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ABSTRACT. We give a description of the semidirect products in any semi-abelian variety. More-
over, we internalize this description to the models of semi-abelian theories in any finitely com-
plete category. As an application, we characterize the topology of the semidirect products in
the topological models of any semi-abelian theory.

1. INTRODUCTION

The semidirect product is a classical construction in group theory, which is used to obtain an
equivalence between group actions and split extensions. D. Bourn and G. Janelidze gave in [6] a
categorical definition of semidirect products, and proved that it still gives an equivalence between
split extensions and internal actions (in the sense of [4]) in the context of what were later called
semi-abelian categories [10], i.e. pointed Barr-exact protomodular categories with finite colimits.

In the category of groups, the categorical semidirect product coincides with the classical one.
Moreover, it is known that the semidirect product of two groups, with respect to a given action,
is, as a set, the cartesian product of the two groups. This is not true in all semi-abelian varieties.
E.B. Inyangala proved in [9] that it is true in varieties of right Q-loops, by constructing, given
two right Q-loops X and B and an action £ of B on X, bijections ¢ and v, inverse to each other,
which are morphisms of split extensions (in the category of pointed sets), as in the following
diagram

X><B*>

|

X*>X><§B<iB

(1,0)

where the bottom row is the split extension corresponding to £. (A similar result was first
obtained in [2], where varieties of right Q-loops are called pointed semi-associative Mal’tsev vari-
eties.) Moreover, in [9] it was shown that, for a pointed variety with two binary operations, the
set maps ¢ and ¥ may yet be defined, and, whenever they are inverse to each other, the variety
is always one of Q-loops. J.R.A. Gray and N. Martins-Ferreira showed in [8] that varieties of
right (2-loops are indeed the unique pointed varieties where there are natural bijections ¢ and ¥
as above.

Furthermore, F. Borceux and M.M. Clementino proved in [3] that the equivalence between
internal actions and split extensions, obtained via the categorical semidirect product, holds in
the categories of topological models of any semi-abelian algebraic theory.

In the present paper, we give a description of the semidirect products in any semi-abelian
variety, showing that the semidirect product corresponding to an internal action of an object B
on an object X can be described as a subset of the cartesian product of B and a suitable number
of copies of X, reinterpreting a result of [8]. Moreover, we use this fact to prove that, in the case
of topological models of a semi-abelian theory, the semidirect product is always a retract of the
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topological product of B and some copies of X.

The paper is organized as follows: in Section 2 we recall the categorical definition of semidirect
product. In Section 3 we describe semidirect products in the context of semi-abelian varieties,
showing that a semidirect product of two objects X and B as above can be always seen as a
subset of the cartesian product of B and X" for some natural number n (depending only on the
operations in the variety). In Section 4 we characterize the semi-abelian varieties in which the
inclusion of the semidirect product into the corresponding cartesian product is a bijection, show-
ing that any semi-abelian variety with this property is a variety of right 2-loops; in this way we
generalize Inyangala’s results. Moreover, we study an example of a variety that can be described
as semi-abelian using two different sets of operations, with different cardinality, showing that
they give rise to different inclusions of the semidirect products into the corresponding cartesian
products. In Section 5 we study explicitly other concrete examples. In Section 6 we internal-
ize the description of the semidirect products, obtained in the previous sections, to the models
of semi-abelian theories in any finitely complete category. In particular, we consider the case
of topological models of semi-abelian theories, and we describe the topology of the semidirect
product in this context.

2. THE CATEGORICAL NOTION OF SEMIDIRECT PRODUCT

In this section we recall from [6] the categorical notion of semidirect product.

Let C be a finitely complete category. For any morphism p: E — B in C, we can define the

pullback functor
p*: Pt(B) — Pt(E),

where the category Pt(B), called the category of points over B, is the category of points of
the comma category C over B, i.e. the cocomma category 1p over C/B. This amounts to the
category whose objects are the split epimorphisms with codomain B. In fact a morphism from
the terminal object 15: B — B to an object f: A — B is precisely an arrow s: B — A such
that fS = 1B-

Definition 2.1. A finitely complete category C is said to be a category with semidirect products
if, for any arrow p: E — B in C, the pullback functor p* (has a left adjoint and) is monadic.

