,A]PS // [S,A]PS

Remark 4.9.6. Assume that h : S→ Ṡ is a pseudofunctor, in which S,Ṡ are small 2-categories.
There is another way of proving Proposition 4.9.3. Firstly, we define the bilimit version of end. That
is to say, if T : S×Sop→ CAT is a pseudofunctor, we define∫

S
T := [A×Aop,CAT]PS (A(−,−),T )

From this definition, it follows Fubini’s theorem (up to equivalence). And, if B,D : S→ A are
pseudofunctors, the following equivalence holds:∫

S
A(Ba,Da)≃ [S,A]PS (B,D)

Therefore, if h : S→ Ṡ is a pseudofunctor and we define PsRanhDx =
{
Ṡ(x,h−),D

}
bi, we have

the pseudonatural equivalences (analogous to the enriched case [58])[
Ṡ,A

]
PS (W ,PsRanhD) ≃

∫
Ṡ
A(W x,PsRanhDx)

≃
∫
Ṡ
A(W x,

{
Ṡ(x,h−),D

}
bi)

≃
∫
Ṡ
[S,CAT]PS (Ṡ(x,h−),A(W x,D−))

≃
∫
Ṡ

∫
S
CAT(Ṡ(x,h(a)),A(W x,Da))

≃
∫
S

∫
Ṡ
CAT(Ṡ(x,h(a)),A(W x,Da))

≃
∫
S

[
Ṡop,CAT

]
PS (Ṡ(−,h(a)),A(W −,Da))

≃
∫
S
A(W ◦h(a),Da)

≃ [S,A]PS (W ◦h,D)

This completes the proof that if the pointwise right pseudo-Kan extension PsRanh exists, it is a right
pseudo-Kan extension. Within this setting and assuming this result, the original argument used to
prove Proposition 4.9.3 using biadjoint triangles gets the construction via descent objects of weighted
bilimits originally given in [105].





Chapter 5

On lifting of biadjoints and lax algebras

By the biadjoint triangle theorem, given a pseudomonad T on a 2-category B, if a right biadjoint

A→B has a lifting to the pseudoalgebras A→ Ps-T -Alg then this lifting is also right biadjoint

provided that A has codescent objects. In this paper, we give general results on lifting of biadjoints.

As a consequence, we get a biadjoint triangle theorem which, in particular, allows us to study

triangles involving the 2-category of lax algebras, proving analogues of the result described

above. In the context of lax algebras, denoting by ℓ : Lax-T -Alg→ Lax-T -Algℓ the inclusion,

if R : A→B is right biadjoint and has a lifting J : A→ Lax-T -Alg, then ℓ◦ J is right biadjoint

as well provided that A has some needed weighted bicolimits. In order to prove such result, we

study descent objects and lax descent objects. At the last section, we study direct consequences of

our theorems in the context of the 2-monadic approach to coherence.

Introduction

This paper has three main theorems. One of them (Theorem 5.2.3) is about lifting of biadjoints:
a generalization of Theorem 4.4 of [77]. The others (Theorem 5.5.2 and Theorem 5.5.3) are
consequences of the former on lifting biadjoints to the 2-category of lax algebras. These results
can be seen as part of what is called two-dimensional universal algebra, or, more precisely, two-
dimensional monad theory: for an idea of the scope of this field (with applications), see for instance
[9, 11, 47, 60, 67, 77, 79, 93, 95].

There are several theorems about lifting of adjunctions in the literature [1, 10, 55, 108, 111],
including, for instance, adjoint triangle theorems [2, 30]. Although some of these results can be
proved for enriched categories or more general contexts [77, 92], they often are not enough to deal
with problems within 2-dimensional category theory. The reason is that these problems involve
concepts that are not of (strict/usual) Cat-enriched category theory nature, as it is explained in [9, 68].

For example, in 2-dimensional category theory, the enriched notion of monad, the 2-monad,
gives rise to the 2-category of (strict/enriched) algebras, but it also gives rise to the 2-category of
pseudoalgebras and the 2-category of lax algebras. The last two types of 2-categories of algebras (and
full sub-2-categories of them) are usually of the most interest despite the fact that they are not “strict”
notions.

171
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In short, most of the aspects of 2-dimensional universal algebra are not covered by the usual
Cat-enriched category theory of [31, 58] or by the formal theory of monads of [100]. Actually, in
the context of pseudomonad theory, the appropriate analogue of the formal theory of monads is the
formal theory (and definition) of pseudomonads of [66, 83]. In this direction, the problem of lifting
biadjunctions is the appropriate analogue of the problem of lifting adjunctions.

Some results on lifting of biadjunctions are consequences of the biadjoint triangle theorems proved
in [77]. One of these consequences is the following: let T be a pseudomonad on a 2-category B.
Assume that R : A→B, J : A→ Ps-T -Alg are pseudofunctors such that we have the pseudonatural
equivalence below. If R is right biadjoint then J is right biadjoint as well provided that A has some
needed codescent objects.

A
J //

R ��

Ps-T -Alg

U
zz

B

≃

One simple application of this result is, for instance, within the 2-monadic approach to coherence [77]:
roughly, the 2-monadic approach to coherence is the study of biadjunctions and 2-adjunctions between
the many types of 2-categories of algebras rising from a given 2-monad. This allows us to prove
“general coherence results” [9, 67, 93] which encompass many coherence results – such as the strict
replacement of monoidal categories, the strict/flexible replacement of bicategories [67, 69], the
strict/flexible replacement of pseudofunctors [9] and so on.

If T ′ is a 2-monad, the result described above gives the construction of the left biadjoint to the
inclusion

T ′-Algs→ Ps-T ′-Alg

subject to the existence of some codescent objects in T ′-Algs. The strict version of the biadjoint
triangle theorem of [77] shows when we can get a genuine left 2-adjoint to this inclusion (and also
studies when the unit is a pseudonatural equivalence), getting the coherence results of [67] w.r.t.
pseudoalgebras.

In this paper, we prove Theorem 5.2.3 which is a generalization of Theorem 4.3 of [77] on
biadjoint triangles. Our result allows us to study lifting of biadjunctions to lax algebras. Hence,
we prove the analogue of the result described above for lax algebras. More precisely, let T be a
pseudomonad on a 2-category B and let ℓ : Lax-T -Alg→ Lax-T -Algℓ be the locally full inclusion
of the 2-category of lax T -algebras and T -pseudomorphisms into the 2-category of lax T -algebras
and lax T -morphisms. Assuming that

A
J //

R ��

Lax-T -Alg

yy
B

≃

is a pseudonatural equivalence in which R is right biadjoint, we prove that J is right biadjoint as well,
provided that A has some needed codescent objects. Moreover, ℓ◦ J is right biadjoint if and only if
A has lax codescent objects of some special diagrams. Still, we study when we can get strict left
2-adjoints to J and ℓ◦ J, provided that J is a 2-functor.
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As an immediate application, we also prove general coherence theorems related to the work of
[67]: we get the construction of the left biadjoints of the inclusions

T ′-Algs→ Lax-T ′-Algℓ Ps-T -Alg→ Lax-T -Algℓ

provided that T ′ is a 2-monad, T is a pseudomonad and T ′-Algs, Ps-T -Alg have some needed lax
codescent objects.

