
THE RISE AND FALL OF V -FUNCTORS

MARIA MANUEL CLEMENTINO AND DIRK HOFMANN

Abstract. In this article we study function spaces (rise) and descent (fall) in quantale-enriched

categories, paying particular attention to enrichment in the non-negative reals, the quantale of

distribution functions and the unit interval equipped with a continuous t-norm.

Introduction

As implicitly suggested by the title, the two main themes of this paper are the study of function

spaces (or exponentiation) and descent theory in certain categories of interest to topologists. The

quest for appropriate function space topologies goes back to at least the work of Fox [14], the

motivation coming from algebraic topology (“a path of paths should be a path”). Roughly speaking,

the problem is to topologize Y X in such a way that, for all spaces Z, there is a natural 1-1

correspondence between continuous maps Z → Y X and continuous maps Z × X → Y . Such a

topology does not always exist, and those spaces X where it does for all spaces Y were eventually

identified as the core-compact spaces by Day and Kelly in [9]. Curiously, [9] does not mention

function spaces at all, but it does characterise those spaces X so that the functor −×X preserves

quotients. However, the original question about function spaces actually asks for a right adjoint

of −×X, and then the well-known Special Adjoint Functor Theorem tells us that both questions

are equivalent. A nice overview of this development can be found in [19]. The second theme,

descent theory, is probably less known in topology. This topic has its roots in Galois theory à la

Grothendieck and its categorical presentation was developed by Janelidze (see [2]). In a nutshell,

for a morphism f : E → B, one asks when is it possible to describe bundles over B as algebras of

bundles over E; in other words, when one can “descend” from bundles over E to bundles over B

along f .

Our interest in categories of monad-quantale-enriched categories started 15 years ago, with the

main goal of providing a unified setting for the study of exponentiation and descent theory in

general topology. This framework was suggested by various results on topological spaces via con-

vergence: the characterization of effective descent continuous maps given in [30] and [20], and the

characterization of exponentiable topological spaces of [28] and [25, 26]. With this motivation, we

presented a detailed study of effective descent morphisms of categories enriched in a quantale V

in [4], and a characterization of exponentiable V -functors in [5, 7]. The purpose of this article is

to complete the results obtained in these papers in the realm of quantale-enriched categories, with

particular focus on specific examples such as probabilistic metric spaces and categories enriched in

the unit interval equipped with a continuous t-norm.

In Section 1 we provide the necessary background on quantales and quantale-enriched categories.

We introduce important examples, such as the quantale ∆ of distribution functions, we recall the

classification of continuous quantale structures on the unit interval [0, 1] due to [12] and [27], and the
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notion of complete distributive complete lattice, and introduce the notion of cancellable quantale

which proves to be useful in our investigation of effective descent V -functors.

In Section 2 we recall the characterization of exponentiable V -categories obtained in [5, 7] and

refine this description for the specific choices of quantales introduced in the previous section. Sec-

tion 2 can be seen as a “warm-up” for Section 3 where we consider the less familiar notion of

exponentiable V -functor; similarly to the object-case, we provide customised descriptions for our

main examples. Furthermore, we show that perfect and étale V -functors (naturally imported from

topology) are exponentiable.

The interpretation of metric spaces as categories advocated in [23] puts the emphasis on the

triangular inequality and the “self-distance is zero” axiom, and, consequently, on the study of

generalised metric spaces which are not necessarily symmetric, separated and finitary. In Section

4 we show how our results about generalised (probabilistic) metric spaces lead to characterizations

of exponentiable morphisms between classical spaces. In particular, we introduce finitary and

bounded V -categories relative to a choice of “finite” elements of the quantale V .

Finally, Section 5 is devoted to the study of effective descent V -functors. Following the pattern

of the previous sections, we recall and improve the results of [4] and specialise these results in our

main examples.

1. V -categories

Throughout V is a commutative and unital quantale; that is, V is a complete lattice equipped

with a symmetric tensor product ⊗, with unit k 6= ⊥ and with right adjoint hom; that is, for each

u, v, w ∈ V ,

u⊗ v ≤ w ⇐⇒ v ≤ hom(u,w).

As a category, V is a symmetric monoidal closed category. We recall now the notion of a V -enriched

category when V is a quantale. The general notion of V -category goes back to [11], [23] and [22].

Definition 1.1. A V -enriched category (or simply V -category) is a pair (X, a) with X a set and

a : X ×X → V a map satisfying the following conditions:

(R) for each x ∈ X, k ≤ a(x, x);

(T) for each x, x′, x′′ ∈ X, a(x, x′)⊗ a(x′, x′′) ≤ a(x, x′′).

A V -functor f : (X, a)→ (Y, b), between the V -categories (X, a), (Y, b), is a map f : X → Y such

that

(C) for each x, x′ ∈ X, a(x, x′) ≤ b(f(x), f(x′)).

We will denote by V -Cat the category of V -categories and V -functors. Without assuming

condition (T), the pair (X, a) is said to be a V -graph; together with V -functors (i.e., maps between

V -graphs satisfying (C)), they form the category V -Gph.

Examples 1.2. (1) For V = 2 = ({0 < 1},∧, 1), a 2-category is an ordered set (not necessarily

antisymmetric) and a 2-functor is a monotone map.

(2) For the complete lattice [0,∞] ordered by the “greater or equal” relation ≥ (so that the infimum

of two numbers is their maximum and the supremum of S ⊆ [0,∞] is given by inf S) with tensor

⊗ = +, a [0,∞]-category is a (generalised) metric space (see [23]) and a [0,∞]-functor is a non-

expansive map. We note that

hom(u, v) = v 	 u := max{v − u, 0},

for all u, v ∈ [0,∞].

(3) The complete lattice [0, 1] with the usual “less or equal” relation ≤ is isomorphic to [0,∞]

via the map [0, 1] → [0,∞], u 7→ − ln(u) where − ln(0) = ∞. Under this isomorphism, the

operation + on [0,∞] corresponds to multiplication ∗ on [0, 1]. We denote this quantale as

[0, 1]∗; hence, [0, 1]∗-Cat is isomorphic to the category [0,∞]-Cat (with tensor ⊗ = + on
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[0,∞]) of (generalised) metric spaces and non-expansive maps. To keep notation simple, we

will often write uv instead of u ∗ v, for u, v ∈ [0, 1].

Since [0, 1] is a frame, we can also consider it as a quantale with ⊗ = ∧ given by infimum, and

we denote it by [0, 1]∧. The category [0, 1]∧-Cat is isomorphic to the category of (generalised)

ultrametric spaces and non-expansive maps.

Quantale operations on [0, 1] are usually called t-norms. Another interesting t-norm is given

by the  Lukasiewicz tensor where u⊕ v = max(0, u+ v− 1); here hom(u, v) = min(1, 1−u+ v).

In fact, it is shown in [12] and [27] that every continuous t-norm ⊗ : [0, 1] × [0, 1] → [0, 1]

with neutral element 1 is a combination of the three operations on [0, 1] described above. To

describe this result, we need some notation: an element u ∈ [0, 1] is called idempotent whenever

u ⊗ u = u, and v ∈ [0, 1] is called nilpotent whenever v 6= 0 and vn = 0, for some n ∈ N. We

have now the following facts.

Theorem. (a) If 0 and 1 are the only idempotent elements of [0, 1] and [0, 1] has no nilpotent

element, then ⊗ = ∗ is the multiplication.

(b) If 0 and 1 are the only idempotent elements of [0, 1] and [0, 1] has a nilpotent element, then

⊗ = ⊕ is the  Lukasiewicz tensor.

(c) For u, v ∈ [0, 1] and e ∈ [0, 1] idempotent with u ≤ e ≤ v: u⊗ v = min(u, v) = u.

(d) For every non-idempotent u ∈ [0, 1], there exist idempotents e and f with e < u < f and

such that the interval [e, f ] (with the restriction of the tensor on [0, 1] and with neutral

element f) is isomorphic to [0, 1] with either multiplication or  Lukasiewicz tensor.

Throughout we will study the behaviour of [0, 1]⊗-Cat for a general continuous tensor prod-

uct ⊗ on [0, 1].

(4) We consider now the set

∆ = {ϕ : [0,∞]→ [0, 1] | for all α ∈ [0,∞]: ϕ(α) =
∨
β<α

ϕ(β)},

of distribution functions. ∆ is a complete lattice with the pointwise order. For ϕ,ψ ∈ ∆ and

α ∈ [0,∞], define ϕ⊗ ψ ∈ ∆ by

ϕ⊗ ψ(α) =
∨

β+γ≤α
ϕ(β) ∗ ψ(γ).