In this case, denoting by T? the monad defined by this adjunction, given a TP-algebra (D, )
the semidirect product (D,&) x (B,p) is an object in Pt(B) corresponding to (D, &) via the
canonical equivalence K:

Let us recall from [6] that, being C finitely complete, the pullback functors p* have left
adjoints p; (for any p in C) if and only if C has pushouts of split monomorphisms. For Barr-
exact categories [1], if, moreover, the functors p* are conservative, that is if C is protomodular
[5], the existence of semidirect products is guaranteed. In fact:

Theorem 2.2 ([6], Theorem 3.4). A finitely complete Barr-exact category is a category with
semidirect products if and only if it is protomodular and has pushouts of split monomorphisms.

If C is finitely complete, so that we can define p* for every morphism p, has pushouts of split
monomorphisms, so that the functors p* have left adjoints p;, and an initial object 0, then it is
enough to consider the functors ig* for the unique morphisms ig: 0 — B:

Proposition 2.3 ([13], Corollary 3). Let C be a category with finite limits, pushouts of split
monomorphisms and initial object. Then the following statements are equivalent:
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(i) all pullback functors iy defined by the initial arrows are monadic;
(ii) for any morphism p in C, the pullback functor p* is monadic, i.e. C admits semidirect
products.

When the category C is pointed, the algebras for the monad (T%2,n,u) are called internal
actions in [4] and the endofunctor T%B is usually denoted by Bb(—). We recall that nx and
px are the unique morphisms such that konx = ¢x and koux = [ko,tBlk(, as displayed in the
diagrams

BX X 1B, By(BIX)— (BoX)+ B

TIXT / ;U«X\L J{[kmbs}
X

BbX X + B,

0

where kj and ko denote the kernels of [0,1]: (BbX)+ B — B and of
[0,1]: X + B — B, respectively.

The algebras for this monad are pairs (X, {: BbX — X) satisfying the usual conditions:
Enx =1x and Eux = §(168).

Consequently, for C as above, saying that C has semidirect products means that, for each internal

action £ : BbX — X, there exists a unique (up to isomorphism) split epimorphism A % B

such that X = Kerf and making the following diagram commute (see [12] for more details):

BhX — X 4 B=—2= B (+)
0,1]

gi lw,s}

X A=——B.
7

Then A % B is the semidirect product of X and B with respect to €. Sometimes we will
f

identify this semidirect product with the object A or with the split extension

X t.a<"<pB )
f
When C is the category of groups, Bb X is the subgroup of the free product X + B generated by
the elements of the form bzb~!, with b € B and x € X. Hence an internal action ¢ is completely
determined by &(bzb~!) = s(b)k(z)s(b) !, and so ¢ is the realization in X of the conjugation in
the classical semidirect product X x¢ B.

3. SEMIDIRECT PRODUCTS IN SEMI-ABELIAN VARIETIES

An immediate consequence of Theorem 2.2 is that every semi-abelian category [10] has semidi-
rect products in the categorical sense recalled above. This is the case, in particular, of semi-
abelian varieties, which were characterized by D. Bourn and G. Janelidze in [7].

Theorem 3.1. A wvariety of universal algebra is semi-abelian if and only if it has, among its
operations, a unique constant 0, n binary operations o, i = 1,...,n, and an (n+1)-ary operation
0 satisfying the following equations:

ai(z,x) =0 for any x (1)

Ola(z,y),y) ==  for any z,y, (IT)
where a(z,y) denotes (ar(z,y),...,an(x,y)).
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The aim of this section is to give a description of the semidirect product in semi-abelian va-
rieties.