We start in Section 5.1 establishing our setting: we recall basic results and definitions, such as
weighted bicolimits and computads. In Section 5.2, we give our main theorems on lifting of biadjoints:
these are simple but pretty general results establishing basic techniques to prove theorems on lifting of
biadjoints. These techniques apply to the context of [77] but also apply to the study of other biadjoint
triangles, such as our main application - which is the lifting of biadjoints to the 2-category of lax
algebras.

Then, we restrict our attention to 2-dimensional monad theory: in order to do so, we present the
weighted bicolimits called lax codescent objects and codescent objects in Section 5.3. Our approach
to deal with descent objects is more general than the approach of [77, 79, 105], since it allows us to
study descent objects of more general diagrams. Thanks to this approach, in Section 5.4, after defining
pseudomonads and lax algebras, we show how we can get the category of pseudomorphisms between
two lax algebras as a descent object at Proposition 5.4.5. This result also shows how we can get the
category of lax morphisms between two lax algebras as a lax descent object.

In Section 5.5, we prove our main results on lax algebras: Theorem 5.5.2 and Theorem 5.5.3.
They are direct consequences of the results of Section 5.2 and Section 5.4, but we also give explicit
calculations of the weighted bicolimits/weighted 2-colimits needed in A to get the left biadjoints/left
2-adjoints. We finish the paper in Section 5.6 giving straightforward applications of our results within
the context of the 2-monadic approach to coherence explained above.

This work was realized in the course of my PhD studies at University of Coimbra. I wish to thank
my supervisor Maria Manuel Clementino for her support, attention and useful feedback.

5.1 Preliminaries

In this section, we recall some basic results related to our setting, which is the tricategory 2-CAT of
2-categories, pseudofunctors, pseudonatural transformations and modifications. Most of what we need
was originally presented in [5, 103–105]. Also, for elements of enriched category theory, see [58]. We
use the notation established in Section 2 of [77] for pseudofunctors, pseudonatural transformations
and modifications.

We start with considerations about size. Let cat = int(Set) be the cartesian closed category of
small categories. Also, assume that Cat,CAT are cartesian closed categories of categories in two
different universes such that cat is an internal category of the subcategory of discrete categories of Cat,
while Cat is itself an internal category of the subcategory of discrete categories of CAT. Since these
three categories of categories are complete and cartesian closed, they are enriched over themselves
and they are cocomplete and complete in the enriched sense.
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Henceforth, Cat-category is a Cat-enriched category such that its collection of objects is a
discrete category of CAT. Thereby, we have that Cat-categories can be seen as internal categories
of CAT such that their categories of objects are discrete. In other words, there is a full inclusion
Cat-CAT→ int(CAT) in which Cat-CAT denotes the category of Cat-categories. Moreover, since
there is a forgetful functor int(CAT)→ CAT, there is a forgetful functor Cat-CAT→ CAT.

So, we adopt the following terminology: firstly, a 2-category is a Cat-category. Secondly, a
possibly (locally) large 2-category is an internal category of CAT such that its category of objects is
discrete. Finally, a small 2-category is a 2-category which can be seen as an internal category of cat.

Let W : S→ Cat,W ′ : Sop→ Cat and D : S→ A be 2-functors with small domains. If it exists,
we denote the weighted limit of D with weight W by {W ,D}. Dually, we denote by W ′∗D the
weighted colimit provided that it exists.

Remark 5.1.1. Consider the category, denoted in this remark by Sist with two objects and two parallel
arrows between them. We can define the weight

Winsert : Sist→ Cat

1
//

//
2 ✤ // I

domain
//

codomain//
2

in which 2 is the category with two objects and only one morphism between them and I is the terminal
category. The colimits with this weight are called coinserters (see [59]).

The bicategorical Yoneda Lemma says that there is a pseudonatural equivalence

[S,Cat]PS(S(a,−),D)≃Da

given by the evaluation at the identity, in which [S,Cat]PS is the possibly large 2-category of pseudo-
functors, pseudonatural transformations and modifications S→ Cat. As a consequence, the Yoneda
embedding Y

Sop : Sop→ [S,Cat]PS is locally an equivalence (i.e. it induces equivalences between
the hom-categories).

If W : S→ Cat,D : S→ A are pseudofunctors with a small domain, recall that the weighted
bilimit, when it exists, is an object {W ,D}bi of A endowed with a pseudonatural equivalence (in X)
A(X ,{W ,D}bi)≃ [S,Cat]PS(W ,A(X ,D−)).

The dual concept is that of weighted bicolimit: if W ′ : Sop→ Cat,D : S→A are pseudofunctors,
the weighted bicolimit W ′∗bi D is the weighted bilimit {W ′,Dop}bi in Aop. That is to say, it
is an object W ′∗bi D of A endowed with a pseudonatural equivalence (in X) A(W ′∗bi D ,X) ≃
[Sop,Cat]PS(W ′,A(D−,X)). By the bicategorical Yoneda Lemma, {W ,D}bi ,W

′∗bi D are unique
up to equivalence, if they exist.

Remark 5.1.2. If W and D are 2-functors, {W ,D}bi and {W ,D}may exist, without being equivalent
to each other. This problem is related to the notion of flexible presheaves/weights (see [8]): whenever
W is flexible, these two types of limits are equivalent, if they exist.

Definition 5.1.3. Let R : A→B,E : B→ A be pseudofunctors. E is left biadjoint to R (or R is right
biadjoint to E) if there exist
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1. pseudonatural transformations ρ : IdB −→ RE and ε : ER−→ IdA

2. invertible modifications v : idE =⇒ (εE)(Eρ) and w : (Rε)(ρR) =⇒ idR

satisfying coherence axioms [77].

Remark 5.1.4. Recall that a biadjunction (E ⊣ R,ρ,ε,v,w) has an associated pseudonatural equiva-
lence χ : B(−,R−)≃ A(E−,−), in which

χ
(X ,Z) :B(X ,RA) → A(EX ,A)

f 7→ εAE( f )

m 7→ id
εA
∗E(m)(

χ
(h,g)

)
f

:=
(

id
εA
∗ e

(h f )R(g)

)
·
(

εg ∗ eh f

)
.

If L,U are 2-functors, we say that L is left 2-adjoint to U whenever there is a biadjunction
(L ⊣U,η ,ε,s, t) in which s, t are identities and η ,ε are 2-natural transformations. In this case, we say
that (L ⊣U,η ,ε) is a 2-adjunction.

5.1.5 On computads

We employ the concept of computad, introduced in [103], to define the 2-categories ∆̇ℓ, ∆̇,∆ℓ in Section
5.3. For this reason, we give a short introduction to computads in this subsection.

Herein a graph G = (d1,d0) is a pair of functors d0,d1 : G1 → G0 between discrete categories
of CAT. In this case, G0 is called the collection of objects and, for each pair of objects (a,b) of G0 ,
d−1

0 (a)∩d−1
1 (b) = G(a,b) is the collection of arrows between a and b. A graph morphism T between

G,G′ is a function T : G0 → G′
0

endowed with a function T(a,b) : G(a,b)→ G′(Ta,Tb) for each pair
(a,b) of objects in G0 . That is to say, a graph morphism T = (T1 ,T0) is a natural transformation
between graphs. The category of graphs is denoted by GRPH.