One easily verifies that the operation ⊗ : ∆×∆→ ∆ is associative and commutative, and that

κ : [0,∞]→ [0, 1], α 7→

{
0 if α = 0,

1 else

is a neutral element for ⊗. Finally, ψ⊗− : ∆→ ∆ preserves suprema since u∗− : [0, 1]→ [0, 1]

does so, for all u ∈ [0, 1]. For the quantale ∆ just described, a ∆-category is a (generalised)

probabilistic metric space and a ∆-functor is a probabilistic non-expansive map. Probabilistic

metric spaces are introduced in [24] and extensively described in [32]; a presentation as enriched

categories can be found in [3] and [17]. There are two different ways of embedding the category

of metric spaces in the category of probabilistic metric spaces, corresponding to the two different

descriptions of metric spaces as [0,∞]-Cat and [0, 1]∗-Cat:

σ : [0,∞]-Cat→ ∆-Cat and τ : [0, 1]∗-Cat→ ∆-Cat (1.i)

(X, a) 7→ (X, ã) (X, a) 7→ (X, â)

with ã(x, y)(β) = 1 if β > a(x, y) and ã(x, y)(β) = 0 elsewhere, while â(x, y)(β) = a(x, y) if

β 6= 0 and â(x, y)(0) = 0.

(5) If (M, ·, e) is a commutative monoid, then the lattice (PM,⊆), with the tensor product defined

by

M ′ ×N ′ = {m · n |m ∈M ′, n ∈ N ′},
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for M ′, N ′ ⊆ M , with unit {e}, is a commutative and unital quantale1; in fact, it is the free

quantale over (M, ·, e). Categories enriched in such a quantale are extensively studied in [18].

We discuss now some properties of V which will be useful in the sequel. Denoting by DnV the

lattice of down-sets of V ordered by inclusion, the monotone map (=functor)

↓: V −→ DnV

v 7−→ ↓v = {u ∈ V |u ≤ v}

has a left adjoint ∨
: DnV −→ V

because V is a complete lattice (in fact, the existence of this adjoint is equivalent to completeness

of V ). The lattice V is said to be constructively completely distributive (ccd) (see [29] and [13]) if

this left adjoint has itself a left adjoint

⇓: V −→ DnV,

so that

⇓ v ⊆ S ⇐⇒ v ≤
∨
S. (1.ii)

Defining the totally below relation � on V by

u� v ⇐⇒ u ∈⇓ v
⇐⇒ ∀S ∈ DnV v ≤

∨
S =⇒ u ∈ S

⇐⇒ ∀A ⊆ V v ≤
∨
A =⇒ ∃w ∈ A : u ≤ w

condition (1.ii) gives that, for every v ∈ V ,

v =
∨
{u ∈ V | u� v}.

(See [35] for details.)

Examples 1.3. (1) The lattice 2 is ccd and its totally below relation � is given by 0 � 1 and

1� 1.

(2) The lattice [0,∞] (and so also [0, 1]) is ccd, with the totally below relation � given by >

(respectively by <).

(3) The lattice ∆ is ccd. To describe its totally below relation, it is useful to consider some special

elements of ∆: the step functions ϕα,u (where α ∈ [0,∞] and u ∈ [0, 1]) defined by

ϕα,u(β) =

{
0 if β ≤ α,
u if β > α.

One has the following facts.

Lemma. For every ψ, χ ∈ ∆:

(a) ψ =
∨
{ϕα,u | u < ψ(α)};

(b) for every α ∈ [0,∞] and u ∈ [0, 1], ϕα,u � ψ ⇐⇒ u < ψ(α);

(c) χ� ψ ⇐⇒ ∃α ∈ [0,∞] : χ(α) = 0 and χ(∞) < ψ(α).

Proof. The equality of (a) is straightforward. To prove (b), let α ∈ [0,∞] and u ∈ [0, 1].

Assume first that u < ψ(α) and let (ψi)i∈I be a family in ∆ such that ψ ≤
∨
i∈I ψi. Then

there exists j ∈ I with ψj(α) > u and this is enough to conclude that ϕα,u ≤ ψj . Assume now

ϕα,u � ψ; by (a) there is some β ∈ [0,∞] and v ∈ [0, 1] with v < ψ(β) so that ϕα,u ≤ ϕβ,v,

that is, α ≥ β and u ≤ v. We conclude that ψ(α) ≥ ψ(β) > v ≥ u. To see (c) note that, by (a)

and (b), χ � ψ ⇐⇒ ∃α, u χ ≤ ϕα,u � ψ, and this is equivalent to the conditions χ(α) = 0

and χ(∞) < ψ(α). �

1For simplicity here we assume commutativity of the tensor, although it is not essential for most of the results

obtained.
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(4) PM is also ccd: S � N ⇐⇒ S = {x} for some x ∈ N , for S,N ⊆M .

Now we will analyse a condition on V that plays a crucial role in the study of descent. We

say that the tensor product ⊗ in V is cancellable (or simply that V is cancellable) if, for any

u, v ∈ V \ {⊥}, for any families (ui)i∈I , (vi)i∈I in V with ui ≤ u and vi ≤ v for every i ∈ I,∨
i∈I

(ui ⊗ vi) ≥ u⊗ v in V =⇒ ∀u′ � u, v′ � v ∃i ∈ I : u′ ≤ ui and v′ ≤ vi.

Proposition 1.4. Let V be a ccd lattice where the set {w ∈ V |w � k} is directed. If, for any

v ∈ V \ {⊥}, v ⊗− : V → V

(1) preserves the totally below relation,

(2) is full, i.e. v ⊗ w ≤ v ⊗ w′ =⇒ w ≤ w′,
then V is cancellable.

Proof. Let u, v ∈ V \ {⊥}, (ui)i∈I , (vi)i∈I be families in V with ui ≤ u and vi ≤ v for every i ∈ I,

such that ∨
i∈I

(ui ⊗ vi) ≥ u⊗ v.

Let u′ � u and v′ � v. Since u = u⊗
∨
w�k w =

∨
w�k u⊗w, v =

∨
w�k v⊗w and {w ∈ V |w � k}

is directed, there exists w � k with u′ ≤ u ⊗ w and v′ ≤ v ⊗ w. Condition (1) guarantees that

u⊗ v ⊗w � u⊗ v, and then, by definition of �, there exists j ∈ I such that u⊗ v ⊗w ≤ uj ⊗ vj .
Therefore, from

u⊗ v ⊗ w ≤ uj ⊗ vj ≤ u⊗ vj
and (2) we conclude that v ⊗ w ≤ vj , and, analogously, that u⊗ w ≤ uj . Hence,∨

i∈I
(ui, vi) ≥

∨
w�k

(u⊗ w, v ⊗ w) = (u⊗
∨
w�k

w, v ⊗
∨
w�k

w) = (u, v). �

Examples 1.5. (1) It follows directly from Proposition 1.4 that the quantales 2, [0,∞], [0, 1]∗ are

cancellable.

(2) The quantale [0, 1]⊕ is not cancellable; for instance, if ui = 0 = vi and u = v = 1
2 , then

0 =
∨

(ui ⊕ vi) = u⊕ v although
∨
ui = 0 6= u.

(3) In ∆ we do not know whether, for any ψ ∈ ∆, ψ⊗− is full, that is, ψ⊗χ ≤ ψ⊗χ′ implies χ ≤ χ′.
We know, however, that {ψ ∈ ∆ | ψ � κ} is directed, but in general ψ ⊗− does not preserve

the totally below relation: indeed, for α ∈ [0,∞] and u ∈ V , ϕα,u � k ⇐⇒ α > 0 and u < 1,

while ψ ⊗ ϕα,u � ψ ⇐⇒ ∃β ≤ α : ψ(β) < uψ(∞).

To remedy this problem we will study cancellability for the subset ∆0 of ∆ consisting of the

step-functions. First we show that:

(a) ϕβ,v � k =⇒ ϕα,u ⊗ ϕβ,v � ϕα,u for any ϕα,u ∈ ∆0;

(b) ψ ⊗− : ∆0 → ∆ is full, for any ψ ∈ ∆.

To show (a), let ϕβ,v � k, that is, β > 0 and v < 1. Then ϕα,u ⊗ ϕβ,v = ϕα+β,uv � ϕα,u since

uv < ϕα,u(α+ β) = u.

For (b) first we compute ψ ⊗ ϕα,u(β) = uψ(β − α) for β > α, and 0 elsewhere. Then, if

ψ⊗ϕα,u ≤ ψ⊗ϕβ,v, (ψ⊗ϕα,u)(β) = (ψ⊗ϕβ,v)(β) = 0, and so β ≤ α. Moreover, for γ ∈ ]0,∞],

(ψ ⊗ ϕα,u)(γ + α) = uψ(α) ≤ vψ(γ + α− β) = (ψ ⊗ ϕβ,v)(γ + α),

and then

ψ(γ + n(α− β)) ≥ ψ(α)
(u
v

)n
.

Since ψ is bounded by 1, u
v is necessarily less than or equal to 1, i.e. u ≤ v as claimed.