We start by recalling a result of E.B. Inyangala [9]. Let C be a variety of right Q-loops, i.e. a
(semi-abelian) variety which has, among its operations, a unique constant 0, a binary + and a
binary — satisfying the following equations:

(a) z+0=ux;

(b) 0+2z=u;

(c) (z—y)+y=u

(d) @+y)—y=u=

Then, given a split extension (xx) in C, it is possible to define two set maps

p: XxB — A Yv:A — X xB
(z,b) — x+5(b) a +— (a—sf(a), f(a)),
treating k£ as an inclusion.

Proposition 3.2 ([9]). The two maps ¢ and v are inverse to each other.

Therefore, given any split extension (%), A is bijective to the cartesian product of B and Kerf.

Moreover, E.B. Inyangala proved in [9] that, if a semi-abelian variety C has a binary + and
a binary —, and the maps ¢ and v are defined using + and — as above, then ¢ and ¢ are
bijections inverse to each other, whose restrictions to X and B are identities, if and only if the
equations (a)-(d) are satisfied, i.e. if and only if C is a variety of right {2-loops. Later, in [§]
J.R.A. Gray and N. Martins-Ferreira extended this result, showing that such maps ¢ and 1 are
components of natural isomorphisms between suitable functors, and, conversely, the existence
of natural isomorphisms between those functors induces binary operations + and — making the
algebras right 2-loops.

We are now going to express the natural transformations studied in [8] in terms of the opera-
tions of the semi-abelian variety, in order to get a description of semidirect products. This way
we will obtain some results already contained in [8], but we will give different proofs, that will
be useful later in the study of semidirect products of topological algebras.

Let C be a semi-abelian variety. For each split extension (%) in C, using the operations

ai, - ..,q, and 6 introduced at the beginning of the section, we can define two set maps
p: X"xB — A v: A — X"xB
(z,b) — 6(z,s(b)) a +— (ala,sf(a)), f(a)),
where z denotes (z1,...,zy), and k is treated again as an inclusion. To simplify our calculations,

for any map h: Z — W and z = (21,...,2n) € Z", h™(z) denotes (h(z1),...,h(z)).
Proposition 3.3. For any split epimorphism A % B in C, we have:
!

1. o = 14, and therefore A is a retract of X™ X B.
2. A is in bijection with the subset

Y ={(z,b) € X" x Bla((z, (b)), s(b)) = z}.
Proof. 1. For any a € A we have:
p¥(a) = p(ala,sf(a)), fa)) = O(ala, sf(a)), sf(a)) = a,

where the last equality follows from equation (II).

2. Let us first prove that ¢(A) C Y: for any a € A, we have ¢(a) = (a(a, sf(a)), f(a)), hence:
a(f(ala; sf(a)),sf(a)),sf(a)) = ala, sf(a)).
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It remains to prove that ¢y, = ly. Let us observe that, for any algebra Z and any z € Z, we
have 0(0,z) = 0(a(z, z),z) = z. Then, for any (z,b) € Y:

vo(z,b) = Pb(z,s(b))

= (a(f(z, s(b),sf0(z,s(b))), fO(z,s(b)))
= (a(0(z,s(b)),0(s"f"(z),5fs(b))),0(f"(2), fs(b)))
= (a(0(z,s(b)),0(0,5(b))),0(0,b))
= (a(f(z, s(b)),s(b)),b) = (z,b),
where the last equality holds because (z,b) € Y. a

Proposition 3.3 allows us to give a description of semidirect products in any semi-abelian
variety.

Theorem 3.4. Given a semi-abelian variety C and a split epimorphism A% B in C, let

X be a kernel of f and £: BbX — X the corresponding internal action of B on X. Then the
semidirect product X x¢ B of X and B w.r.t. the action & is the set' Y described in the previous
proposition:

YV ={(z,0) € X" x Bla(0(z, s(b)), s(b)) = z},

equipped with the following structure: if w is an m-ary operation of the variety, then in Y we
have:

wy (21, b1), -+ 5 (T b)) = (" appx (Wrox (Oox (21,01), - -+ Oy x (T, b)), W x (), wB (B))-