We also define the full subcategories of GRPH, denoted by Grph and grph: the objects of Grph are
graphs in the subcategory of discrete categories of Cat and the objects of grph, called small graphs,
are graphs in the subcategory of discrete categories of cat. The forgetful functors CAT→ GRPH,
Cat→ Grph and cat→ grph have left adjoints.

We denote by F : GRPH→ CAT the functor left adjoint to CAT→ GRPH and F the monad on
GRPH induced by this adjunction. If G = (d1,d0) is an object of GRPH, FG is the coinserter of this
diagram (d1,d0).

Recall that FG, called the category freely generated by G, can be seen as the category with the
same objects of G but the arrows between two objects a,b are the paths between a,b (including the
empty path): composition is defined by juxtaposition of paths.

Definition 5.1.6. [Computad] A computad c is a graph cG endowed with a graph c(a,b) such that
c(a,b)0 =

(
F cG

)
(a,b) for each pair (a,b) of objects of cG.
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Remark 5.1.7. A small computad is a computad c such that the graphs cG and c(a,b) are small for
every pair (a,b) of objects of cG. Such a computad can be entirely described by a diagram

c2

∂0 //

∂1

//
(
FcG
)

1

d0 //

d1

// c
G
0

in Set such that:

– (d1,d0) is the graph FcG;

– c2 :=
⋃

(a,b)∈cG
0
×cG

0

c(a,b)1 ;

– d1∂1 = d1∂0 and d0∂1 = d0∂0.

A morphism T between computads c,c′ is a graph morphism TG : cG→ c′G endowed with a graph
morphism T(a,b) : c(a,b)→ c(TGa,TGb) for each pair of objects (a,b) in cG such that T(a,b)

0
coincides

with F (TG)(a,b). The category of computads is denoted by CMP.
We can define a forgetful functor U : Cat-CAT→ CMP in which (U A)G is the underlying graph

of the underlying category of A. Recall that, for each pair of objects (a,b) of (U A)G, an object f
of (U A)(a,b) is a path between a and b. Then the composition defines a map ◦ : (U A)(a,b)→
A(a,b) and we can define the arrows of the graphs (U A)(a,b) as follows: (U A)(a,b)( f ,g) :=
A(a,b)(◦( f ),◦(g)).

The left reflection of a small computad c along U is denoted by L c and called the 2-category
freely generated by c. The underlying category of L c is F cG and its 2-dimensional structure is
constructed below.

c2⨿
(
FcG
)

1

∂0,id
��

∂1,id
��

d0∂0, d0 //

d1∂0, d1

// c
G
0

id
��(

FcG
)

1

d0 //

d1

// c
G
0

The diagram of Remark 5.1.7 induces the graph morphisms ((∂0, id), id) and ((∂1, id), id) above
between a graph denoted by c− and FcG. Using the multiplication of the monad F, these morphisms
induce two morphisms Fc−→ FcG. These two morphisms define in particular the graph c− below and
F c− defines the 2-dimensional structure of L c.

(Fc−)
1
−
(
F2cG

)
1

//
//
(
FcG
)

1

Defining all compositions by juxtaposition, we have a sesquicategory (see [106]). We define L c to be
the 2-category obtained from the quotient of this sesquicategory, forcing the interchange laws.

Remark 5.1.8. Let Preord the category of preordered sets. We have an inclusion Preord→ Cat

which is right adjoint. This adjunction induces a 2-adjunction between Preord-CAT and Cat-CAT.
If c is a computad, the locally preordered 2-category freely generated by c is the image of L c by

the left 2-adjoint functor Cat-CAT→ Preord-CAT.
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5.2 Lifting of biadjoints

In this section, we assume that a small weight W :S→Cat, a right biadjoint pseudofunctor R :A→B

and a pseudofunctor J : A→ C are given. We investigate whether J is right biadjoint.
We establish Theorem 5.2.3 and its immediate corollary on biadjoint triangles. We omit the proof

of Lemma 5.2.2, since it is analogous to the proof of Lemma 5.2.1.

Lemma 5.2.1. Assume that, for each object y of C, there are pseudofunctors Dy : S×A→ Cat,Ay :
Sop→ A such that Dy ≃ A(Ay−,−) and

{
W ,Dy(−,A)

}
bi ≃ C(y,JA) for each object A of A. The

pseudofunctor J is right biadjoint if and only if, for every object y of C, the weighted bicolimit
W ∗bi Ay exists in A. In this case, J is right biadjoint to G, defined by Gy= W ∗bi Ay.

Proof. There is a pseudonatural equivalence (in A){
W ,A(Ay−,A)

}
bi ≃

{
W ,Dy(−,A)

}
bi ≃ C(y,JA).

Thereby, an object Gy of A is the weighted bicolimit W ∗bi Ay if and only if there is a pseudonatural
equivalence (in A) A(Gy,A) ≃

{
W ,A(Ay−,A)

}
bi ≃ C(y,JA). That is to say, an object Gy of A is

the weighted bicolimit W ∗bi Ay if and only if Gy is a birepresentation of C(y,J−).

Lemma 5.2.2. Assume that J,W are 2-functors and, for each object y of C, there are 2-functors
Dy : S×A→ Cat,Ay : Sop→ A such that there is a 2-natural isomorphism Dy

∼= A(Ay−,−) and{
W ,Dy(−,A)

}∼= C(y,JA) for every object A of A. The 2-functor J is right 2-adjoint if and only if,
for every object y of C, the weighted colimit W ∗Ay exists in A. In this case, J is right 2-adjoint to G,
defined by Gy= W ∗Ay.

Let D : S×A→ Cat be a pseudofunctor. We denote by |D | : S0 ×A→ Cat the restriction of
D in which S0 is the discrete 2-category of the objects of S. Also, herein we say that |D | can be
factorized through R∗ :=B(−,R−) if there are a pseudofunctor D ′ : S0 →Bop and a pseudonatural
equivalence |D | ≃ R∗ ◦ (D ′× Id

A
).

Theorem 5.2.3. Assume that, for each object y of C, there is a pseudofunctor Dy : S×A→ Cat

such that
∣∣Dy

∣∣ can be factorized through R∗ and
{
W ,Dy(−,A)

}
bi ≃ C(y,JA) for every object A of A.

In this setting, for each object y of C there are a pseudofunctor Ay : Sop→ A and a pseudonatural
equivalence Dy ≃ A(Ay−,−).

As a consequence, the pseudofunctor J is right biadjoint if and only if, for every object y of
C, the weighted bicolimit W ∗bi Ay exists in A. In this case, J is right biadjoint to G, defined by
Gy= W ∗bi Ay.

