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Résumé
En ayant remarqué que la propriété d’hérédité faible des

opérateurs réguliers de fermeture dans Top et des opérateurs de
fermeture homologiques dans les catégories homologiques permet
d’identifier les théories de torsion, nous étudions ces opérateurs de
fermeture en parallèle, en montrant que les opérateurs réguliers de
fermeture jouent en topologie le même rôle que les opérateurs de
fermeture homologiques jouent en algèbre.

Abstract
Observing that weak heredity of regular closure operators in Top

and of homological closure operators in homological categories iden-
tifies torsion theories, we study these closure operators in parallel,
showing that regular closure operators play the same role in topology
as homological closure operators do algebraically.
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Introduction

Homological categories were introduced by Borceux and Bourn [2],
and have since then been studied by several authors, as the right non-
abelian setting to study homology. As shown by Bourn and Gran [6],
these categories provide also a suitable setting to study torsion theories.
In [6] the authors introduce torsion theories in homological categories
and show that they are identifiable by weak heredity of their homologi-
cal closure operators. This result resembles the characterization of dis-
connectednesses of topological spaces via weak heredity of their regular
closure operators, and encompasses the characterization of torsion-free
subcategories of abelian categories via weak heredity of their regular clo-
sure operators obtained in [7] (see also [12]). Having as starting point
this common property, we establish parallel properties of regular and
homological closure operators, in topological spaces and in homological
categories, respectively. Since regular closure operators are exactly the
homological ones in abelian categories, this study raises the question of
finding in which cases these closure operators coincide in homological
categories. We solve this question showing that they are the same ex-
actly when they are induced by a regular-epireflective subcategory of
abelian objects.

In Section 1 we describe briefly disconnectednesses of topological
spaces and torsion theories in homological categories. In Section 2 we
introduce regular and homological closure operators, showing that the
latter ones can be described as maximal closure operators. In Section 3
we establish parallel results for regular and homological closures, based
on the results obtained by Bourn and Gran in [6]. In Theorem 3.1.4 we
show the validity of the corresponding topological version of the charac-
terization of hereditary torsion theories via hereditary homological clo-
sure operators. Next we investigate openness and closedness of regular
epimorphisms, with respect to the regular closure, showing that these
properties are unlikely topological; see Propositions 3.2.2 and 3.3.2. Fi-
nally, in Corollary 3.4.2, we characterise the regular-epireflective sub-
categories of homological categories for which the regular and the ho-
mological closures coincide, generalising the result obtained in [13] for
abelian categories.
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1 (Dis)connectednesses and Torsion Theories

1.1 (Dis)connectednesses in Topology

Given a subcategory A of the category Top of topological spaces
and continuous maps, we define the full subcategories

lA := {X ∈ Top | if f : X → A and A ∈ A, then f is constant},

rA := {X ∈ Top | if f : A → X and A ∈ A, then f is constant}.
A subcategory of the form lA for some A is said to be a connectedness,
while a subcategory of the form rA is said to be a disconnectedness.
Connectednesses and disconnectednesses of Top were thoroughly stud-
ied by Arhangel’skǐı and Wiegandt in [1]. We list here some properties
of these subcategories we will need throughout.

1.1.1 Proposition

1. Every disconnectedness is a regular-epireflective subcategory of Top.

2. Top, the subcategory of T0-spaces Top0, the subcategory of T1-
spaces Top1 and the subcategory Sgl consisting of the empty and
the singleton spaces are disconnectednesses.

3. Let A be a disconnectedness. If A is different from Top and from
Top0, then A ⊆ Top1. If A is different from Sgl, then A contains
the subcategory TDisc of totally disconnected spaces.

4. Sgl, the subcategory Ind of indiscrete spaces, and Top are con-
nectednesses. These are the only connectednesses closed under
subspaces.

1.2 Torsion theories in homological categories

A pointed category C is homological if it is

(1) (Barr-)regular, that is if it is finitely complete and (regular epimor-
phisms, monomorphisms) is a pullback-stable factorization system
in C, and
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(2) protomodular, that is given a commutative diagram

A //

²²
1

B //

²²
2

C

²²
D // E // F

where the dotted vertical arrow is a regular epimorphism, if 1

and the whole rectangle are pullbacks, then 2 is a pullback as
well.