Now, adapting the proof that V is cancellable provided (a) and (b) hold, it is routine to

show that ∆0 is cancellable in ∆.
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2. Exponentiable V -categories

An object X of a finitely complete category C is called exponentiable whenever the functor

−×X : C→ C is left adjoint; its right adjoint is typically denoted as (−)X : C→ C. Similarly, a

morphism f : X → Y in C is called exponentiable if f is an exponentiable object in the slice category

C ↓ Y . The category C is called cartesian closed whenever every object of C is exponentiable; and

C is called locally cartesian closed if every morphism of C is exponentiable.

From now on we assume that V , as a category, is cartesian closed. The existence of a right

adjoint to − ∧ v : V → V for every v ∈ V is in fact equivalent to the existence of a Heyting

operation on V . Therefore, our assumption means that from now on V is a Heyting algebra. We

remark that in all examples treated here this assumption is fulfilled.

The categories V -Gph and V -Cat are both complete, in fact, V -Cat is closed under limits in

V -Gph. In particular, for V -functors f : (X, a)→ (Y, b) and g : (Z, c)→ (Y, b), their pullback can

be taken as the V -category (X×Y Z, d), where X×Y Z is the pullback in Set and d((x, y), (z, w)) =

a(x, z) ∧ c(y, w), equipped with the canonical projections. Hence, one can investigate whether a

V -category, or a V -functor, is exponentiable; and in this section we consider exponentiable V -

categories, reserving the next one for the study of exponentiable V -functors.

The following characterization of exponentiable objects in V -Cat was proved in [5, Corollary

3.5] under the condition that k is the top element of V , and later, in [7, Section 5], without this

extra condition.

Theorem 2.1. A V -category (X, a) is exponentiable in V -Cat if, and only if, for all x0, x1 ∈ X
and v0, v1 ∈ V , ∨

x∈X
(a(x0, x) ∧ v0)⊗ (a(x, x1) ∧ v1) ≥ a(x0, x1) ∧ (v0 ⊗ v1). (2.i)

When ⊗ = ∧ is the categorical product in V , then the condition above reduces to∨
x∈X

a(x0, x) ∧ a(x, x1) ≥ a(x0, x1),

which is trivially true, and in this case V -Cat is a cartesian closed category.

In [17] it was shown that:

Proposition 2.2. The V -category V is exponentiable if, and only if, for all u, v, w ∈ V ,

(u⊗ v) ∧ w =
∨
{u′ ⊗ v′ |u′ ≤ u, v′ ≤ v, u′ ⊗ v′ ≤ w}.

Examples 2.3. (1) As observed after Theorem 2.1, since in 2 the tensor product is ∧, the category

2-Cat of ordered sets and monotone maps is cartesian closed. The same argument applies to

[0, 1]∧-Cat.

(2) As shown in [5], a metric space (X, a) is exponentiable in [0,∞]-Cat if, and only if, for each

x0, x1 ∈ X, α0, α1 ∈ [0,∞[ with α0 + α1 = a(x0, x1), and ε > 0,

∃x ∈ X : a(x0, x) < α0 + ε and a(x, x1) < α1 + ε,

based on the fact that it is enough to consider in (2.i) α0, α1 with α0 + α1 = a(x0, x1).

(3) The same happens in [0, 1]⊕-Cat. Indeed:

Proposition. A [0, 1]⊕-category (X, a) is exponentiable in [0, 1]⊕-Cat if, and only if, for each

x0, x1 ∈ X, v0, v1 ∈ [0, 1] with v0 ⊕ v1 = a(x0, x1) 6= 0, and ε > 0,

∃x ∈ X : a(x0, x) + ε > v0 and a(x, x1) + ε > v1. (2.ii)

Proof. If a(x0, x1) = 0, (2.i) is trivially valid. If v0 ⊕ v1 = a(x0, x1) 6= 0, then from (2.i) we

conclude that ∨
x∈X

(a(x0, x) ∧ v0) + (a(x, x1) ∧ v1) = v0 + v1,

and so we get (2.ii).
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To prove the converse, for v0 ⊕ v1 < a(x0, x1) consider v′0 ≥ v0 and v′1 ≥ v1 such that

v′0 ⊕ v′1 = a(x0, x1) and use (2.ii) to derive (2.i). For v0 ⊕ v1 > a(x0, x1) we consider v′0 ≤ v0
and v′1 ≤ v1 such that v′0 ⊕ v′1 = a(x0, x1) and use again (2.ii) to conclude (2.i). �

(4) The characterization given in (2) transfers to [0, 1]∗-Cat via the isomorphisms [0, 1]→ [0,∞],

u 7→ − lnu, and [0,∞]→ [0, 1], α 7→ exp(−α), so that a [0, 1]∗-category (X, a) is exponentiable

in [0, 1]∗-Cat if, and only if, for each x0, x1 ∈ X, u0, u1 ∈ ]0, 1] with u0u1 = a(x0, x1), and for

each ε > 0,

∃x ∈ X : a(x0, x) + ε > u0 and a(x, x1) + ε > u1.

(5) We consider now V = ∆, the quantale of distribution functions. We omit the proof of the

following result because it follows from the corresponding result for ∆-functors: see the proof

of Proposition 3.7 (3).

Proposition. A ∆-category X is exponentiable in ∆-Cat if, and only if, for each x0, x1 ∈ X,

α0, α1, β ∈ [0,∞] with α0 + α1 < β, u0, u1 ∈ ]0, 1] with u0u1 = a(x0, x1)(β), ε > 0, there exists

x ∈ X, α′0, α
′
1 ∈ [0,∞] such that α′0 > α0, α′1 > α1, α′0 + α′1 = β and a(x0, x)(α′0) + ε > u0,

a(x, x1)(α
′
1) + ε > u1.

From this characterization one can conclude easily that both embeddings of metric spaces

into probabilistic metric spaces of (1.i) preserve and reflect exponentiable objects:

Corollary. A metric space (X, a) ∈ [0,∞]-Cat is exponentiable in [0,∞]-Cat if, and only if,

the probabilistic metric space σ(X, a) is exponentiable in ∆-Cat, and a metric space (X, a) ∈
[0, 1]∗-Cat is exponentiable in [0, 1]∗-Cat if, and only if, τ(X, a) is exponentiable in ∆-Cat.

(6) It is easy to conclude, from Theorem 2.1, that a PM -category (X, a) is exponentiable in

PM -Cat if, and only if, for each x0, x1 ∈ X, m,n ∈ M , whenever mn ∈ a(x0, x1) there

exists x ∈ X such that m ∈ a(x0, x) and n ∈ a(x, x1).

(7) We present now an example showing that the condition of Proposition 2.2 is not always satisfied;

that is, V is not always exponentiable in V -Cat. This example also shows that the claim of

[17] that every linearly ordered V is an exponentiable V -category is false. Indeed, if we take

N = {0, 1n , n ∈ N} with the usual order and multiplication, then, for u = 1
2 , v = 1

3 and w = 1
7 ,

the condition does not hold. Indeed, there are very few exponentiable N -categories, as we show

next. An N -category (X, a) is exponentiable if, and only if, for all x0, x1 ∈ X,

(a) ∀n0, n1 ∈ N : a(x0, x1) = 1
n0n1

=⇒ ∃x ∈ X : a(x0, x) = 1
n0

and a(x, x1) = 1
n1

;

(b) a(x0, x1) ∈ {0, 18 ,
1
4 ,

1
3 ,

1
2 , 1}, and

(c) a(x0, x1) = 1
8 =⇒ ∃x ∈ X : a(x0, x) = a(x, x1) = 1

3 .

Condition (a) follows directly from (2.i) when v0 = 1
n0

and v1 = 1
n1

.

To conclude (b) we split the problem in several cases:

– If a(x0, x1) = 1
p with p prime > 3, take v0 = v1 = 1

2 in (2.i); then it is clear that there is

no x ∈ X such that (a(x0, x) ∧ 1
2)(a(x, x1) ∧ 1

2) = 1
p .

– If a(x0, x1) = 1
24

, take v0 = 1
3 and v1 = 1

5 . Then, again, there is no possible x satisfying

(2.i): (a(x0, x) ∧ 1
3)(a(x, x1) ∧ 1

5) 6= 1
16 .

– If a(x0, x1) = 1
32

, take v0 = 1
2 and v1 = 1

4 and argue analogously.

– If a(x0, x1) = 1
23 3

, take v0 = v1 = 1
5 ; the only way of having (a(x0, x)∧ 1

5)(a(x, x1)∧ 1
5) = 1

25

is when a(x0, x) = a(x, x1) = 1
5 and we know already that this value is never attained.

If a(x0, x1) = 1
8 , then the only case in (2.i) that is not guaranteed by (a) is when v0 = v1 = 1

3 ,

and that is why condition (c) is necessary.

If a(x0, x1) is either 1
4 ,

1
3 or 1

2 , then (a) is enough to assure that (2.i) holds.