Proof. Indeed, if E : B→ A is left biadjoint to R, then there is a pseudonatural equivalence R∗ ≃
A(E−,−). Therefore, by the hypotheses, for each object Y of C, there is a pseudofunctor D′y : S0 →
Bop such that

∣∣Dy

∣∣ ≃ R∗ ◦ (D′y× Id
A
) ≃ A(ED′y−,−). From the bicategorical Yoneda lemma, it

follows that we can choose a pseudofunctor Ay : Sop→ A which is an extension of ED′y such that
A(Ay−,−)≃Dy. The consequence follows from Lemma 5.2.1.
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Corollary 5.2.4 (Biadjoint Triangle). Assume that V : C′→ C is a pseudofunctor and

A
J //

R ��

C′

U~~
B

is a commutative triangle of pseudofunctors satisfying the following: for each object y of C, there is a
pseudofunctor Dy :S×C′→Cat such that

∣∣Dy

∣∣ can be factorized through U∗ and
{
W ,Dy(−,x)

}
bi≃

C(y,V x) for each object x of C′. In this setting, for each object y of C, there is a pseudofunctor
Ay : Sop→ A such that Dy(−,J−)≃ A(Ay−,−).

As a consequence, the pseudofunctor V ◦ J is right biadjoint if and only if, for every object y of
C, the weighted bicolimit W ∗bi Ay exists in A. In this case, V ◦ J is right biadjoint to G, defined by
Gy= W ∗bi Ay.

Proof. We prove that Dy := Dy(−,J−) satisfies the hypotheses of Theorem 5.2.3. We have that, for
each object y of C and each object A of A,{

W ,Dy(−,A)
}

bi ≃ C(y,V JA).

Also, for each object y of C, there is a pseudofunctor D ′y : S0 →Bop such that U∗ ◦ (D ′y× IdC)≃∣∣Dy

∣∣. Therefore

R∗ ◦ (D ′y× IdA)≃U∗ ◦ (D ′y× J)≃
∣∣Dy

∣∣◦ (IdS0
× J)≃

∣∣Dy

∣∣ .

Corollary 5.10 of [77] is a direct consequence of the last corollary and Proposition 5.7 of [77]. In
particular, if T is a pseudomonad on B and U : Ps-T -Alg→B is the forgetful 2-functor, Proposition
5.5 of [77] shows that the category of pseudomorphisms between two pseudoalgebras is given by a
descent object (which is a type of weighted bilimit) of a diagram satisfying the hypotheses of Corollary
5.2.4. Therefore, assuming the existence of codescent objects in A, J has a left biadjoint.

In Section 5.4, we define the 2-category of lax algebras of a pseudomonad T . There, we also
show Proposition 5.4.5 which is precisely the analogue and a generalization of Proposition 5.5 of [77]:
the category of lax morphisms and the category of pseudomorphisms between lax algebras are given
by appropriate types of weighted bilimits. Then, we can apply Corollary 5.2.4 to get our desired result
on lifting of biadjoints to the 2-category of lax algebras: Theorem 5.5.2. Next section, we define and
study the weighted bilimits appropriate to our problem, called lax descent objects and descent objects.

To finish this section, we get a trivial consequence of Corollary 5.2.4:

Corollary 5.2.5. If RJ = U are pseudofunctors in which R is right biadjoint and U is locally an
equivalence, then J is right biadjoint as well. Actually, if E is left biadjoint to R, Gy := EUy defines
the pseudofunctor left biadjoint to J.
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5.3 Lax descent objects

In this section we describe the 2-categorical limits called lax descent objects and descent objects [67,
79, 103–105, 107].

In page 177 of [103], without establishing the name “lax descent objects”, it is shown that given
a 2-monad T , for each pair y,z of strict T -algebras, there is a diagram of categories for which
its lax descent category (object) is the category of lax morphisms between y and z. We establish a
generalization of this result for lax algebras: Proposition 5.4.5.

In order to establish such result, our approach in defining the lax descent objects is different from
[103], commencing with the definition of our “domain 2-category”, denoted by ∆ℓ.

Definition 5.3.1. [t : ∆ℓ→ ∆̇ℓ and j : ∆ℓ→ ∆̇] We denote by �̇ℓ the computad defined by the diagram

0
d // 1

d0
//

d1
//
2s0oo

∂ 0
//

∂ 1 //

∂ 2
//
3

with the 2-cells:
σ00 : ∂

0d0⇒ ∂
1d0,

σ20 : ∂
2d0⇒ ∂

0d1,

σ21 : ∂
2d1⇒ ∂

1d1,

n0 : id1 ⇒ s0d0,

n1 : id1 ⇒ s0d1,

ϑ : d1d⇒ d0d.

The 2-category ∆̇ℓ is, herein, the locally preordered 2-category freely generated by �̇ℓ. The full
sub-2-category of ∆̇ℓ with objects 1,2,3 is denoted by ∆ℓ and the full inclusion by t : ∆ℓ→ ∆̇ℓ.

We consider also the computad �̇ which is defined as the computad �̇ℓ with one extra 2-cell
d0d⇒ d1d. We denote by ∆̇ the locally preordered 2-category freely generated by �̇. Of course, there
is also a full inclusion j : ∆ℓ→ ∆̇.

We define, also, the computad �ℓ which is the full subcomputad of �̇ℓ with objects 1,2,3.

Proposition 5.3.2. Let A be a 2-category. There is a bijection between the 2-functors ∆ℓ→A and the
maps of computads �ℓ→U A. In other words, ∆ℓ is the 2-category freely generated by the computad
�ℓ.

Also, there is a bijection between 2-functors D : ∆̇ℓ→A and the maps of computads D : �ℓ→U A

which satisfy the following equations:

– Associativity:

D0
D(d) //

D(d)

��

D(ϑ)
===⇒

D1

D(d0)

��
=

D3 D2
D(∂ 1)oo

D(σ00)===⇒
D2D(σ20)===⇒

D(∂ 0)

bb

D1
D(d0)oo

D(d0)

OO

D1
D(d1) //

D(d1)
��

D(σ21)===⇒

D2

D(∂ 1)
��

D2

D(∂ 2)

OO

D(ϑ)
===⇒

D1
D(d0)oo D(ϑ)

===⇒

D(d1)

OO

D2
D(∂ 2)

// D3 D1

D(d1)

OO

D0
D(d)
oo

D(d)

OO
D(d)

UU
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– Identity:

D0
D(d) //

D(d)
��

D(ϑ)
===⇒

D1

D(d0)
��

=

D0

D(d)
��

D1
D(d1)

//

D(n1)===⇒

D2

D(s0)
��

D1
D(d0)

//

D(n0)===⇒

D2

D(s0)
��

D1 D1

Moreover, there is a bijection between 2-functors ∆̇→ A and 2-functors D : ∆̇ℓ→ A such that D(ϑ)

is an invertible 2-cell.

Let A be a 2-category and D : ∆ℓ→A be a pseudofunctor. If the weighted bilimit
{

∆̇(0, j−),D
}

bi
exists, we say that

{
∆̇(0, j−),D

}
bi is the descent object of D . Moreover, if the weighted bilimit{

∆̇ℓ(0, t−),D
}

bi exists, it is called the lax descent object of D .
Analogously, if such D is a 2-functor and the (strict) weighted 2-limit

{
∆̇(0, j−),D

}
exists, we

call it the strict descent object of D . Finally, the (strict) weighted 2-limit
{

∆̇ℓ(0, t−),D
}

is called the
strict lax descent object of D , if it exists.

Lemma 5.3.3. Strict lax descent objects are lax descent objects and strict descent objects are descent
objects. That is to say, the weights ∆̇ℓ(0, t−) : ∆ℓ→ Cat, ∆̇(0, j−) : ∆ℓ→ Cat are flexible.

