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We study the almost sure convergence and rates of weighted sums of associated random va-
riables under the classical assumption of existence of Laplace transforms. This assumption
implies the existence of every moment, so we address the same problem assuming a suitable
decrease rate on tail joint probabilities which only implies the existence of finitely many mo-
ments, proving the analogous characterizations of convergence and rates. Still relaxing further
the assumptions on moment existence, we also prove a Marcinkiewicz-Zygmund for associated
variables without means, complementing existing results for this dependence structure.
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1. Introduction

Many useful linear statistics are written as weighted sums of random variables, raising
thus the interest in the characterization of the asymptotics of such sums after a conve-
niently chosen normalization. Examples of such linear statistics include weighted empiri-
cal distribution functions, least-squares estimators, nonparametric regression estimators,
here with random coefficients, or common predictors in linear time series models. Since
Baum and Katz [1] proved that for X,,, n > 1, i.i.d. and centred, n=/?(X;+---4+X,,) = 0
almost surely for p € (1,2] if and only if E|X;|” < oo, many authors studied this pro-
blem. Chow [2] and Cuzick [3] obtained conditions for the convergence for weighted
sums n~ /P (an1 X1+ -+ annXy) with independent random variables, later extended
by Cheng [4], Bai and Cheng [5], or Sung [6], linking the moment assumption with the
properties of the weighting sequence. Controlling the asymptotics of weighted sums often
means that we may need the existence of moments of order larger than 2, depending on
the decrease rate of the weights.

The convergence of weighted sums of random variables has, naturally, also been con-
sidered dropping the independence assumption. In recent years we have seen several
contributions considering negatively associated variables, or some other form of nega-
tive dependence. Here, we will be interested in positively associated variables. This later
dependence notion raises distinct difficulties on the control of the variance of sums, of-
ten a crucial step for the proof of asymptotic results. Indeed, for positively associated
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variables, the variance of sums is larger with respect to what is found for independent
variables, while negative dependence has the opposite effect. A first result concerning the
convergence of n~Y/ P(X1+---+X,) for positively associated and strictly stationary X,,’s
was proved by Louhichi [7], requiring the existence of low order, less than 2, moments.
This has been, more recently, extended for weighted sums in Oliveira [8] and Cagin and
Oliveira [9], using an approach similar to Louhichi’s [7]. Here we consider results similar
to those in [8, 9] but now based on the method used in Ioannides and Roussas [10] and
Oliveira [11] for the proof of exponential inequalities. This approach means that we will
find conditions for the almost sure convergence and also for its rate. These conditions
depend on the covariances, thus require the existence of moments of order at least 2, and
link the exponent p with the behaviour of the weighting coefficients, as for the charac-
terizations for independent variables mentioned above. A classical assumption, even for
independent variables, providing the control of moments requires of existence of Laplace
transforms. We try to avoid this kind of assumption, as it implies the existence of finite
moments of every order, and replace the existence of Laplace transforms by a polynomial
decrease rate on joint tail probabilities, which only implies the existence of finitely many
moments.

Finally, for random variables without means or stationarity assumptions, we prove a
Marcinkiewicz-Zygmund strong law that complements earlier results by Chandra and
Ghosal [12], Louhichi [7], Oliveira [8] and Cagn and Oliveira [9]. Again, assuming a
suitable decrease rate on the joint tail probabilities, we prove a simple version of this
strong law.

The paper is organized as follows. Section 2 describes the framework and some useful
preliminary results, Section 3 describes the conditions for the almost sure convergence of
weighted sums and its rates for bounded variables. This is a tool for the results proved
in Sections 4 and 5, that are concerned with the cases of variables with infinitely or only
finitely many moments, extending the characterizations for the almost sure convergence
and its rates. Finally, Section 6 proves some general convergence characterizations for
sums of associated random variables and a Marcinkiewicz-Zygmund law for associated
variables without means.

2. Definitions and preliminary results

Assume that X,, n > 1, are centred and (positively) associated random variables,
that is, are such that Cov(f(X1,...,Xn), 9(X1,...,Xy)) > 0, for every n > 1 and
coordinatewise increasing functions f,g : R — R for which the covariance exists,
and denote S, = Xy + --- + X,,. Let a,4, © = 1,...,n, n > 1, be nonnegative real
numbers and, following [3, 5, 6] and many other authors, define, for each o > 1,

1/a
Apa = n-1/a (Z?:l a?f,z’) . Except in Section 6, where a simpler weighting will be

considered, we will be interested in the convergence of T, = >""" | a,;X; assuming that,
for some a > 1,

Ay =sup A4, o < 00. (1)

This is a common assumption on the weighting coefficients (see, for example, Cuzick [3],
Bai and Cheng [5] or Sung [6]). An extra assumption on the coefficients, allowing for the
proof of a maximal inequality, will be used in Section 5, as was done in [8, 9]. Observe
that, due to the nonnegativity of the weights, the variables T;,, n > 1, are associated.
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Define the usual Cox-Grimmett coefficients

u(n) = sup E Cov (X, Xi). (2)
k>1 . :
jilk—jl>n

If the random variables are weakly stationary, then u(n) = 23772 . Cov(X1, Xj). As
moments and, especially, covariances will play a significant role throughout the paper,
let us define, for each 7,7 > 1,

Ai7j(u,v) = P(XZ > u, Xj > 1)) — P()(z > U)P(X] > 'U), u,v € R, (3)

and, for xz, y > 0,

Gij(z,y) = // A j(u,v) dudv.
[~z X [~y,y]