3. Exponentiable V -functors

In order to identify exponentiable morphisms in V -Cat, we shall make use of the characterization

of exponentiability in slice categories given in [10]: f : X → Y is exponentiable in C ↓ Y if, and

only if, for every object Z in C, the partial product of Z over f exists.
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Theorem 3.1 ([8]). The category V -Gph is locally cartesian closed.

For f : (X, a) → (Y, b) and (Z, c) in V -Gph, the partial product of (Z, c) over f can be con-

structed as follows. For y ∈ Y , consider the V -graph

Xy = {x ∈ X | f(x) = y}

with structure ay defined by

ay(x0, x1) = k ∧ a(x0, x1),

and put

P = {(s, y) | y ∈ Y, s : (Xy, ay)→ (Z, c) in V -Gph}.

The set P becomes a V -graph when equipped with the largest map d : P × P → V (w.r.t. the

pointwise order induced by V ) making the maps

p : P → Y, ev : P ×Y X → Z

(s, y) 7→ y (s, y, x) 7→ s(x)

V -functors.

Z P ×Y X
evoo π2 //

π1
��

X

f
��

P
p

// Y

We note that for an element (s, y, x) of the pullback P ×Y X one has y = f(x), hence we will simply

write (s, x). Explicitly, for (s0, y0) and (s1, y1) in P ,

d((s0, y0), (s1, y1)) =
∨
{u ≤ b(y0, y1) | ∀x0 ∈ f−1(y0), x1 ∈ f−1(y1),

(u ∧ a(x0, x1) ≤ c(s0(x0), s1(x1)))}.

Regarding the connection with exponentiability in V -Cat, we recall (see [31, Theorem 2.3]):

Theorem 3.2. For a V -functor f : (X, a)→ (Y, b) the following assertions are equivalent.

(i) f is exponentiable in V -Cat.

(ii) For every V -category (Z, c), the partial product of (Z, c) over f constructed in V -Gph is

actually a V -category.

(iii) The partial product of (V,hom) over f constructed in V -Gph is a V -category.

Finally, the following characterization of exponentiable morphisms in V -Cat can be found in [5]

and [7].

Theorem 3.3. A V -functor f : X → Y is exponentiable in V -Cat if, and only if, for any

x0, x1 ∈ X, y ∈ Y , v0, v1 ∈ V such that v0 ≤ b(f(x0), y) and v1 ≤ b(y, f(x1)),∨
x∈f−1(y)

(a(x0, x) ∧ v0)⊗ (a(x, x1) ∧ v1) ≥ a(x0, x1) ∧ (v0 ⊗ v1). (3.i)

To show that the condition above is necessary, the proof of [5] makes use of the V -functors

s : Xy → V, s′ : Xy → V, (3.ii)

z 7→ a(x0, z) ∧ k z 7→ a(x0, z) ∧ v0
s′′ : Xy → V ;

z 7→
∨

x∈f−1(y)

(a(x0, x) ∧ v0)⊗ (a(x, z) ∧ v1)

and in the sequel we will adapt this argument to certain subcategories of V -Cat.
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Corollary 3.4. When ⊗ = ∧ is the categorical product in V , then a V -functor f : (X, a)→ (Y, b)

is exponentiable in V -Cat if, and only if, for any x0, x1 ∈ X and y ∈ Y ,∨
x∈f−1(y)

a(x0, x) ∧ a(x, x1) ≥ a(x0, x1) ∧ b(f(x0), y) ∧ b(y, f(x1)).

We recall from [4, Definition 4.1] that a V -functor f : (X, a) → (Y, b) (in V -Gph or V -Cat) is

called proper if, for all x0 ∈ X and y ∈ Y ,

b(f(x0), y) =
∨

x∈f−1(y)

a(x0, x);

dually, f is called open if

b(y, f(x1)) =
∨

x∈f−1(y)

a(x, x1),

for all x1 ∈ X and y ∈ Y .

Clearly, f : (X, a) → (Y, b) is open if, and only if, the V -functor fop : (X, a)op → (Y, b)op

is proper, where (X, a)op = (X, a◦), with a◦(x, y) = a(y, x), is the dual V -category of (X, a).

Furthermore, f : (X, a)→ (Y, b) is called perfect (étale) whenever both f and the canonical map

δf : (X, a)→ (X, a)×(Y,b) (X, a), x 7→ (x, x)

are proper (open). One easily verifies that δf : (X, a) → (X, a) ×(Y,b) (X, a) is proper if, and only

if, for all x, x0, x1 ∈ X with f(x0) = f(x1) and x0 6= x1,

a(x, x0) ∧ a(x, x1) = ⊥.

Theorem 3.5. Every perfect V -functor is exponentiable in V -Cat.

Proof. Let f : (X, a) → (Y, b) in V -Cat be perfect, and let (Z, c) be a V -category. We prove

that the partial product (P, d) of (Z, c) over f formed in V -Gph is a V -category. To this end, let

(s0, y0), (s, y) and (s1, y1) be in P . To conclude

d((s0, y0), (s, y))⊗ d((s, y), (s1, y1)) ≤ d((s0, y0), (s1, y1)),

we show that

(d((s0, y0), (s, y))⊗ d((s, y), (s1, y1))) ∧ a(x0, x1) ≤ c(s0(x0), s1(x1)),

for all x0 ∈ f−1(y0) and x1 ∈ f−1(y1). Recall from [4, Proposition 4.2 (1)] that proper maps are

pullback-stable in V -Cat. Therefore, since with f also the V -functor π1 : P ×Y X → P is proper,

we get (with d̃ denoting the structure on P ×Y X)

d((s0, y0), (s, y))⊗ d((s, y), (s1, y1)) =
∨

x∈f−1(y)

d̃((s0, x0), (s, x))⊗ d((s, y), (s1, y1))

=
∨

x∈f−1(y),x′1∈f−1(y1)

d̃((s0, x0), (s, x))⊗ d̃((s, x), (s1, x
′
1)).

Now let x ∈ f−1(y) and x′1 ∈ f−1(y1). If x1 6= x′1, then

(d̃((s0, x0), (s, x))⊗ d̃((s, x), (s1, x
′
1))) ∧ a(x0, x1) ≤ a(x0, x

′
1) ∧ a(x0, x1) = ⊥;

otherwise we obtain

(d̃((s0, x0), (s, x))⊗ d̃((s, x), (s1, x1))) ∧ a(x0, x1)

≤ c(s0(x0), s(x))⊗ c(s(x), s1(x1)) ≤ c(s0(x0), s1(x1)). �

The dual version of the result above reads as:

Corollary 3.6. Every étale V -functor is exponentiable in V -Cat.
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Examples 3.7. (1) As stated in [5], from Theorem 3.3 it follows that a monotone map f : (X,≤
) → (Y,≤) is exponentiable in 2-Cat if, and only if, for each x0, x1 ∈ X and y ∈ Y with

x0 ≤ x1 and f(x0) ≤ y ≤ f(x1), there exists x ∈ f−1(y) such that x0 ≤ x ≤ x1 (see also [33]).

(2) In [5] it was shown that a non-expansive map f : (X, a)→ (Y, b) is exponentiable in [0,∞]-Cat

if, and only if, for each x0, x1 ∈ X, y ∈ Y , α0, α1 ∈ [0,∞[ with α0 ≥ b(f(x0), y), α1 ≥
b(y, f(x1)) and α0 + α1 = max{a(x0, x1), b(f(x0), y) + b(y, f(x1))}, and ε > 0,

∃x ∈ f−1(y) : a(x0, x) < α0 + ε and a(x, x1) < α1 + ε.

(3) For V = ∆, we have:

Proposition. A ∆-functor f : X → Y is exponentiable in ∆-Cat if, and only if, for each

x0, x1 ∈ X, α0, α1, β ∈ [0,∞] with α0 + α1 < β, u0, u1 ∈ ]0, 1] with u0u1 ≤ a(x0, x1)(β),

u0 ≤ b(f(x0), y)(α) for all α > α0 and u1 ≤ b(y, f(x1))(α) for all α > α1, and ε > 0,

∃x ∈ f−1(y), α′0 > α0, α
′
1 > α1, α

′
0 + α′1 = β : (3.iii)

a(x0, x)(α′0) + ε > u0, a(x, x1)(α
′
1) + ε > u1.

Proof. We split the proof in three parts: (a) (3.i) =⇒ (3.iii); (b) (3.iii) =⇒ (3.i) when v0, v1 ∈
∆0; (c) (3.i) for ∆0 =⇒ (3.i).

(a) Let x0, x1, y, α0, α1, β, u0, u1, ε be as in (3.iii). In (3.i) let vi = ϕαi,ui for i = 0, 1.

Note that ϕα0,u0 ≤ b(f(x0), y) and ϕα1,u1 ≤ b(y, f(x1)). Denote a(x0, x) ∧ ϕα0,u0 by ψ0,x and

ϕα1,u1 ∧ a(x, x1) by ψ1,x. Then (3.i) gives:∨
x∈f−1(y)

∨
α′0+α

′
1=β

ψ0,x(α′0)ψ1,x(α′1) ≥ (a(x0, x1) ∧ ϕα0+α1,u0u1)(β) = u0u1.