The dual notions of lax descent object and descent object are called the codescent object and
the lax codescent object. If A : ∆

op
ℓ → A is a 2-functor, the codescent object of A is, if it exists,

∆̇(0, j−)∗bi A and the lax codescent object of A is ∆̇ℓ(0, t−)∗bi A if it exists.
Also, the weighted colimits ∆̇(0, j−)∗A , ∆̇ℓ(0, t−)∗A are called, respectively, the strict codes-

cent object and the strict lax codescent object of A .

Remark 5.3.4. If D : ∆ℓ→ Cat is a 2-functor, then{
∆̇ℓ(0, t−),D

}∼= [∆ℓ,Cat]
(
∆̇ℓ(0, t−),D

)
.

Thereby, we can describe the strict lax descent object of D : ∆ℓ→ Cat explicitly as follows:

1. Objects are 2-natural transformations f : ∆̇ℓ(0, t−)−→D . We have a bijective correspondence
between such 2-natural transformations and pairs ( f ,

〈
f
〉
) in which f is an object of D1 and〈

f
〉

: D(d1) f →D(d0) f is a morphism in D2 satisfying the following equations:

– Associativity:(
D(σ00) f

)(
D(∂ 0)(

〈
f
〉
)
)(

D(σ20) f

)(
D(∂ 2)(

〈
f
〉
)
)
=
(
D(∂ 1)(

〈
f
〉
)
)(

D(σ21) f

)
– Identity: (

D(s0)(
〈
f
〉
)
)(

D(n1) f

)
=
(
D(n0) f

)
If f : ∆̇(0,−) −→ D is a 2-natural transformation, we get such pair by the correspondence
f 7→ (f1(d),f2(ϑ)).



5.4 Pseudomonads and lax algebras 181

2. The morphisms are modifications. In other words, a morphism m : f→ h is determined by a
morphism m : f → g in D1 such that D(d0)(m)

〈
f
〉
=
〈
h
〉
D(d1)(m).

Furthermore, there is a full inclusion
{

∆̇(0, j−),D
}
→
{

∆̇ℓ(0, t−),D
}

such that the objects of{
∆̇(0, j−),D

}
are precisely the pairs ( f ,

〈
f
〉
) (described above) with one further property:

〈
f
〉

is
actually an isomorphism in D2.

5.4 Pseudomonads and lax algebras

Pseudomonads in 2-Cat are defined in [77, 79] (that is to say, Chapter 4 and Chapter 3). The definition
agrees with the theory of pseudomonads for Gray-categories [66, 83, 84, 86] and with the definition
of doctrines of [104].

For each pseudomonad T on a 2-category B, there is an associated (right biadjoint) forgetful
2-functor Ps-T -Alg→B, in which Ps-T -Alg is the 2-category of pseudoalgebras. In this section,
we give the definitions of the 2-category of lax algebras Lax-T -Algℓ and its associated forgetful
2-functor Lax-T -Algℓ→B, which are slight generalizations of the definitions given in [67, 102].

Recall that a pseudomonad T on a 2-category B consists of a sextuple (T ,m,η ,µ, ι ,τ), in which
T : B→B is a pseudofunctor, m : T 2 −→T ,η : Id

B
−→T are pseudonatural transformations and

τ : IdT =⇒ (m)(T η), ι : (m)(ηT ) =⇒ IdT , µ : m(T m)⇒ m(mT ) are invertible modifications
satisfying the following coherence equations:

– Associativity:

T 4 T 2m //

T mT
!!

mT 2

��

T 3

T m

!!
T̂ µ⇐==

T 4 T 2m //

m−1
m⇐==mT 2

��

T 3

mT
��

T m

!!
T 3

mT !!

µT⇐== T 3 T m //

mT
��

µ⇐=

T 2

m
��

= T 3 T m //

mT !!

T 2 µ⇐=
m
!!

µ⇐=

T 2

m
��

T 2
m
// T T 2

m
// T

– Identity:
T 2

T ηT

}}

T ηT

!!
Id

T 2

��

T 2

T ηT
��

T 3

mT !!

τT⇐= T 3T̂ ι⇐=

T m}}

T 3

mT
}}

T m
!!

T 2

m
��

= T 2 µ⇐==
m
""

T 2

m
||

T T

in which

T̂ ι := (tT )
−1 (T ι)

(
t
(m)(ηT )

)
T̂ µ :=

(
t
(m)(mT )

)−1
(T µ)

(
t
(m)(T m)

)
.
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Recall that the Cat-enriched notion of monad is a pseudomonad T = (T ,m,η ,µ, ι ,τ) such that the
invertible modifications µ, ι ,τ are identities and m,η are 2-natural transformations. In this case, we
say that T = (T ,m,η) is a 2-monad, omitting the identities.

Definition 5.4.1. [Lax algebras] Let T = (T ,m,η ,µ, ι ,τ) be a pseudomonad on B. We define the
2-category Lax-T -Algℓ as follows:

1. Objects: lax T -algebras are defined by z = (Z,alg
z
,z,z0) in which alg

z
: T Z → Z is a

morphism of B and z : alg
z
T (alg

z
)⇒ alg

z
mZ ,z0 : IdZ ⇒ alg

z
ηZ are 2-cells of B satisfying

the coherence axioms:

T 3Z
T 2(algz )//

T (mZ )

##
m

T Z
��

T 2Z

T̂ (z)⇐===
T (algz )

""
=

T 3Z
T 2(algz )//

m−1
algz⇐===

m
T Z
��

T 2Z

mZ
��

T (algz )

""
T 2Z µZ⇐=

mZ ##

T 2Z
mZ

��

T (algz )//

z⇐=

T Z

algz
��

T 2Z
T (algz )

//

mZ ##

T Z
z⇐=

z⇐=
algz

##

T Z

algz
��

T Z
algz

// Z T Z
algz

// Z

in which T̂ (z) :=
(
t
(algz )(mZ )

)−1
(T (z))

(
t
(algz )(T (algz ))

)
and the 2-cells

T Z
algz //

η
T Z

##

Z
ηZ

~~

T Z
T (ηZ )

##

T Z
T̂ (z0)⇐===

ιZ⇐= T 2Z

η−1
algz⇐===

T (algz )
//

mZ{{
z⇐=

T Z z0⇐=

algz   

τ−1
Z⇐= T 2Z

T (algz )
//

mZ{{
z⇐=

T Z

algz
��

T Z
algz

// Z T Z
algz

// Z

are identities in which T̂ (z0) :=
(
t
(algz )(ηZ )

)−1
(T (z0))(tT Z ). Recall that, if a lax algebra

z= (Z,alg
z
,z,z0) is such that z,z0 are invertible 2-cells, then z is called a pseudoalgebra.