Proof. Diagram (x) says that & is the restriction of the morphism [k,s]. We know that A
is bijective to Y via the maps ¢ and v studied in Proposition 3.3. Given (z;,b;) € Y, for
1=1,...,m, let
u=wa(0a(zy,s(b1)),...,0a(z,,,s(bm))).
Then
WY((glv bl)a s (gmv bm)) = ¢WA(QD(£1> bl)7 KR @(gmn bm)) = ¢(u)

= (aa(u,sf(u)), f(u)).
Since f and s are morphisms (and so they preserve the operations):
f(u) =wp(0(f"(21), f5(b1)), .- -, 0B(f" (1), F5(bm))),
and, since fs =1p and X = Kerf,
f(u) = wp(0p(0,b1),...,05(0,b,)) = wg(b).
Thus, sf(u) =wa(s™(b)), and we obtain:
wy ((21,b1), -+ (T b)) = (@a(u,wa(s™ (b)), ws(b))
= (aa(wa(O@a(zy, s(b1)), .-, 0a(zy, s(bm))), wa(s™ (b)), wp(b))
= ([k, s]"apyx (wBrx (0Byx (21,01), - -, 0> x (T, b)), wox (D)), wi (D)),

and, since £ is the restriction of [k, s], we finally obtain the claimed equality. g

4. A DETAILED DESCRIPTION OF ¢ AND 1)

The aim of this section is to make explicit the relationships between the properties of the
maps ¢ and ¢ defined in Section 3 and the equations of the variety.

Let C be a variety which has, among its operations, a unique constant 0, n binary operations
a;, i = 1,...,n, satisfying the equations (I), and an (n + 1)-ary operation 6. Given a split
epimorphism with kernel X as in (xx), let ¢: X" x B — A and ): A — X" x B be the maps
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defined in Section 3. Observe that the map 1 is well-defined (i.e. it takes value in X" x B)
thanks to the equations (I). We have therefore the following diagram:

(0,1)

X”ﬂX”xB:B ( % %)
T8

X A<=—"<B,
f

where px,1¥x are obtained via the universal property of kernels, and
ep(b) = f(p(0,b)) = f0(0,s(b)) = 0(0,b),  ¢p(b) = mp(¢(s(b))) = 1B,
so that fo = ppmp and ¥s = (0, 1)Yp.

The following proposition is a reformulation of some results in [8].

Proposition 4.1. We have that:
1. g = 1p for any split epimorphism (xx) if and only if the following equation is satisfied in
the variety:
0(0,z) =z for all x; (I11)

2. o = 14 for any split epimorphism (xx) if and only if equation (11) is satisfied in the variety;
3. if equation (III) holds in the variety, then 1o = 1xnxp for any split epimorphism (xx) if and
only if the equation

all(z,y),y) =z forallx,y (IV)

is satisfied in the variety.

Proof. 1. Suppose that equation (III) holds. Then ¢pr(b) = 6(0,b) = b, for all b € B. Con-
versely, suppose that g = 1p for any split epimorphism (xx). Applying this fact to the split

1
epimorphism A <%> A for any algebra A, we easily get equation (III).
A

2. The fact that equation (II) implies that ¢ = 14 was already proved (see Proposition 3.3).

(1,1)
Conversely, suppose that 1 = 14 for any split epimorphism of the form A x A=—= A . Then,

2

for any z,y € A, we have

(x, y) = 9(@(('% y)> (yv y)): (y> y)) = (Q(Q(ZC, y)7 y)? e(g(% y)a y))7
and hence 6(a(z,y),y) = x for all z,y.