Let δ = u0u1ε > 0; there exist x ∈ f−1(y), α′0, α
′
1 ∈ [0,∞] with α′0 + α′1 = β such that

ψ0,x(α′0)ψ1,x(α′1) + δ > u0u1,

and therefore

u0ψ1,x(α′1) + u0u1ε ≥ ψ0,x(α′0) + ψ1,x(α′1) + u0u1ε > u0u1 =⇒

ψ1,x(α′1) + ε ≥ ψ1,x(α′1) + u1ε > u1,

and this implies a(x, x1)(α
′
1) + ε > u1. The condition for u0 is proved analogously.

(b) Let x0, x1, y, v0, v1 as in (3.i) with vi = ϕαi,ui . Then u0 ≤ b(f(x0), y)(α) for every α > α0

and u1 ≤ b(y, f(x1)) for every α > α1. We want to show that, for any β ∈ [0,∞],∨
x∈f−1(y)

(a(x0, x) ∧ ϕα0,u0)⊗ (a(x, x1) ∧ ϕα1,u1)(β) ≥ (a(x0, x1) ∧ ϕα0+α1,u0u1)(β).

For β ≤ α0 +α1 the condition is trivially satisfied. Let β > α1 +α0. If u0u1 ≤ a(x0, x1)(β), so

that the right side of the inequality is equal to u0u1, then, applying (3.iii) for ε > 0 we obtain

α′0, α
′
1 with α′0 + α′1 = β and a(x0, x)(α′0) + ε > u0, a(x, x1)(α

′
1) + ε > u1. Therefore the left

side of the inequality is necessarily larger or equal to u0u1. If u0u1 > a(x0, x1)(β), then take u′1
such that u0u

′
1 = a(x0, x1)(β) and use the previous argument for u0, u

′
1; the conclusion follows.

(c) To conclude one has to observe that every element of ∆ is the join of step functions and

that both ∧ and ⊗ commute with joins. �

(4) A PM -functor f : (X, a)→ (Y, b) is exponentiable in PM -Cat if, and only if, for each x0, x1 ∈
X, y ∈ Y , and m ∈ b(f(x0), y), n ∈ b(y, f(x1)) with mn ∈ a(x0, x1), there exists x ∈ f−1(y)

such that m ∈ a(x0, x) and n ∈ a(x, x1).
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4. Restricting to classical spaces

In this paper we considered so far (probabilistic) metric spaces in a generalised sense; classically

these spaces are also assumed to be symmetric, separated and finitary. In a metric space, the latter

property requires all distances to be less than ∞; whereby for a probabilistic metric space (X, a)

this is usually expressed as “the distance from x to y is less than ∞ with probability 1”:

a(x, y)(∞) = 1.

For a general V -category, the notions of symmetry and separatedness can be introduced in a

straightforward way; but it is less obvious what finitary should mean. Here we adopt a relative

approach and introduce F-finitary V -categories, for a given choice F ⊆ V of “finite values”.

Definition 4.1. Let (X, a) be a V -graph. Then (X, a) is called symmetric whenever a(x, y) =

a(y, x), for all x, y ∈ X; and (X, a) is called separated if k ≤ a(x, y) and k ≤ a(y, x) imply x = y,

for all x, y ∈ X.

The definitions above are formulated at the level of V -graphs; however, our main interest is in

V -categories. The full subcategory of V -Cat defined by all symmetric, separated, and separated

and symmetric V -categories is denoted by

V -Catsym, V -Catsep, V -Catsym,sep,

respectively. We note that symmetric V -categories have played a significant role in [34, 1, 16].

The V -category (V,hom) is separated, and we also consider its symmetrization (V,homs) where

homs(u, v) = hom(u, v) ∧ hom(v, u).

It is easy to see that all categories above are closed under limits in V -Cat, therefore one might

wonder about exponentiable morphisms in these categories.

Proposition 4.2. (1) Let f : (X, a) → (Y, b) be a morphism in V -Gph where (X, a) and

(Y, b) are symmetric (separated). Then, for every symmetric (separated) V -graph (Z, c),

the partial product of (Z, c) over f is symmetric (separated).

(2) Let f : (X, a)→ (Y, b) and (Z, c) be in V -Catsym (V -Catsep, V -Catsym,sep). If the partial

product of (Z, c) over f exists in V -Catsym (V -Catsep, V -Catsym,sep), then it coincides

with the partial product of (Z, c) over f in V -Gph.

(3) A morphism f : (X, a)→ (Y, b) is exponentiable in V -Catsym (V -Catsep, V -Catsym,sep) if,

and only if, f : (X, a)→ (Y, b) is exponentiable in V -Cat.

Proof. The first two statements are easy to prove, where for the second one the same argument

as in [5, Proposition 3.3] is used. It follows immediately that every exponentiable V -functor f :

(X, a) → (Y, b) between symmetric (separated) V -categories is also exponentiable in V -Catsym,

V -Catsep and V -Catsym,sep. For the reverse implication one can use the same argument as in [5,

Theorem 3.4], but with (V,homs) as codomain of the maps (3.ii) in the symmetric case. �

In order to deal with the notion of “finitary”, we will now consider certain subsets of V thinking

of their elements as “finite elements”.

Definition 4.3. A subset F ⊆ V is called a ⊗-filter if F is a filter of the lattice V , k ∈ F and

u⊗ v ∈ F whenever u ∈ F and v ∈ F .

Examples 4.4. (1) For every quantale V , Fk = {v ∈ V | k ≤ v} is a ⊗-filter. More generally, if

u ≤ k is idempotent, then Fu = {v ∈ V | u ≤ v} is a ⊗-filter. Note that, in particular, F⊥ = V

is a ⊗-filter. Certainly, for every ⊗-filter F one has Fk ⊆ F ⊆ F⊥.

(2) If V satisfies

∀u, v ∈ V (u⊗ v = ⊥ =⇒ (u = ⊥ or v = ⊥)),

then F = {v ∈ V | v 6= ⊥} is a ⊗-filter. The condition above is certainly satisfied by the

quantales 2, [0, 1]∗, [0, 1]∧ and ∆, but fails in [0, 1]⊕.
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(3) In the quantale ∆ we have two natural choices of ⊗-filters:

F1 = {ψ ∈ ∆ | ψ(∞) = 1} and F2 = {ψ ∈ ∆ | ∃α <∞ψ(α) = 1}.

Cleary, F2 ( F1.

Definition 4.5. Let F ⊆ V be a ⊗-filter. A V -graph (X, a) is called F-finitary whenever a(x, x′) ∈
F , for all x, x′ ∈ X; and a V -graph (X, a) is called F-bounded whenever there exists some u ∈ F
so that u ≤ a(x, x′), for all x, x′ ∈ X.

One observes immediately that (X, a) is F-bounded if and only if
∧
x,y∈X a(x, y) ∈ F . Choosing

in the metric case

F = {u ∈ [0,∞] | u <∞}
leads to the usual notions of finitary, respectively bounded, metric space. Similarly to the situation

for metric spaces, also probabilistic metric spaces are usually assumed to have only “finite” dis-

tances, more specifically, they are assumed to be F1-finitary. To identify F1-bounded probabilistic

metric spaces, we note first that infima in ∆ are in general not calculated pointwise. However,

infima are calculated pointwise in the ordered set

Ord([0,∞], [0, 1]) = {ϕ : [0,∞]→ [0, 1] | ϕ is monotone};

and the inclusion function i : ∆→ Ord([0,∞], [0, 1]) has a right adjoint c : Ord([0,∞], [0, 1])→ ∆

sending ϕ to the distribution function

c(ϕ) : [0,∞] −→ [0, 1], α 7−→ sup
β<α

ϕ(β).

Since c sends infima to infima, we conclude that a probabilistic metric space (X, a) is F1-bounded

if and only if  ∧
x,y∈X

a(x, y)

 (∞) = sup
α<∞

inf
x,y∈X

a(x, y)(α) = 1,

that is, (X, a) is probabilistic bounded (see [15]).

We have the following obvious facts.

Lemma 4.6. Let F ⊆ V be a ⊗-filter.

(1) The empty V -graph is F-bounded.

(2) Every F-bounded V -graph is F-finitary.

(3) Let f : (X, a)→ (Y, b) be a surjective V -functor. If (X, a) is F-finitary (F-bounded), then

so is (Y, b).

(4) Let (X, a) be a V -category with X 6= ∅ and let x0 ∈ X. Then (X, a) is F-bounded if, and

only if, there exist some u, u′ ∈ F such that, for all x ∈ X, u ≤ a(x0, x) and u′ ≤ a(x, x0).

Clearly, in the last statement above one can always choose u = u′. We write V -CatF for the full

subcategory of V -Cat defined by all F-finitary V -categories. Since F ⊆ V is closed under finite

infima, V -CatF is closed in V -Cat under subspaces and finite products, hence V -CatF is finitely

complete. We study now, inspired by [5, Subsection 4.3], exponentiation in V -CatF .