2. Morphisms: lax T -morphisms f : y→ z between lax T -algebras y = (Y,alg
y
,y,y

0
), z =

(Z,alg
z
,z,z0) are pairs f=( f ,

〈
f
〉
) in which f :Y→Z is a morphism in B and

〈
f
〉

: alg
z
T ( f )⇒

falg
y

is a 2-cell of B such that, defining T̂ (
〈
f
〉
) := t−1

( f )(algy )
T (
〈
f
〉
)t

(algz )(T ( f )) , the equations

T 2Y
m−1

f⇐==
mY

{{

T 2( f ) // T 2Z
T (algz )

""
mZ

{{
z⇐==== =

T Z
algz //

T̂ (⟨f⟩)
====⇒

Z
⟨f⟩
=⇒

T Y
T ( f )

//

algy ##

T Z

algz

##

⟨f⟩⇐=

T Z

algz||

T 2Z

T (algz )
;;

T Y

T ( f )

cc

algy //

y

=⇒

Y

f
``

Y
f

// Z T 2Y

T (algy )

;;

mY

//
T 2( f )

cc

T Y
algy

>>
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Y
f //

ηY
��

η−1
f⇐==

Z
ηZ

}}
=

Y
ηY

}}
T Y

T ( f )
//

algy
��

⟨f⟩⇐=

T Z z0⇐=

algz !!

T Y y0⇐=

algy !!
Y

f
// Z Y

f
// Z

hold. Recall that a lax T -morphism f= ( f ,
〈
f
〉
) is called a T -pseudomorphism if

〈
f
〉

is an
invertible 2-cell. Moreover, if

〈
f
〉

is an identity, f is called a (strict) T -morphism.

3. 2-cells: a T -transformation m : f⇒ h between lax T -morphisms f= ( f ,
〈
f
〉
), h= (h,

〈
h
〉
) is

a 2-cell m : f ⇒ h in B such that the equation below holds.

T Y

T ( f )

��

T (m)
===⇒ T (h)

��

algy // Y

h

��

T Y
algy //

T ( f )

��

Y

f

""

m
=⇒ h

}}

⟨h⟩
==⇒ = ⟨f⟩

==⇒

T Z
algz

// Z T Z
algz

// Z

The compositions are defined in the obvious way and these definitions make Lax-T -Algℓ a 2-
category. The full sub-2-category of the pseudoalgebras of Lax-T -Algℓ is denoted by Ps-T -Algℓ.
Also, the locally full sub-2-category Lax-T -Algℓ consisting of lax algebras and pseudomorphisms
between them is denoted by Lax-T -Alg. Finally, the full sub-2-category of the pseudoalgebras of
Lax-T -Alg is denoted by Ps-T -Alg. In short, we have locally full inclusions:

Ps-T -Alg //

��

Ps-T -Algℓ

��
Lax-T -Alg ℓ // Lax-T -Algℓ

Remark 5.4.2. If T = (T ,m,η) is a 2-monad, we denote by T -Algℓ the full sub-2-category
of strict algebras of Lax-T -Algℓ. That is to say, the objects of T -Algℓ are the lax T -algebras
y= (Y,alg

y
,y,y

0
) such that its 2-cells y,y

0
are identities.

Also, we denote by T -Alg the locally full sub-2-category of T -Algℓ consisting of strict algebras
and pseudomorphisms between them. Finally, T -Algs is the locally full sub-2-category T -Algℓ
consisting of strict algebras and strict morphisms between them. That is to say, the 1-cells of T -Algs

are the pseudomorphisms f= ( f ,
〈
f
〉
) such that

〈
f
〉

is the identity. In this case, we have locally full
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inclusions
T -Algs

//

��

T -Alg //

��

T -Algℓ

��
Ps-T -Algs

��

// Ps-T -Alg //

��

Ps-T -Algℓ

��
Lax-T -Algs

// Lax-T -Alg ℓ // Lax-T -Algℓ

in which the vertical arrows are full.

Remark 5.4.3. There is a vast literature of examples of pseudomonads, 2-monads and their respective
algebras, pseudoagebras and lax algebras [9, 46, 65, 95]. The reader can keep in mind three very
simple examples:

– The “free 2-monad” T on Cat whose pseudoalgebras are unbiased monoidal categories. This is
defined by T X :=

∞

⨿
n=0

Xn, in which Xn+1 := Xn×X and X0 := I is the terminal category, with

the obvious pseudomonad structure. In this case, the T -pseudomorphisms are the so called
strong monoidal functors, while the lax T -morphisms are the lax monoidal functors [75].

– The most simple example is the pseudomonad rising from a monoidal category. A monoidal
category M is just a pseudomonoid [25] of Cat and, therefore, it gives rise to a pseudomonad
T : Cat→ Cat defined by T X = M×X with obvious unit and multiplication (and invertible
modifications) coming from the monoidal structure of M. The pseudoalgebras and lax algebras
of this pseudomonad are called, respectively, the pseudoactions and lax actions of M. Lax
actions of a monoidal category M are also called graded monads (see [37]).

The inclusion Set→ Cat is a strong monoidal functor w.r.t. the cartesian structures, since this
functor preserves products. In particular, it takes monoids of Set to monoids of Cat. In short,
this means that we can see a monoid M as a (discrete) strict monoidal category. Therefore,
a monoid M gives rise to a 2-monad T X = M×X as defined above. In this case, the 2-
categories T -Algs, Ps-T -Alg and Lax-T -Algℓ are, respectively, the 2-categories of (strict)
actions, pseudoactions (as defined in [26]) and lax actions of this monoid M on categories. A
lax action of the trivial monoid on a category is the same as a monad.

– Let S be a small 2-category and A a 2-category. We denote by S0 the discrete 2-category
of the objects of S and by [S,A] the 2-category of 2-functors, 2-natural transformations
and modifications. If the restriction [S,A]→ [S0,A] has a left 2-adjoint (called the global
left Kan extension), then the restriction is 2-monadic and [S,A]PS is the 2-category of T -
pseudoalgebras (in which T is the 2-monad induced by the 2-adjunction). Also, the 2-category
of lax algebras is the 2-category [S,Cat]Lax of lax functors S→ A, lax natural transformations
and modifications [9].

Again, if M is a monoid (of Set), M can be seen as a category with only one object [76], usually
denoted by ∑M. That is to say, the locally discrete 2-category ∑M has only one object ∗ and



5.4 Pseudomonads and lax algebras 185

∑M(∗,∗) := M is the discrete category with the composition of 1-cells given by the product of
the monoid. In this case, the restriction[

∑M,Cat
]
→
[(

∑M
)

0 ,Cat
]
∼= Cat

has a left 2-adjoint (and, as explained, it is 2-monadic). The left 2-adjoint is given by

X 7→L an
(∑M)0→∑M X

in which
L an

(∑M)0→∑M X :∑M →Cat

∗ →M×X

M ∋ g 7→g : (h,x) 7→ (gh,x).

This 2-adjunction is precisely the same 2-adjunction between strict T -algebras and the base
2-category Cat, if T is the 2-monad T X = M×X described above. Hence the 2-category of
pseudoalgebras [∑M,Cat]PS and the 2-category [∑M,Cat]Lax are, respectively, isomorphic to
the 2-category of pseudoactions and the 2-category of lax actions of M on categories. Moreover,
T -Algs→ Cat is 2-comonadic.

More generally, if M is a monoidal category, M can be seen as a bicategory with only one object
(see [5, 75]), also denoted by ∑M. The restriction 2-functor [∑M,Cat]PS→ [(∑M)0 ,Cat]PS

∼=
Cat is pseudomonadic and pseudocomonadic. Furthermore, it coincides with the forgetful
pseudofunctor Ps-T -Alg→Cat in which T X =M×X is given by the structure of the monoidal
category (as above).