3. We have that

Yo(z,b) = P(0(z,s(b)) = (a(b(z, s(b)), sf0(z, s(b))), fO(z, s(b)))
(a(B(z, s(b)),0(s" [ (2), sfs(D))), 0(f"(z), fs(b)))
(a(6(z,5(b)),0(0, s(b))),0(0,b))
= (a(0(z, s(b)),s(b)),b).
Hence, if equation (IV) holds, we get ¢ = 1xnyp. Conversely, suppose that o = 1 for any

(1,1)
split epimorphism of the form A x A= A . Then, for any z,y, we have
T2

(2,y) = (2(0(z,y),9),v),
and the first component of this equality gives equation (IV). O
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Theorem 4.2. 1. For each semi-abelian variety C, and each n binary operations c;; and (n+1)-
ary operation 0 satisfying equations (I)-(II), for any split epimorphism A % B the maps

@ and v are bijections between A and the cartesian product X™ x B if and only if equation
(IV) is satisfied in C.

2. If a semi-abelian variety C satisfies equation (IV), then it is possible to define in C binary
operations + and — satisfying the conditions for right {2-loops.

Proof. 1. Thanks to the previous proposition, it suffices to observe that equations (I) and (II)
imply equation (III); indeed:
0(0,z) =0(a(x,z),x) = .
2. The operations + and — can be defined in the following way:
z+y="0(a(z,0),y), x-y="0(a(ry),0).
They satisfy the equations of a right Q-loop:

(a) z+0=0(a(z,0),0) =z, by equation (II);
(b) 0+ 2z =0(a(0,0),z) =6(0,x) = x;

(c)
(x—y)+y = 0(alr,y),0) +y = 0(a(d(a(r,y),0),0),y) (by (IV))

(d)
(z+y)—y = 0(a(r,0),y) -y = 0(a(d(a(r,0),y),y),0) (by (IV))

g

Let us observe that J.R.A. Gray and N. Martins-Ferreira proved in [8] that the existence of
suitable maps ¢ and v for any split epimorphism in a variety (giving natural transformations
of suitable functors between categories of points) allows to define operations 6 and «; satisfying
equations (I). This means that, in a semi-abelian variety, for any set of operations (o, ) there
exists exactly one pair of maps (¢, ) for any split epimorphism. Theorem 4.2 extends then the
results of [9] and [8], giving a complete characterization of those semi-abelian varieties in which
the semidirect product of two objects X and B (w.r.t. an action of B on X) naturally underlies
the cartesian product of B and a certain number of copies of X, and, moreover, we show that
one single copy of X suffices.

Let us observe, moreover, that, if a semi-abelian variety C satisfies the conditions of Theorem
4.2, then the maps ¢ and v induce bijections between X and X" for any split epimorphism ().
If n > 2, this implies that all the algebras of the variety, except the trivial one, are infinite. The
following is an example of a variety, with n > 2, which satisfies equation (IV).

Example 4.3. Let C be the variety defined by the following operations: a unique constant 0,
two binary operations «; and ag and a ternary operation 6 satisfying the equations (I), (II)
and (IV). A concrete example of an algebra belonging to this variety is given by the set RN of
real sequences (but R can be replaced by any non-trivial, not necessarily infinite, right Q-loop)
equipped with the operations defined by

041(30711) = ($2n71 - y2n71)n6N = (l‘l —Y1,T3 —Y3,-- -),

OZQ(LE, y) = (an - y2n)n€N — (z2 —Y2,T4 — Y4, .. ')7

0(z,y,2) = (x1+ 21,y1 + 22,22 + 23, Y2 + 24, .. .),
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for any = (Tp)nen; ¥ = (Yn)nen and z = (2,)nen in RN, Tt is immediate to see that the
equations (I) are satisfied. Concerning equation (II) we have:

9(0[]_(1’7 y)7 OZQ(CC, y)v y) = 9((1'211—1 - y2n—1)n€N7 (xQn - y?n)nEN) y)
= (@m—yi1+y,x2—y2+y2,x3—ys+ Y3, x4 —Ya+ya,...)
= X.