Proposition 4.7. Let F ⊆ V be a ⊗-filter.

(1) Let f : (X, a) → (Y, b) be a morphism in V -CatF . Then the following assertions are

equivalent.

(i) For every F-finitary V -category (Z, c), the partial product of (Z, c) over f in V -Gph

is F-finitary.

(ii) All fibres of f are F-bounded.

(2) Let f : (X, a)→ (Y, b) and (Z, c) be in V -CatF . If the partial product of (Z, c) over f exists

in V -CatF , then it coincides with the one in V -Gph.
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Proof. (1) Assume first that all fibres of f are F-bounded. Let (Z, c) be a V -category and let

(s, y), (s′, y′) be elements of the partial product (P, d) of (Z, c) over f . If either f−1(y) = ∅
or f−1(y′) = ∅, then d((s, y), (s′, y′)) = b(y, y′) ∈ F . Let x0 ∈ f−1(y), x′0 ∈ f−1(y′) and put

v := c(s(x0), s(x
′
0)) ∈ F ; and let u, u′ ∈ F so that, for all x ∈ f−1(y) and x′ ∈ f−1(y′), a(x, x0) ≥ u

and a(x′, x′0) ≥ u′. Then, for all x ∈ f−1(y) and x′ ∈ f−1(y′),

c(s(x), s′(x′)) ≥ c(s(x), s(x0))⊗ c(s(x0), s′(x′0))⊗ c(s′(x′0), s′(x′)) ≥ u⊗ v ⊗ u′;

which implies d((s, y), (s′, y′)) ≥ u ⊗ v ⊗ u′ ∈ F . To see the reverse implication, take y ∈ Y and

x0 ∈ Xy, and consider s : Xy → Xy, x 7→ x and s′ : Xy → Xy, x 7→ x0. Then

u := d((s, y), (s′, y′)) ∈ F , u′ := d((s′, y′), (s, y)) ∈ F

hence, for all x, x′ ∈ Xy,

u ∧ a(x, x′) ≤ ay(x, x0), u′ ∧ a(x, x′) ≤ ay(x0, x′).

Taking x = x′ gives F 3 u ∧ k ≤ ay(x, x0) and F 3 u′ ∧ k ≤ ay(x0, x), which shows that Xy is

F-bounded.

(2) As in [5, Proposition 4.3]. �

As before, one can now deduce that every f : (X, a)→ (Y, b) in V -CatF which is exponentiable

in V -Cat and has F-bounded fibres is also exponentiable in V -CatF . However, this is not an

equivalence; for instance, taking F = {1} for V = 2 gives V -CatF ' Set where every morphism

is exponentiable, while f in V -CatF is exponentiable in V -Cat if, and only if, it is surjective. To

understand better exponentiability in V -CatF , we shall assume that F is closed under hom: for all

u, v ∈ F , also hom(u, v) ∈ F . We note that every ⊗-filter F ⊆ V satisfies this condition if k = >
since then hom(u, v) ≥ hom(k, v) = v. Under this condition, we can consider F as the V -category

(F ,hom).

Theorem 4.8. Let F ⊆ V be a ⊗-filter closed under hom. Let f : (X, a)→ (Y, b) be a morphism

in V -CatF where X 6= ∅. Then f is surjective and exponentiable in V -CatF if, and only if, f

has F-bounded fibres and, for all x0, x1 ∈ X, y ∈ Y , v0, v1 ∈ F such that v0 ≤ b(f(x0), y) and

v1 ≤ b(y, f(x1)), ∨
x∈f−1(y)

(a(x0, x) ∧ v0)⊗ (a(x, x1) ∧ v1) ≥ a(x0, x1) ∧ (v0 ⊗ v1).

Proof. We show first that these conditions are sufficient for exponentiability and surjectivity of f .

Firstly, since f has F-bounded fibres, the partial product (P, d) in V -Gph of a V -category (Z, c)

over f is bounded; and, analysing the proof of [5, Theorem 3.4], in order to conclude that (P, d)

is a V -category one only needs to consider v0, v1 in the image of d, hence v0, v1 ∈ F . Taking now

x0 = x1 ∈ X and v0 = v1 = > in the formula above, it follows that f−1(y) 6= ∅, for every y ∈ Y .

Assume now that f : (X, a) → (Y, b) is surjective and exponentiable in V -CatF . Then f has F-

bounded fibres by Proposition 4.7. Furthermore, the maps s, s′, s′′ of (3.ii) can be restricted to the

codomain (F ,hom) and therefore are morphisms in V -CatF , now one can use the same argument

as in the proof of [5, Theorem 3.4]. �

As we already mentioned, we cannot drop the surjectivity condition in the theorem above. On

the other hand, in [5, Theorem 4.2] it is shown that for classical metric spaces exponentiability

implies surjectivity; so that the exponentiable morphisms of classical metric spaces are precisely

the morphisms which are exponentiable in [0,∞]-Cat and have bounded fibres. We do not know

whether the same is true for classical probabilistic metric spaces; however, we can still state a

characterization of exponentiable morphisms of classical probabilistic metric spaces by combining

Theorem 4.8 and Proposition 3.7(3). Before doing so, we have to deal with a slight technical

problem: in general, step functions are not elements of F1.
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Lemma 4.9. Let f : (X, a) → (Y, b) be a morphism in ∆-CatF1 and let x0, x1 ∈ X and y ∈ Y .

Then the inequality ∨
x∈f−1(y)

(a(x0, x) ∧ ϕ0)⊗ (a(x, x1) ∧ ϕ1) ≥ a(x0, x1) ∧ (ϕ0 ⊗ ϕ1). (4.i)

holds for all ϕ0, ϕ1 ∈ F1 with ϕ0 ≤ b(f(x0), y) and ϕ1 ≤ b(y, f(x1)) if and only if (4.i) holds for

all ϕ0, ϕ1 ∈ ∆ with ϕ0 ≤ b(f(x0), y) and ϕ1 ≤ b(y, f(x1)).

Proof. Assume that (4.i) holds for all values in F1 and let ϕ0, ϕ1 ∈ ∆ with ϕ0 ≤ b(f(x0), y) and

ϕ1 ≤ b(y, f(x1)). Then ϕ0(∞) ≤ 1 = a(x0, x)(∞), ϕ1(∞) ≤ 1 = a(x, x1) and (ϕ0 ⊗ ϕ1)(∞) ≤ 1 =

a(x0, x1)(∞); hence (4.i) holds for the argument α =∞ since f is surjective and ϕ0(∞)⊗ϕ1(∞) =

(ϕ0 ⊗ ϕ1)(∞). Let now α <∞. Define ϕ̃0, ϕ̃1 ∈ F1 by

ϕ̃0(β) =

{
ϕ0(β) if β ≤ α+ 1,

b(f(x0), y)(β) if β > α+ 1
and ϕ̃1(β) =

{
ϕ1(β) if β ≤ α+ 1,

b(y, f(x1))(β) if β > α+ 1.

By our hypothesis,∨
x∈f−1(y)

((a(x0, x) ∧ ϕ̃0)⊗ (a(x, x1) ∧ ϕ̃1))(α) ≥ a(x0, x1)(α) ∧ (ϕ̃0 ⊗ ϕ̃1)(α);

and the assertion follows from

((a(x0, x) ∧ ϕ̃0)⊗ (a(x, x1) ∧ ϕ̃1))(α) = ((a(x0, x) ∧ ϕ0)⊗ (a(x, x1) ∧ ϕ1))(α)

and

a(x0, x1)(α) ∧ (ϕ̃0 ⊗ ϕ̃1)(α) = a(x0, x1)(α) ∧ (ϕ0 ⊗ ϕ1)(α). �

Corollary 4.10. In the category ∆-Catsep,sym,F1 of classical probabilistic metric spaces, a mor-

phism f : (X, a)→ (Y, b) with X 6= ∅ is surjective and exponentiable if and only if f has probabilistic

bounded fibres and satisfies the condition of Proposition 3.7(3).

Remarks 4.11. (1) We do not know if there are non-surjective ∆-functors which are exponen-

tiable in the category of classical probabilistic metric spaces but do not satisfy the condition

of Proposition 3.7(3).

(2) The arguments used in Lemma 4.9 apply equally to F2. Therefore: In the category

∆-Catsep,sym,F2, a morphism f : (X, a)→ (Y, b) with X 6= ∅ is surjective and exponentiable

if and only if f has F2-bounded fibres and satisfies the condition of Proposition 3.7(3).

5. Effective descent V -functors

In this section we will focus on effective descent morphisms in V -Cat. First we recall that a

V -functor f : X → Y is said to be effective for descent in V -Cat if the pullback functor

f∗ : (V -Cat) ↓ Y −→ (V -Cat) ↓ X

is monadic.