A torsion theory in a homological category is a pair (T,F) of full
and replete subcategories of C such that:

1. If T ∈ T and F ∈ F, then the only morphism T → F is the zero
morphism.

2. For each X ∈ C there is a short exact sequence

0 // T // X
ρX // F // 0

with T ∈ T and F ∈ F.

If (T,F) is a torsion theory, the subcategory T is called the torsion
subcategory, and F is called the torsion-free subcategory. Every torsion-
free subcategory F is regular-epireflective, with the F-reflection of X
given by ρX as above.

Torsion theories in homological categories were introduced by Bourn
and Gran in [6], encompassing the properties of Dickson’s torsion theo-
ries in abelian categories [10].

The notion of abelian object has been studied in non-abelian settings
(see [2]). In homological categories they can be defined as those objects
which have an internal abelian group structure. As shown by Bourn in
[5]:

1.2.1 Proposition In a homological category, the following conditions
are equivalent for an object X:

(i) X has an internal abelian group structure;

(ii) the diagonal δX : X → X ×X is a kernel.
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2 Regular and homological closure operators

2.1 Closure operators

Throughout C is a finitely complete category with cokernel pairs
and M is a pullback-stable class of monomorphisms of C. This means
that C has inverse M-images, that is for each morphism f : X → Y
there is a change-of-base functor

f−1( ) : M/Y → M/X

where M/X is the (preordered) category of M-subobjects of X, that
is of morphisms in M with codomain X. When, for each morphism
f : X → Y , the functor f−1( ) : M/Y → M/X has a left adjoint
f( ) : M/X → M/Y , we say that C has direct M-images.

A closure operator c on C with respect to M assigns to each m :
M → X in M a morphism cX(m) : cX(M) → X in M such that, for
every object X,

(C1) cX is extensive: m ≤ cX(m) for every m : M → X in M;

(C2) cX is monotone: m ≤ m′ ⇒ cX(m) ≤ cX(m′), for every m :
M → X, m′ : M ′ → X in M;

(C3) morphisms are c-continuous: cX(f−1(n)) ≤ f−1(cY (n)) for every
morphism f : X → Y and every n : N → Y in M.

When C has direct M-images, condition (C3) can be equivalently
expressed by

(C3′) f(cX(m)) ≤ cY (f(m)), for every M-subobject m of X.

Extensivity of c says that every m : M → X ∈ M factors as

M
m //

jm ##GG
GG

GG
GG

G X

cX(M)
cX(m)

;;wwwwwwwww

The morphism m : M → X is c-closed if cX(m) ∼= m, and c-dense if
cX(m) ∼= 1X . A closure operator c is said to be
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• idempotent if cX(m) is c-closed for every m : M → X ∈ M;

• weakly hereditary if jm is c-dense for every m ∈ M;

• hereditary if, for m : M → X, l : X → Y and l ·m : M → Y in
M,

cX(m) ∼= l−1(cY (l ·m)).

It is immediate that hereditary closure operators are in particular weakly
hereditary.

Closure operators with respect to M can be preordered by

c ≤ d :⇔ ∀m : M → X ∈ M cX(m) ≤ dX(m).

2.2 Regular versus homological closure operators

For any such class M of monomorphisms containing the regular
monomorphisms, every reflective subcategory A of C induces a regu-
lar closure operator regA on C with respect to M, assigning to each
m : M → X in M the equaliser of the following diagram

X
u //
v

// Y
ρY // RY ,

where (u, v) is the cokernel pair of m and ρY is the A-reflection of Y ;
that is,

regA
X(m) = eq(ρY · u, ρY · v).

Regular closure operators are idempotent but not weakly hereditary in
general.

When the category C is pointed, replacing equalisers by kernels in
the construction above gives rise to another interesting closure opera-
tor. Let M be a pullback-stable class of monomorphisms containing the
kernels, and let A be a reflective subcategory of C. The homological
closure operator hA induced by A in M assigns to each m : M → X the
kernel of the following composition of morphisms

X
πM // Y

ρY // RY ,

where πM is the cokernel of m and ρY is the A-reflection of Y ; that is,

hA
X(m) = ker(ρY · πM).
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Homological closure operators are idempotent but not weakly hereditary
in general.