Finally, concerning equation (IV), we have:
011(9(337 Y, Z)7 Z) = Oél((flfl + 21,Y1 + 22, T2 + 23,Y2 + 24, - ')7 Z)
= (1‘1—!—2’1 —Z1,$2+23—Z3,...) =z,
and
a(0(x,y,2),2) = az((®1+ 21,91 + 22,02 + 23,42 + 24, .. .), 2)
= (+22—22,y2+24—24,...) =Y.
Then C satisfies the conditions of Theorem 4.2, and hence, for any split extension (xx*) in C, we
have that A is bijective to the cartesian product X2 x B. This example can be easily generalized

to the case of any n > 2. Observe that, in this case, the operations + and — which give the
structure of right Q-loop are the usual sum and subtraction of sequences, respectively, i.e.:

T+y= (-Tn + yn)nGNa

T —y = (Tn — Yn)nen.
Then C can be seen as a semi-abelian variety using both sets of operations {0,+,—} and
{0, a1, 2, 0}. Using the first one, we have that, for any split extension (xx), the object A is
bijective to X x B, while, using the second one, A is bijective to X? x B.

The previous example shows that, if a variety can be described as semi-abelian using two
different sets of operations, then the two corresponding descriptions of the semidirect products
may be different.

5. EXAMPLES

In this section we present examples that illustrate the results of Section 3 in the absence of
equation (IV). Given a split epimorphism A <"~ B in a semi-abelian variety C with binary
operations «;, i = 1,...,n, and an (n+ 1)-operation 6 satisfying equations (I) and (IT), diagram
(s % %):

(1,0) (0,1)
X" —>X"xB=—<=BHB

| | R

X A=———BRB

k

gives an inclusion (1,0)¥x of X into the cartesian product X™ x B. In the following examples
we show that this inclusion can be of different forms.

Example 5.1. Let C be the variety of Heyting semilattices, which is defined by a constant T
and two binary operations A and = satisfying the following equations:

TANx ==z, TNz ==x, TANYy=yAz,

s AYNz)=(xAy) Az, (x=z)=T,

zAN(x=y)=zANy, yN(x=y) =y,

r=(yANz)=(x =y A= 2).

P.T. Johnstone proved in [11] that the variety of Heyting semilattices is semi-abelian, with the
following operations:

a(z,y) =(z=y), @y =((r=y) =y =2,
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0(x,y,2) = (= z) A\y.
In this variety, given a split extension (x%), we have, for x € X:
@ZJ(ZU) = (011(33, Sf(l')), OéQ(fL’, Sf(SE)), f(ﬂf)) = (011(17, T)? Oéz(x, T)v T) =
=(@z=T),((z=T)=T) =), T)=(T,z,T),
hence the inclusion of X into X x X x B is given by the second inclusion of X into the product:

(0,1,0)
X —Xx X xB.

Example 5.2. Let C be the variety defined by the following operations: a unique constant 0, a
binary subtraction o (which means a binary operation a such that a(z,z) =0 and a(z,0) ==
for any x) and a ternary operation 6 satisfying the following equation:

0(a(z,y), a(z,y),y) = =.
It is a semi-abelian variety, with n = 2 and a3 = as = a. A concrete example of this situation
is given by the divisible abelian group (Q, +) with a and 6 given by:
r+y+ 2z
—
In this variety, given a split extension (x%), we have, for x € X:

(z) = (alz, sf(x)), alz, sf(x)), f(z)) = (a(z,0),(,0),0) = (z,,0),
hence the inclusion of X into X x X x B is given by the diagonal of X:

O[(:L'ay) =T —Y, G(ZL',y,Z):

<17170>
X — X x X xB.
Example 5.3. Let C be the semi-abelian variety having a unique constant 0, a binary subtrac-
tion «, a binary sum p and a ternary operation 6, such that p and « satisfy the usual group
equations, and, moreover, the following equation is satisfied:

0(c(z,y), alz,y),y) = z.
A concrete example of this situation is the divisible abelian group (Q,+) considered in the
example above, with p, o and 6 given by:

p($7y>:x+yv Oé(l‘,y):.%'—y, e(xayaz):HyT—i_Qz'

There are two ways of describing C as a semi-abelian variety. One is with n = 1, using the group
operations p and «. From this point of view, given a split extension (x*), we have that A is
bijective to the cartesian product X x B. The second way is with n = 2, using a1 = as = «
and the ternary operation #. From this second point of view, given a split extension (%), we
have that A is bijective to a subset of the cartesian product X x X x B. The two points of
view are not in contradiction, because, as observed in the previous example, the fact that « is a
subtraction implies that the inclusion of X into X x X x B is given by the diagonal of X.