In locally cartesian closed categories effective descent morphisms coincide with regular epimor-

phisms, that is, coequalisers of a pair of morphisms (see [30] for details). This is the case of V -Gph

when V is a Heyting algebra, as stated in Theorem 3.1.

Proposition 5.1 ([6]). For a V -functor f : (X, a) → (Y, b) in V -Gph, the following conditions

are equivalent.

(i) f is a regular epimorphism in V -Gph.

(ii) f is a pullback-stable regular epimorphism in V -Gph.

(iii) f is an effective descent morphism in V -Gph.

(iv) f is final and surjective.

Moreover, if f is a surjective V -functor in V -Cat, f is a pullback-stable regular epimorphism in

V -Cat if, and only if, it is final.
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We observe that a surjection f : (X, a)→ (Y, b) is final if

∀y0, y1 ∈ Y b(y0, y1) =
∨

xi∈f−1(yi)

a(x0, x1).

Finality of a functor f is in general not sufficient for f being effective for descent in V -Cat, reason

why we will focus on the following stronger properties. A V -functor f : (X, a) → (Y, b) is said to

be a ?-quotient morphism if it satisfies the following condition

∀y0, y1, y2 ∈ Y b(y0, y1)⊗ b(y1, y2) =
∨

xi∈f−1(yi)

a(x0, x1)⊗ a(x1, x2)

(see [30, 4]).

Theorem 5.2. For a V -functor f : (X, a)→ (Y, b) in V -Cat, (1) =⇒ (2) =⇒ (3) =⇒ (4).

(1) f is a pullback-stable ?-quotient morphism in V -Gph.

(2) f is an effective descent morphism in V -Cat.

(3) f is a pullback-stable ?-quotient morphism in V -Cat.

(4) f is a ?-quotient morphism.

Proof. (1) =⇒ (2) =⇒ (4) are shown in [4, Section 5]; since effective descent morphisms are

pullback-stable, (2) =⇒ (3) follows and (3) =⇒ (4) is obvious. �

Let us call ??-quotient morphism every V -functor f : (X, a)→ (Y, b) such that

∀y0, y1, y2 ∈ Y, u� b(y0, y1), v � b(y1, y2)

∃xi ∈ f−1(yi) (i = 0, 1, 2) : u ≤ a(x0, x1), v ≤ a(x1, x2).

Clearly, every ??-quotient morphism is ?-quotient, and, if the quantale V is cancellable, the converse

holds.

Proposition 5.3. If V is cancellable, then the following conditions are equivalent, for a V -functor

f : (X, a)→ (Y, b).

(i) f is effective for descent.

(ii) f is a ?-quotient morphism.

(iii) f is a ??-quotient morphism.

Proof. Every effective descent morphism is a ?-quotient morphism, and, when V is cancellable,

every ?-quotient morphism is a ??-quotient morphism.

To prove the remaining implication we show that ??-quotient morphisms are pullback-stable in

V -Gph, and use Theorem 5.2. Given a pullback diagram

(X ×Y Z, d)
π2 //

π1
��

(Z, c)

g

��
(X, a)

f
// (Y, b)

with f a ??-quotient morphism, let z0, z1, z2 ∈ Z. If u � c(z0, z1) and v � c(z1, z2), then u �
b(g(z0), g(z1)) and v � b(g(z1), g(z2)). Since f is a ??-quotient morphism, for i = 0, 1, 2 there exist

xi in X such that f(xi) = g(zi), u ≤ a(x0, x1) and v ≤ a(x1, x2). Therefore (xi, zi) ∈ X ×Y Z for

i = 0, 1, 2, u ≤ a(x0, x1) ∧ c(z0, z1) = d((x0, z0), (x1, z1)) by definition of the pullback structure d,

and, analogously, v ≤ d((x1, z1), (x2, z2)). �

Below we present characterizations of effective descent morphisms in the categories under study.

In particular our examples show that in V -Cat, in general, ?-quotient 6⇒ effective descent 6⇒
??-quotient. We do not know whether the conditions (1)− (3) of Theorem 5.2 are equivalent.

Examples 5.4. (1) From Proposition 5.3 it follows immediately:
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Theorem ([4]). A morphism f in [0,∞]-Cat or in 2-Cat is effective for descent if and only

if f is ?-quotient if and only if f is ??-quotient.

(2) We consider now categories enriched in [0, 1] equipped with a continuous tensor.

Lemma. In [0, 1]⊕-Gph and in [0, 1]∗-Gph, the class of ?-quotient morphisms is pullback

stable.

Proof. Since the quantale ([0, 1], ∗, 1) is isomorphic to ([0,∞],+, 0), the assertion about [0, 1]∗-Gph

is just a translation from [4, Proposition 6.3]. Consider now a pullback diagram

(X ×Y Z, d)

π1
��

π2 // (Z, c)

g

��
(X, a)

f
// (Y, b)

in [0, 1]⊕-Gph where f is a ?-quotient morphism. Let z0, z1, z2 ∈ Z and put yi = g(zi)

(i = 0, 1, 2) and ui = c(zi, zi+1), vi = b(yi, yi+1) (i = 0, 1). If u0 + u1 ≤ 1, then clearly

0 = v0 ⊕ v1 =
∨

π2(wi)=zi

d(w0, w1)⊕ d(w1, w2).

Assume now u0 + u1 > 1. Then v0 + v1 > 1, that is, v0 + v1 > 0. Since f is ?-quotient,

v0 ⊕ v1 ≤
∨

f(xi)=yi

a(x0, x1)⊕ a(x1, x2).

Hence, for every ε > 0 there exist xi ∈ f−1(yi) (i = 0, 1, 2) with

a(x0, x1)⊕ a(x1, x2) ≥ (v0 ⊕ v1)− ε,

or equivalently, a(x0, x1) + a(x1, x2) + ε ≥ v0 + v1. Since v′0 := a(x0, x1) ≤ v0 and v′1 :=

a(x1, x2) ≤ v1, we conclude v′0 + ε ≥ v0 and v′1 + ε ≥ v1 and therefore

d((x0, z0), (x1, z1)) = v′0 ∧ u0 ≥ (v0 − ε) ∧ u0 ≥ u0 − ε;

similarly, d((x1, z1), (x2, z2)) ≥ u1 − ε. �

Based on the lemma above as well as on Theorem 1.2 (3), we show now that ?-quotient

morphisms are pullback stable in [0, 1]⊗-Gph, where ⊗ is any continuous quantale structure

on [0, 1] with neutral element 1. In order to do so, we first observe that, for every homomorphism

of quantales ϕ : V →W , the corresponding change-of-base functor

Bϕ : V -Gph −→W -Gph

(f : (X, a)→ (Y, b)) 7−→ (f : (X,ϕa)→ (Y, ϕb))

preserves ?-quotient morphisms. If, moreover, ϕ preserves finite infima, then Bϕ : V -Gph →
W -Gph preserves pullbacks.

Proposition. Let ⊗ be a continuous quantale structure on [0, 1] with neutral element 1. Then

the class of ?-quotient morphisms is pullback stable in [0, 1]⊗-Gph.

Proof. As above, consider a pullback diagram

(X ×Y Z, d)

π1
��

π2 // (Z, c)

g

��
(X, a)

f
// (Y, b)
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in [0, 1]⊗-Gph where f is a ?-quotient morphism, let z0, z1, z2 ∈ Z and put yi = g(zi) (i = 0, 1, 2)

and ui = c(zi, zi+1), vi = b(yi, yi+1) (i = 0, 1). We wish to show that

u0 ⊗ u1 ≤
∨

π2(wi)=zi

d(w0, w1)⊗ d(w1, w2).

– If u0 ⊗ u1 = 0, then the assertion follows trivially.

– If u0 ⊗ u1 = 1, then also u0 = u1 = v0 = v1 = v0 ⊗ v1 = 1, and the assertion follows.

– Assume now that u0 ⊗ u1 is idempotent. Then [0, u0 ⊗ u1] (with the restriction of ⊗) is

isomorphic to [0, 1] with an appropriate tensor. Denote this isomorphism by ϕ : [0, u0 ⊗
u1] → [0, 1], and extend ϕ to a homomorphism of quantales ϕ : [0, 1] → [0, 1] by putting

ϕ(u) = 1 for u > u0 ⊗ u1. Clearly, ϕ : [0, 1]→ [0, 1] preserves finite infima. Then Bϕf is a

?-quotient morphism; hence, by the previous case,

ϕ

 ∨
π2(wi)=zi

d(w0, w1)⊗ d(w1, w2)

 = 1.

Therefore u0 ⊗ u1 ≤
∨

π2(wi)=zi

d(w0, w1)⊗ d(w1, w2).