If C has direct M-images, then regA is completely determined by its
restriction to A, via the formula

regA
X(m) ∼= ρ−1

X (regA
RX(ρX(m))), (?)

for any m : M → X in M, with ρX : X → RX the A-reflection of X.
There is an alternative way of replacing equalisers by kernels in

the definition of regular closure operator. Indeed, regA is the maximal
closure such that every equaliser in A is closed. In particular:

2.2.1 Lemma If A is a reflective subcategory of Top and X is an
object of A, then:

(1) the diagonal δX : X → X ×X is regA-closed;

(2) For every x ∈ X, the inclusion {x} → X is regA-closed.

In a pointed finitely-complete category C, given a pullback-stable class
of monomorphisms M containing the zero-subobjects and a reflective
subcategory A, one calls maximal closure operator induced by A, the
maximal closure operator maxA with 0A : 0 → A closed, for every
A ∈ A (or, equivalently, with kernels of A-morphisms closed). It is
easily verified that:

2.2.2 Proposition If A is a reflective subcategory of a pointed and
finitely-complete category C with cokernels, then

hA = maxA.

While regular closure operators were introduced by Salbany [15]
more than 30 years ago, and widely studied since then, homological
closure operators were introduced more recently by Bourn and Gran [6]
in the context of homological categories.

For comprehensive accounts on closure operators and homological
categories we refer the reader to [12] and [2, 14] respectively.
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3 How close are regular and homological closure
operators

3.1 (Weak) heredity

The study of weak heredity of regular closure operators presented in
[7] encompasses the following topological and algebraic results.

3.1.1 Theorem

(1) For a regular-epireflective subcategory A of Top, the following
assertions are equivalent:

(i) regA is weakly hereditary;

(ii) A is a disconnectedness.

(2) For a (regular-)epireflective subcategory A of an abelian category
C, the following conditions are equivalent:

(i) regA is weakly hereditary;

(ii) A is a torsion-free subcategory.

Disconnectedness in topological spaces and torsion-free subcategories
in abelian categories are particular cases of right-constant subcategories
(see [9] for details), hence the two theorems above are instances of a
more general result. Moreover, as shown in [13], if C is an abelian
category, then the regular closure operator induced by an epireflective
subcategory A coincides with the maximal closure operator induced by
A. This shows, moreover, that Theorem 3.1.1.2 is a particular case of
the following result, due to Bourn and Gran [6].

3.1.2 Theorem For a regular-epireflective subcategory A of a homo-
logical category C, the following conditions are equivalent:

(i) maxA is weakly hereditary;

(ii) A is a torsion-free subcategory.
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In [6] Bourn and Gran show also that heredity of maxA identifies hered-
itary torsion theories, that is those torsion theories with hereditary tor-
sion part.

3.1.3 Theorem For a regular-epireflective subcategory A of a homo-
logical category C, the following conditions are equivalent:

(i) maxA is hereditary;

(ii) A is a hereditary torsion-free subcategory.

As for weak heredity there is a corresponding result in topology.

3.1.4 Theorem For a regular-epireflective subcategory A of Top, the
following conditions are equivalent:

(i) regA is hereditary;

(ii) A is an hereditary disconnectedness (that is, its connectedness
counterpart l(A) is hereditary);

(iii) A is either Top or the category Top0 of T0-spaces or the category
Sgl consisting of singletons and the empty set.