6. THE SEMIDIRECT PRODUCT OF TOPOLOGICAL ALGEBRAS

F. Borceux and M.M. Clementino proved in [3] that, given a semi-abelian algebraic theory T,
the category Top(T) of its topological models has semidirect products in the categorical sense,
although it is not a semi-abelian category, because it fails to be Barr-exact in general. The re-
sults presented in Section 3 allow us to give a description of the semidirect products in Top(T),
as we are going to show.

Let T be a semi-abelian theory determined by a constant 0, n binary operations «; and an
(n+1)-ary operation 6 satisfying equations (I) and (II), and let € be a finitely complete category.
We will denote by E(T) the category of models of T in €. When & = Set, £(T) is the semi-abelian
variety corresponding to the theory T. Let

U:&(T)— &
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be the (forgetful) functor which forgets the algebraic structure of any object in E(T). Given

a split epimorphism A % B in &(T), we can construct internally in € the maps ¢ and v
studied in Proposition 3.3, obtaining thus two morphisms in &:
e: UX)" xU(B) = U(A), Yv: U(A) = UX)" x U(B),

where X is the kernel of f. The proof of Proposition 3.3 uses only finite limits, hence it is
invariant under the Yoneda embedding. This means that, for any finitely complete category &
and for any split extension (xx) in E(T), U(A) is a subobject of U(X)" xU(B) (it is the subobject
defined by a suitable equalizer, which internalizes the description of Y given in Proposition 3.3,
see Theorem 6.1 below). The same is true for the proofs of Proposition 4.1 and Theorem 4.2.
Hence we get the following

Theorem 6.1. Let T be a semi-abelian algebraic theory, and € a finitely complete category.

Given a split epimorphism A % B in E(T) with kernel X, the object U(A) € & is isomorphic

to the subobject of U(X )™ x U(B) given by the equalizer (in €) of the morphisms
P
UX)" x U(B) —= uxm,

where p is the first projection and v is the morphism given by
v=(a1,...,an) 0 (0 x1)o(U(k)" x U(s) x U(s)) o (1 x Ay(p))-
If T is a variety of right Q-loops, then U(A) is isomorphic to the product U(X) x U(B).

When T is a variety of right Q-loops, and € is a finitely complete category such that £(T) has
pushouts of split monomorphisms, the previous theorem can be used to prove that the category
&(T) has semidirect products in the categorical sense recalled in Section 2, as we show next.

Theorem 6.2. Let T be a theory of right Q-loops, and let € be a finitely complete category such
that the category E(T) of models of T in € has pushouts of split monomorphisms. Then E(T)
has semidirect products.

Proof. Since E(T) is pointed, finitely complete and has pushouts of split monomorphisms, thanks
to Proposition 2.3 it suffices to consider only the pullback functors i};: Pt(B) — Pt(0) = &(T),
for any B € E(T). The category &(T) is protomodular, because Set(T) is, and the definition of a
protomodular category is invariant under the Yoneda embedding. Hence, for any B € £(T), i%; is
conservative. Moreover, it has a left adjoint, because €(T) has pushouts of split monomorphisms.
To prove that i} is monadic, it suffices then to show that it creates coequalizers of parallel
morphisms g, h in Pt(B) such that § = i%(g) and h = i%(h) have an absolute coequalizer in
E(T). Consider then the following diagram
g

—= X

B
Al

i

B——=20B.

>~

<

|l =

s

<~

—_—

We know that, as objects of €, A and A" are isomorphic to X x B and X' x B, respectively.
Moreover, the morphisms g and h are isomorphic (in €) to g X 1 and h x 1p, respectively,
because the isomorphisms ¢ and 1 described before are natural. Consider then the following
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diagram in €, where the upper line is an absolute coequalizer in &(T):

g

X = X —£ 5Q

h
k k'
gxlp

XxB—=X'xB
thB
WB\W(O,I) WB\W(O,I)
B——=8B.