Remark 5.4.4. Let T = (T ,m,η ,µ, ι ,τ) be a pseudomonad on a 2-category B. If C is any sub-2-
category of Lax-T -Alg, we have a forgetful 2-functor

U :C →B

z= (Z,alg
z
,z,z0) 7→Z

f= ( f ,
〈
f
〉
) 7→ f

m 7→m

Proposition 5.4.5. Let T = (T ,m,η ,µ, ι ,τ) be a pseudomonad on a 2-category B. Given lax
T -algebras y = (Y,alg

y
,y,y

0
), z = (Z,alg

z
,z,z0) the category Lax-T -Algℓ(y,z) is the strict lax

descent object of the diagram Ty
z : ∆ℓ→ Cat

B(Uy,Uz)

B(algy ,Uz)
//

B(T Uy,algz )◦ T
(Uy,Uz) //

B(T Uy,Uz)B(ηUy
,Uz)oo

B(T (algy ),Uz)
//

B(mUy
,Uz) //

B(T 2Uy,algz )◦ T
(T Uy,Uz)//

B(T 2Uy,Uz) (Ty
z)
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such that

Ty
z(σ20) f :=

(
id

algz
∗ t

( f )(algy )

)
Ty
z(σ21) f :=

(
id f ∗y

)
Ty
z(n1) f :=

(
id f ∗y0

)
Ty
z(σ00) f :=

(
id

algz
∗m−1

f

)
·
(
z∗ id

T 2( f )

)
·
(

id
algz
∗ t−1

(algz )(T ( f ))

)
Ty
z(n0) f :=

(
id

algz
∗η
−1
f

)
·
(
z0 ∗ id f

)

Furthermore, the strict descent object of Ty
z is Lax-T -Alg(y,z).

Proof. It follows from Definition 5.4.1 and Remark 5.3.4.

Remark 5.4.6. In the context of the proposition above, we can define a pseudofunctor Ty : ∆ℓ×
Lax-T -Alg→ Cat in which Ty(−,z) := Ty

z, since the morphisms defined above are actually pseudo-
natural in z w.r.t. T -pseudomorphisms and T -transformations.

Assume that the triangles below are commutative, R is a right biadjoint pseudofunctor and the
arrows without labels are the forgetful 2-functors of Remark 5.4.4. By Corollary 5.2.4, it follows from
Proposition 5.4.5 (and last remark) that, whenever A has lax codescent objects, ℓ◦J is right biadjoint to
a pseudofunctor G. Also, for each lax algebra y, there is a diagram Ay such that Gy≃ ∆̇ℓ(0, t−)∗bi Ay

defines the left biadjoint to ℓ◦ J. Moreover, J is right biadjoint as well if A has codescent objects of
these diagrams Ay. Next section, we give precisely the diagrams Ay and prove a strict version of our
theorem as a consequence of Lemma 5.2.2.

A
J //

R
((

Lax-T -Alg

��

ℓ // Lax-T -Algℓ

ww
B

5.5 Lifting of biadjoints to lax algebras

In this section, we give our results on lifting right biadjoints to the 2-category of lax algebras of a given
pseudomonad. As explained above, we already have such results by Corollary 5.2.4 and Proposition
5.4.5. But, in this section, we present an explicit calculation of the diagrams Ay whose lax codescent
objects are needed in the construction of our left biadjoint.

Definition 5.5.1. Let (E ⊣ R,ρ,ε,v,w) be a biadjunction and T = (T ,m,η ,µ, ι ,τ) a pseudomonad
on B such that

A
J //

R ��

Lax-T -Alg

U
yy

B
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is commutative, in which U is the forgetful 2-functor defined in Remark 5.4.4. In this setting, for each
lax T -algebra y= (Y,alg

y
,y,y

0
), we define the 2-functor Ay : ∆

op
ℓ → A

EUy E(ηUy
) // ET Uy

E(algy )
oo

εEUy
E(algJEUy

T (ρUy
))

oo

ET 2Uy

ET (algy )
oo

E(mUy
)oo

εET Uy
E(alg

JET Uy
T (ρ

T Uy
))

oo

(Ay)

in which

Ay(σ21) := e−1
(algy )(mUy )

·E(y) · e
(algy )(T (algy ))

Ay(n0) := e−1
(algy )(ηUy )

·E(y
0
) · eUy

Ay(n1) :=
((

id
εEUy

)
∗
(
e−1
(algJEUy

T (ρUy ))(ηUy )
·E(id

algJEUy
∗η
−1
ρUy

) ·E(JEUy
0
∗ id

ρUy
)

))
· vUy

Ay(σ20) :=
(

ε
−1
E(algy )

∗ idE(algJET y
T (ρT Uy

))

)
·
(

id
εEUy
∗ e−1

(RE(algy ))(algJET Uy
T (ρT Uy

))

)
·(

id
εEUy
∗
(

E(
〈

JE(alg
y
)
〉
∗ id

T (ρT Uy
)
) ·E(id

algJEUy
∗ (T ρ)−1

algy
)

))
·(

id
εEUy
∗
(
e
(algJEUy

T (ρUy ))(T (algy ))

))
Ay(σ00) :=

(
id

εEUy
∗
(
e−1
(algJEUy

T (ρUy ))(mUy )
·E(id

algJEUy
∗m−1

ρUy
) ·E(JEUy∗ id

T 2(ρUy )
)

))
·(

id
εEUy
∗E
(

id
algJET Uy

∗
(

T (wEUy
) · t−1

(R(εEUy ))(ρREUy )

)
∗ id

T (algJEUy
)T 2(ρUy )

))
·(

id
εEUy
∗E
(〈

J(εEUy
)
〉−1
∗ id

T (ρREUy )
∗ t−1

(algJEUy
)(T (ρUy ))

))
·(

id
εEUy
∗ e

(R(εEUy ))(algJEUT Uy
T (ρREUy )T (algJEUy

T (ρUy )))

)
·(

ε
εEUy
∗E
((

id
algJEUT Uy

∗ (T ρ)
algJEUy

T (ρUy )

)
·
(〈

JE(alg
JEUy

T (ρUy
))
〉−1

)))
·(

id
εEUy εEREUy

∗ e
(RE(algJEUy

T (ρUy )))(algJET Uy
T (ρT Uy

))

)
·(

id
εEUy
∗ εE(algJEUy

T (ρUy ))
∗ idE(algJET Uy

T (ρT Uy
))

)

Theorem 5.5.2 (Biadjoint Triangle Theorem). Let (E ⊣R,ρ,ε,v,w) be a biadjunction, T =(T ,m,η ,µ, ι ,τ)

a pseudomonad on B and ℓ : Lax-T -Alg→ Lax-T -Algℓ the inclusion. Assume that

A
J //

R ��

Lax-T -Alg

U
yy

B

is commutative. The pseudofunctor ℓ◦ J is right biadjoint if and only if A has the lax codescent object
of the diagram Ay : ∆

op
ℓ → A for every lax T -algebra y. In this case, the left biadjoint G is defined

by Gy= ∆̇ℓ(0, t−)∗bi Ay
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Furthermore, J is right biadjoint if and only if A has the codescent object of the diagram
Ay : ∆

op
ℓ → A for every lax T -algebra y. In this case, the left biadjoint G′ is defined by G′y =