Proof. First we remark that (ii)⇔(iii) follows from Proposition 1.1.1(4).
(iii)⇔(i): If A = Top, then regA is the discrete closure, which is

trivially hereditary. If A = Top0, then regA is the b-closure, with, for
A ⊆ X,

bX(A) = {x ∈ X | for every neighbourhood U of x, {x} ∩ U ∩ A 6= ∅},

which is known to be hereditary (see for instance [12]). If A = Sgl,
then regA is the indiscrete closure, that is

regSgl
X (A) = X for every ∅ 6= A ⊆ X and regSgl

X (∅) = ∅,

which is hereditary. Conversely, assume that A is none of these three
subcategories. By Proposition 1.1.1(3), A ⊆ Top1, and, moreover,
every discrete space belongs to A. Consider the Sierpinski space S =
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{0, 1}, with {0} the only non-trivial open subset, and its product S×S.
The two-point discrete space D = {(0, 1), (1, 0)} is a subspace of S×S;
the A-reflection of S×S is a singleton, while D ∈ A. Hence regA

D(0, 1) =
(0, 1) while regA

S×S(0, 1) = S × S, and therefore regA is not hereditary.
¤

3.2 Openness of regular epimorphisms

Another interesting feature of homological closure operators pointed
out by Bourn and Gran [6] is to make regular epimorphisms open. Recall
that, given a closure operator c, a morphism f : X → Y is c-open if, for
every n : N → Y ∈ M,

cX(f−1(n)) ∼= f−1(cY (n));

that is, the inequality in the c-continuity condition (C3) becomes an
isomorphism. It was shown in [8] that:

3.2.1 Proposition For an idempotent closure operator c in a homo-
logical category C the following conditions are equivalent:

(i) c = maxA for some regular-epireflective subcategory A;

(ii) regular epimorphisms in C are c-open.

It is easy to check that in general this is not a common property of
regular closure operators in Top.

3.2.2 Proposition For a closure operator c in Top the following con-
ditions are equivalent:

(i) c is regular, and every regular epimorphism is c-open;

(ii) c is either the discrete or the indiscrete closure operator.

Proof. (ii)⇒(i) is trivial.
(i)⇒(ii): Let c be a regular closure operator induced by a regular-

epireflective subcategory A different from Top. Then either A = Top0

or A ⊆ Top1. If A = Top0, then regA is the b-closure, which does
not satisfy (i): take X = {0, 1, 2, 3} → Y = {0, 1, 2} with f(i) = i if
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i ≤ 2 and f(3) = 2, where the only non-trivial open subset of X is
{1, 2}, hence the quotient topology is indiscrete; then f−1(b(0)) = X
and b(f−1(0)) = {0, 3}. If A ⊆ Top1, then regA is indiscrete in the
Sierpinski space. Hence, for every closed, non-open, subset C of a space
Z, since χC : Z → S is a quotient map, hence regA-open, one has
regA

Z (C) = χ−1
C (regA

S (1)) = Z. Therefore, if Z is T1 and non-discrete, it
has a non-open point z, and so regA

Z (z) = Z, which implies that Z 6∈ A.
This means then that A has only discrete spaces, and then A ⊂ TDisc,
which implies A = Sgl by Proposition 1.1.1. ¤

3.3 Closedness of regular epimorphisms

Closed morphisms with respect to a closure operator are defined
analogously to open morphisms, replacing inverse images by direct im-
ages. When C has direct M-images, a morphism f : X → Y is said to
be c-closed if, for every m ∈ M/X,

f(cX(m)) ∼= cY (f(m)).

(As said before, the inequality f(cX(m)) ≤ cY (f(m)) is equivalent to
c-continuity of f .)

We recall that an epireflective subcategory is said to be Birkhoff if
it is closed under regular epimorphisms.

Next we analyse the topological counterpart of the following result.

3.3.1 Proposition [6] If C is a semi-abelian category, and A is a
regular-epireflective subcategory of C, the following assertions are equiv-
alent:

(i) regular epimorphisms are maxA-closed;

(ii) A is a Birkhoff subcategory.

3.3.2 Proposition For a regular-epireflective subcategory A of Top
the following conditions are equivalent:

(i) regular epimorphisms are regA-closed;

(ii) A is a Birkhoff subcategory;
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(iii) A = Top or A = Sgl.

Proof. Trivially (iii)⇒(ii). To show that (ii)⇒(iii), first note that Top0

is not closed under quotients, hence it is not a Birkhoff subcategory.
Now, if A ⊆ Top1 and A contains a non-discrete space Z, hence with a
closed non-open subset C, then χC : Z → S is a quotient map although
the Sierpinski space S does not belong to A. Hence every object of A
is discrete, which implies that A = Sgl.