Since an absolute coequalizer is preserved by any functor, considering the functor
(=) x B: &(T) — & we have that

gx1lp 1
XxB—=X'xBZ2QxB
BXlB
is a coequalizer in €. We now equip ) X B with a structure of an internal algebra. Let w be an
m-ary operation of the theory T. Consider the following diagram:

(gx1p)™ c m
(X x By ——% (x' x B2 g x Bym
(hx1p)™
wl iw’ wQ
gx1 ¢ v
XxB——sX'xB—"_0xB.
thB

The upper row is still a coequalizer in €. Its universal property defines the operation wg,
since the two left hand side squares commute, being g x 15 and h x 15 morphisms in &(T). This
operation wg satisfies all the equations of the theory T. Indeed, these equations can be expressed
by diagrams in &€, and it can be shown that the ones concerning () x B commute, because so do
the ones concerning A’ & X’ x B, using the fact that ¢ x 15 is an epimorphism in &(T) (because
it is an epimorphism in € and the forgetful functor €(T) — € is faithful). Hence @) x B is an
object of &(T). It remains to prove that it is the coequalizer of g = g x 1 and h = h x 1p in
E(T), and not only in € (the fact that it is preserved by i} is obvious). Consider the following
diagram:

CXlB

g
XxB—=X'xB—=QxB

h =
N L
l L
A

D.

Since ¢ x 1p is the coequalizer of g and h in €, if 7g = vyh (where 7 is a morphism in £(T)),
there exists a unique morphism § in € such that d(c x 1) = 7. We only have to prove that §
is a morphism in E(T), i.e. that it preserves any operation w of the theory T. If w is an m-ary
operation, consider the following diagram:

X' x B Q x B D.
B!

The square on the left and the whole rectangle commute, because ¢ X 1g and v are morphisms
in E(T). Since (¢ x 15)™ is an epimorphism, the square on the right also commutes, and hence
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0 is a morphism in &(T). This concludes the proof, because the coequalizers in Pt(B) are built
as in E(T). O

We now consider the particular case when & = Top. If T is a semi-abelian algebraic theory,
for any split extension (xx) in Top(T) we have that, as a topological space, A is a subspace,
actually a retract, of the topological product X" x B. More explicitly:

Corollary 6.3. Given a semi-abelian theory T and a split extension (xx) in Top(T), the maps
p: X"xB— A and P: A— X" x B,
of Proposition 3.3 are continuous.

Proof. ¢ and v are defined using only the operations 6 and «;, that are continuous because they
are morphisms in T'op, and canonical morphisms induced by the products in Top, hence they
are continuous. O

Theorem 6.1 then particularizes to the following

Proposition 6.4. Let T be a semi-abelian algebraic theory. Given a split extension (xx) in
Top(T), the algebra A is homeomorphic to the set Y C X™ x B described in Proposition 3.3
equipped with the subspace topology of the product topology of X™ x B. In particular, if the
theory T defines a variety of right Q-loops, then A is isomorphic, as a topological space, to the
topological product X x B.

We conclude by observing that the results of this section have the following interesting con-
sequence. Let T be a theory of right (2-loops, and let € be a subcategory of T'op which is closed
under finite products (like the subcategories Comp, Haus, HComp, Conn and TotDisc of com-
pact, Hausdorff, compact Hausdorff, connected, and totally disconnected spaces, respectively).
Given a split extension (x*) in Top(T), if both X and B belong to €, then A belongs to &,
too. This means that, if both X and B are compact, then A also is, and the same holds for the
properties of being Hausdorff, connected and totally disconnected. In particular, the subcate-
gories Haus(T), HComp(T) and TotDisc(T), being closed under limits and finite coproducts in
Top(T), have semidirect products, that coincide with the corresponding topological semidirect
products.
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