∆̇(0, j−)∗bi Ay

Proof. By Lemma 5.2.1, Proposition 5.4.5 and Remark 5.4.6, it is enough to observe that, for each
lax T -algebra y, there is a pseudonatural equivalence

ψ
y : Ty(−,J−)−→ A(Ay−,−)

defined by
ψ
y
(1,A)

:= χ
(Uy,A) : B(Uy,RA)→ A(EUy,A)

ψ
y
(2,A)

:= χ
(T Uy,A) : B(T Uy,RA)→ A(ET Uy,A)

ψ
y
(3,A)

:= χ
(T 2Uy,A)

: B(T 2Uy,RA)→ A(ET 2Uy,A)

in which χ : B(−,R−)≃ A(E−,−) is the pseudonatural equivalence corresponding to the biadjunc-
tion (E ⊣ R,ρ,ε,v,w) (see Remark 5.1.4). Also,

(ψy

s0
) f := id

εA
∗ e

( f )(ηUy )

(ψy

d1
) f := id

εA
∗ e

( f )(algy )

(ψy

∂1
) f := id

εA
∗ e

( f )(mUy )

(ψy

∂2
) f := id

εA
∗ e

( f )(T (algy ))

(ψy

d0
) f :=

(
id

εA
∗
(

E(id
algJA
∗T (wA)∗ id

T ( f )) ·E(idalgJA
∗ t

(R(εA ))(ρRA )
∗ id

T ( f ))
))
·(

id
εA
∗
(

E(
〈

J(εA)
〉−1
∗ id

T (ρRA )T ( f )) · e(R(εA ))(algJERA T (ρRA )T ( f ))

))
·(

id
εA ER(εA )

∗
(

E(id
algJERA

∗ (T ρ) f ) ·E(
〈

JE( f )
〉−1
∗ id

T (ρUy )
)

))
·(

ε
εA
∗ e

(RE( f ))(algJEUy
T (ρUy ))

)
·
(

id
εA
∗ ε f ∗ idE(algJEUy

T (ρUy ))

)
(ψy

∂0
) f :=

(
id

εA
∗
(

E(id
algJA
∗T (wA)∗ id

T ( f )) ·E(idalgJA
∗ t

(R(εA ))(ρRA )
∗ id

T ( f ))
))
·(

id
εA
∗
(

E(
〈

J(εA)
〉−1
∗ id

T (ρRA )T ( f )) · e(R(εA ))(algJERA T (ρRA )T ( f ))

))
·(

id
εA ER(εA )

∗
(

E(id
algJERA

∗ (T ρ) f ) ·E(
〈

JE( f )
〉−1
∗ id

T (ρT Uy
)
)

))
·(

ε
εA
∗ e

(RE( f ))(algJET Uy
T (ρT Uy

))

)
·
(

id
εA
∗ ε f ∗ idE(algJET Uy

T (ρT Uy
))

)
This defines a pseudonatural transformation which is a a pseudonatural equivalence, since it is
objectwise an equivalence.
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Theorem 5.5.3 (Strict Biadjoint Triangle). Let (E ⊣ R,ρ,ε) be a 2-adjunction, (T ,m,η) a 2-monad
on B and ℓ : Lax-T -Alg→ Lax-T -Algℓ the inclusion. Assume that

A
J //

R ��

Lax-T -Alg

U
zz

A
J̃ //

J
$$

Lax-T -Algs

ww
B Lax-T -Alg

are commutative triangles, in which Lax-T -Algs→ Lax-T -Alg is the locally full inclusion of the
2-category of lax algebras and strict T -morphisms into the 2-category of lax algebras and T -
pseudomorphisms. The pseudofunctor ℓ ◦ J is right biadjoint if and only if A has the strict lax
codescent object of the diagram Ay : ∆

op
ℓ → A for every lax T -algebra y. In this case, the left

2-adjoint G is defined by Gy= ∆̇ℓ(0, t−)∗Ay

Furthermore, J is right 2-adjoint if and only if A has the strict codescent object of the diagram
Ay : ∆

op
ℓ → A for every lax T -algebra y.

Proof. We have, in particular, the setting of Theorem 5.5.2. Therefore, we can define ψ as it is done
in the last proof. However, in our setting, we get a 2-natural transformation which is an objectwise
isomorphism. Therefore ψ is a 2-natural isomorphism.

By Lemma 5.2.2, Proposition 5.4.5 and Remark 5.4.6, this completes our proof.

5.6 Coherence

As mentioned in the introduction, the 2-monadic approach to coherence consists of studying the
inclusions induced by a 2-monad T of Remark 5.4.2 to get general coherence results [9, 67, 93].

Given a 2-monad (T ,m,η) on a 2-category B, the inclusions of Remark 5.4.2 and the forgetful
functors of Remark 5.4.4 give in particular the commutative diagram below, in which Ps-T -Alg→B

is right biadjoint and T -Algs→B is right 2-adjoint.

T -Algs
//

&&

Ps-T -Alg //

��

Lax-T -Algℓ

ww
B

In this section, we are mainly concerned with the triangles involving the 2-category of lax algebras.
We refer to [77] for the remaining triangles involving the 2-category of pseudoalgebras. The inclusion
T -Algs→ Lax-T -Algℓ is also studied in [67]. Therein, it is proved that it has a left 2-adjoint whenever
the 2-category T -Algs has the lax codescent objects of some diagrams called therein lax coherence
data. This is of course the immediate consequence of Theorem 5.5.3 applied to the large triangle
above.

Actually, we can study other inclusions of Remark 5.4.2 with the techniques of this paper. For
instance, by Theorem 5.5.3 and Corollary 5.2.5, the inclusion of T -Alg into any 2-category of
T -algebras and lax T -morphisms of Remark 5.4.2 has a left biadjoint provided that T -Alg has
lax codescent objects. Also, the inclusion of this 2-category into any 2-category of T -algebras and
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T -pseudomorphisms (i.e. vertical arrows with domain in T -Alg of Remark 5.4.2) has a left biadjoint
provided that T -Alg has codescent objects.

In the more general context of pseudomonads, we can apply Theorem 5.5.2 and Theorem 5.5.3
to understand precisely when the inclusions Ps-T -Alg→ Lax-T -Algℓ and Ps-T -Alg→ Lax-T -Alg
have left biadjoints. In particular, we have:

Theorem 5.6.1. Let T = (T ,m,η ,µ, ι ,τ) be a pseudomonad on a 2-category B. If Ps-T -Alg has
lax codescent objects, then the inclusion Ps-T -Alg→ Lax-T -Alg has a left biadjoint. Furthermore,
if Ps-T -Alg has codescent objects, Ps-T -Alg→ Lax-T -Alg has a left biadjoint.

In particular, if T = (T ,m,η ,µ, ι ,τ) is a pseudomonad that preserves lax codescent objects,
then Ps-T -Alg has lax codescent objects and, therefore, satisfies the hypothesis of the first part of the
result above. Similarly, if T preserves codescent objects, it satisfies the hypothesis of the second part.
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