(iii)⇒(i) is clear, since regTop is the discrete closure and regSgl is the
indiscrete closure, both making regular epimorphisms c-closed.

(i)⇒(iii): If A = Top0, regA is the b-closure. The quotient map
X → Y used in the proof of Proposition 3.2.2 is not b-closed since

f(b(0)) = f({0, 3}) = {0, 2} and b(f(0)) = b(0) = {0, 1, 2}.
If A ⊆ Top1 and C is a closed, non-open, subset of Z ∈ A, then
χC : Z → S is a quotient map. Moreover, regA is indiscrete in S, since
the A-reflection of S is a singleton, and every point in Z is regA-closed,
because Z ∈ A (see Lemma 2.2.1). For any z ∈ C one has

χC(regA
Z (z)) = χC(z) = 1 6= regA

S (χC(z)) = regA
S (1) = S.

Therefore every object of A is discrete, and so A = Sgl. ¤

3.4 When regular and homological closures coincide

Finally, it is natural to ask in which pointed regular categories regu-
lar and maximal closure operators coincide. Until the end of this section,
we will assume that these closure operators are defined in the class of
monomorphisms of C.

3.4.1 Theorem Let A be a regular-epireflective subcategory of a pointed
and regular category with cokernels. The following conditions are equiv-
alent:

(i) when restricted to A, regA and maxA coincide;

(ii) regA = maxA;

(iii) in A every equaliser is a kernel;
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(iv) for every object A of A, the diagonal δA : A → A× A is a kernel
in A.

Proof. (i)⇒(ii): On one hand, since the maximal closure maxA is the
largest closure c with 0A : 0 → A c-closed for any A ∈ A and regA and
maxA coincide in A, regA ≤ maxA.

On the other hand, denoting by ρ the A-reflexion, by (?) of Section
2 we have that regA

X(m) ∼= ρ−1
X (regA

RX(ρX(m))) is maxA-closed since, by
(i), regA

RX(ρX(m)) ∼= maxA
RX(ρX(m)), hence regA

X ≥ maxA
X .

(ii)⇒(iii): Since every equaliser m : M → A in A is regA-closed,
hence maxA-closed by (ii), and the maxA-closure of m in A is the kernel
of

A
πM // Y

ρY // RY ∈ A,

m ∼= maxA
A (m) ∼= ker(ρY · πM) is a kernel in A as claimed.

(iii)⇒(iv) is obvious, while (iv)⇒(iii) follows from the fact that the
equaliser of f, g : A → B is the pullback of δB along < f, g >: A →
B ×B.

(iii)⇒(i): A monomorphism in A is regA-closed (resp. maxA-closed)
if, and only if, it is an equaliser in A (resp. a kernel in A). If equalisers
are kernels, then, as idempotent closure operators, necessarily regA and
maxA coincide in A. ¤

If A is a regular-epireflective subcategory of a homological category,
then A is homological as well (see [4]), and so in A every coequaliser is
a cokernel. In the theorem above the dual property is required for A so
that its homological and regular closure operators coincide. Indeed this
condition leads us again to an abelian-like condition, as we show next.

3.4.2 Corollary If A is a regular-epireflective subcategory of a homo-
logical category C, then the following conditions are equivalent:

(i) regA = maxA;

(ii) every object in A is abelian.

Proof. First we remark that both C and A are homological, and so, by
Proposition 1.2.1:

X is abelian :⇔ X has an internal abelian group structure
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⇔ δX is a kernel.

If regA = maxA, then δA : A → A× A is a kernel, for every A ∈ A.
Hence, A is abelian. Conversely, if A is abelian then it has an internal
abelian group structure in C, hence also in A, and so δA must be a
kernel in A. ¤

We point out that there are non-abelian homological categories where
every equaliser is a kernel. In fact such categories are necessarily ad-
ditive but may fail to be exact. (We recall that an exact and additive
category is abelian: see [14].) This is the case, for instance, for the cat-
egory of topological abelian groups, which is regular and protomodular
but not exact (see [3] for details.)

Acknowledgments. We thank Marino Gran for valuable comments on
the subject of this paper.
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