– If u0⊗u1 is not idempotent, then there are idempotents u, u′ ∈ [0, 1] with u < u0⊗u1 < u′

and an isomorphism of quantales ϕ : [u, u′]→ [0, 1] where [0, 1] is equipped with either the

tensor ⊕ or the multiplication. We extend ϕ to ϕ : [0, 1] → [0, 1] by putting ϕ(v) = 0 for

v < u and ϕ(v) = 1 for v > u′. Then Bϕ(π2) is a ?-quotient morphism, therefore

ϕ

 ∨
π2(wi)=zi

d(w0, w1)⊗ d(w1, w2)

 = ϕ(u0 ⊗ u1).

Since u < u0 ⊗ u1 < u′, we conclude that∨
π2(wi)=zi

d(w0, w1)⊗ d(w1, w2) = u0 ⊗ u1. �

Theorem. Let ⊗ be a continuous quantale structure on [0, 1] with neutral element 1. Then a

[0, 1]⊗-functor is effective for descent in [0, 1]⊗-Cat if and only if it is a ?-quotient morphism.

Remark. An effective descent [0, 1]⊗-functor does not need to be ??-quotient morphism. Con-

sider, for instance, the [0, 1]⊕-functor f : (X, a)→ (Y, b) depicted below:

x0

1
2 // x1

x′1

1
2 // x′2

y0

1
2 // y1

1
2 // y0

-f

Then f is a ?-quotient morphism (since 1
2 ⊕

1
2 = 0) but not a ??-quotient morphism.

(3) We turn now our attention to ∆-categories.

Proposition. The following conditions are equivalent to be effective for descent, for a mor-

phism f : X → Y in ∆-Cat.

(i) f is a pullback-stable ?-quotient map in ∆-Gph.

(ii) For each y0
ψ0 // y1

ψ1 // y2 in Y , α0, α1 ∈ [0,∞], ε > 0, there exist x0
χ0 // x1

χ1 // x2
in X with f(xi) = yi, i = 0, 1, 2, and χ0(α0) + ε ≥ ψ0(α0), χ1(α1) + ε ≥ ψ1(α1).

(iii) f is a ??-quotient morphism in ∆-Cat.
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Proof. (i) =⇒ (ii): Let f : X → Y be a pullback-stable ?-quotient morphism in ∆-Gph.

Consider the coproduct Z of

{ y0
ϕα0,ψ0(α0) // y1

ϕα1,ψ1(α1) // y2 },

for all y0
ψ0 // y1

ψ1 // y2 in Y and α0, α1 ∈ [0,∞], and form the pullback of f : X → Y

along g : Z → Y (with g(yi) = yi).

For each α0, α1 ∈ [0,∞], y0
ψ0 // y1

ψ1 // y2 in Y and x0
χ0 // x1

χ1 // x2 in X with

f(xi) = yi, i = 0, 1, 2, we denote by

(x0, y0)
χ0,α0,ψ0// (x1, y1)

χ1,α1,ψ1// (x2, y2)

the corresponding chain in the pullback X ×Y Z, that is, χi,αi,ψi = χi ∧ ϕαi,ψi(αi).

Let us fix now y0
ψ0 // y1

ψ1 // y2 in Y , α0, α1 ∈ [0,∞] and ε > 0. By definition of ∆,

there exist β0, β1 ∈ [0,∞] such that, for i = 0, 1, αi − ε
2 < βi < αi and ψi(βi) + ε

2 ≥ ψi(αi).

Since, by assumption, π2 : X ×Y Z → Z is a ?-quotient map,

ψ0(β0) ψ1(β1) = ϕβ0+β1,ψ0(β0)ψ1(β1)(α0 + α1)

=
∨

α′0+α
′
1=α0+α1

χ0,β0,ψ0(α′0) χ1,β1,ψ1(β1)(α
′
1).

Therefore, for δ = min{ εψ0(β0)
2 , εψ1(β1)

2 } > 0 (if any of these values is 0 then (ii) is trivially satis-

fied), there exist α′0 > β0, α
′
1 > β1 such that α′0+α′1 = α0+α1 and χ0,β0,ψ0(α′0) χ1,β1,ψ1(α′1)+δ >

ψ0(β0) ψ1(β1). Hence,

χ0(α
′
0) ψ1(β1) + δ ≥ χ0,β0,ψ0(α′0) χ1,β1,ψ1(α′1) + δ > ψ0(β0) ψ1(β1),

and then χ0(α
′
0) + ε

2 ≥ χ0(α
′
0) + δ

ψ1(β1)
> ψ0(β0), and so

χ0(α0) + ε ≥ χ0(α
′
0) + ε > ψ0(β0) +

ε

2
≥ ψ0(α0),

as claimed. The condition for χ1(α1) is shown analogously.

(ii) =⇒ (iii): That f is a ??-quotient morphism follows from (ii) considering α0 = α1 a

general element of [0,∞].

(iii) =⇒ (i) is shown in the proof of Proposition 5.3. �

Remark. We do not know whether every ?-quotient morphism is effective for descent in ∆-Cat.

(4) Finally, we consider the quantale V = PM .

Theorem. If M is a non-trivial monoid, (i.e. it has at least two elements), then:

(a) A PM -functor is effective for descent in PM -Cat if and only if it is a ??-quotient mor-

phism.

(b) There are ?-quotient morphisms which are not effective for descent.

Proof. (a) First observe that f : (X, a)→ (Y, b) is a ??-quotient morphism in PM -Cat if and

only if

∀y0, y1, y2 ∈ Y ∀m0 ∈ b(y0, y1),m1 ∈ b(y1, y2) ∃xi ∈ f−1(yi) :

m0 ∈ a(x0, x1),m1 ∈ a(x1, x2).

If this condition does not hold, that is, given y0, y1, y2 ∈ Y , m0 ∈ b(y0, y1), m1 ∈ b(y1, y2) such

that, for all x0, x1, x2 ∈ X with f(xi) = yi, either m0 6∈ a(x0, x1) or m1 6∈ a(x1, x2), then it

is easy to check that the pullback π2 : (X ×Y Z, d) → (Z, c) of f along g : (Z, c) → (Y, b),

where Z = {y0, y1, y2}, c(y0, y1) = {m0}, c(y1, y2) = {m1}, c(y0, y2) = {m0m1}, and g is the

inclusion, is not a ?-quotient morphism: for all x0, x1, x2 with f(xi) = yi, i = 0, 1, 2, either

d((x0, z0), (x1, z1)) = ∅ or d((x1, z1), (x2, z2)) = ∅, hence f is not effective for descent.
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(b) If M has at least 3 distinct elements, e,m, n, consider the following pullback:

(x0, z0)
{m}

// (x1, z1)
∅ // (x2, z2)

(x′1, z1)
{n}
// (x′2, z2)

?
π1

x0
{mnk, k∈N0} // x1

{e}
// x2

x′1
{e,n}

// x′2

y0
{mnk, k∈N0} // y1

{e,n}
// y2

?
g

y0
{mnk, k∈N0} // y1

{e,n}
// y2

-
π2

-
f

Then f is a ?-quotient morphism but its pullback π2 is not, therefore f is not effective for

descent.

If M = {e, a}, we distinguish two cases. When a2 = a, we consider the pullback

(x0, z0)
{a}
// (x1, z1)

∅ // (x2, z2)

(x′1, z1)
{a}
// (x′2, z2)

?
π1

x0
{a}
// x1

{e}
// x2

x′1
{e,a}

// x′2

z0
{a}
// z1

{a}
// z2

?
g

y0
{a}
// y1

{e,a}
// y2

-
π2

-
f

When a2 = e we consider the pullback:

(x0, z0)
{a}
// (x1, z1)

∅ // (x2, z2)

(x′1, z1)
{a}
// (x′2, z2)

?
π1

x0
{e,a}

// x1
{e}
// x2

x′1
{e,a}

// x′2

z0
{a}
// z1

{a}
// z2

?
g

y0
{e,a}

// y1
{e,a}

// y2

-π2

-
f

In both cases f is a ?-quotient morphism but π2 is not. �

Remark 5.5. As for exponentiability, one may want to work on descent in symmetric or separated

V -categories, or in F-finitary ones. However, for these restrictions, the results obtained above

remain unchanged, as we explain next.

Indeed, the techniques used in [4] to deduce sufficient conditions for effective descent in V -Cat,

embedding this category in V -Gph, can also be used for V -Catsym, V -Catsep and V -Catsym,sep
since they are also full subcategories of V -Gph closed under pullbacks (for details see [21, 4]).

Moreover, it is easy to check that, for a final surjection f : (X, a) → (Y, b) between V -graphs, if
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(X, a) is symmetric (separated), then so is (Y, b). Therefore, all the results on descent stated above

have corresponding formulations for these special cases.

The same happens in the case of F-finitary V -categories, given a ⊗-filter F . We have already

observed, in Lemma 4.6, that F-finitary V -categories descend along surjective V -functors, and,

once again, V -CatF is closed under pullbacks as a full subcategory of V -Gph.

In particular we can conclude that a morphism of classical (probabilistic) metric spaces is effective

for descent precisely if it is so in the category of generalised (probabilistic) metric spaces.
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