It is obvious that Cov(Xj;, X;) = G; (00, 00). Moreover, observe that due to the associ-
ation A;; is nonnegative, so it follows that each G ; is nondecreasing in each variable.
Consider p, a sequence of natural numbers such that p, < 5, 7, the largest integer
less or equal to ﬁ, and define the variables
Jpn
Yn,j = Z anini, ] = 1, Ceey 2T'n.
i=(j—1pn+1

These random variables are associated, due to the nonnegativity of the weights. Note
further that, if the variables X,, are uniformly bounded by ¢ > 0, then it is obvious that
Y| < cAqnt*p,. Finally, put

Tn

TTL
Tn,od = E Yn,ijl and Tn,ev = Z Yn,Zj-
Jj=1 Jj=1

We will need to describe the growth rate of sequences. For this, given sequences of
nonnegative real numbers a,, and b,,, we write a,, < b, to mean that there exist constants
c1 > 0 and co < oo verifying ¢; < Z—: < ¢g for all n large enough.

We prove first an easy but useful upper bound.

LEMMA 2.1 Assume the variables X,,, n > 1, are centred, associated, weakly stationary,
bounded (by ¢ > 0) and u(0) < co. Then ES2 < 2c¢*n, where ¢* = ¢ + u(0).

Proof. As the variables are stationary, it follows immediately that ES2 = nVar(X;) +
235"} (n — j)Cov(X1, X;11) < 2nc? + 2nu(0). |

The next result is an extension of Lemma 3.1 in Oliveira [11].

LEMMA 2.2  Assume the variables X,,, n > 1, are centred, associated, weakly stationary,
bounded (by ¢ > 0), u(0) < oo and the nonnegative weights satisfy (1). If d,, > 1 and
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dp—1 1
0< A< 4 A then
T7l r’Vl
max H Ee)‘y"ﬂjfl, H EerYn2i < exp (Azc*Azn1+2/adn) .
j:l j:l

Proof. We only prove the inequality for the product of even-indexed variables. As ob-
served above, the variables X,, being bounded, we have |Y,, ;| < cAoantp,. So, using a
Taylor expansion it follows that

o0
EeM -1 < 1 4 )\QEY,izj_l Z(cAaAnl/apn)k_Q.
k=2

Now, EYn2’2j_1 = Zp;:(jfl)p 41 0y 0 Cov(Xy, Xp) < nQ/QAiESgn, due to the sta-

tionarity and the nonnegativity of the weights and of the covariances. So, applying
Lemma 2.1, it follows that

2\2c* A2n? @p,,

BeMreo—t <14
- 1 — cAg nt/ap,

< exp (2)\2C*Ain2/o‘pndn) .

To conclude the proof, multiply the upper bounds and remember that 2r,p, < n. |

A basic tool for the analysis of the convergence and its rates is the following inequality,
due to Dewan and Prakasa Rao [13].

THEOREM 2.3 Assume Xi,...,X, are centred, associated and uniformly bounded (by
¢>0). Then, for every A > 0,

n n
. 1
A X, AX 2 _c\
Eer 2i= X5 — | [ B < e E_ Cov(X;, Xi)- (4)
j=1 J,f;—l
J

3. The case of uniformly bounded variables

We assume first that there exists some ¢ > 0 such that, with probability 1, | X,| < ¢, for
every n > 1. This allows for a direct use of the results in the previous section. We start
by deriving an upper bound for the tail probabilities for T}, ,q and T3, e .

LEMMA 3.1 Assume the variables X,,, n > 1, are centred, associated, weakly stationary,
bounded (by ¢ > 0) and u(0) < oo. If the nonnegative weights satisfy (1), d, > 1 and

0< A< d”&_l m, then, for every e > 0 and n large enough,

1
P(Th,0d > nl/pa) < §A2n1+2/aA§ exp (%anl/aAa/\ — /\nl/p€> u(pn) )
+exp (/\QC*AinHQ/adn - )\nl/pes) .

An analogous inequality for P(T, e, > nl/ps) also holds.
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Proof. 1f we apply (4) to T}, oq we find

Tn Tn

1
Ee?nod HEe)‘Y" 2i-t < 5)\2 exp (cAarnpnnl/a)\) Z Cov(Yyj, Yo ) (6)

Jy'=1
77

Now, as, forn >1and ¢ <n, 0 < a,; < nl/o‘An,a, we have

JPn JPn
Cov(Yy 5, Yn ) < Z gm0 Cov(Xy, Xp) < n?/*A2 Z Cov(Xy, Xo).
,00=>—1)pn+1 LL=(j—1)pn+1
Put Y;,j = Zi ”(jfl)p 41X, J=1,...,rn. Then, the previous inequality rewrites as

Cov(Ynj, Yajr) < n*/*AZCov(Yyr,, Yy ).

n ] ?
Using twice the stationarity of the random variables we obtain successively

Tn rn—1

> Cov(Y;,Yis) =2 Z §)Cov(Yyiy, Yia; 1)
3=
175
and
pn_l pn_l
Cov(Yy 1, YVooj1) < Z (pn — £)Cov (X1, Xojp, 141) + Z (pn — 0)Cov(Xy, X2jp,+1)
£=0 =1
(2j+1)ps,

< DPn Z COV(Xl,XK).

Inserting these inequalities in (6), we find

2(rn—1)pn
Ee Tnod HEG,\YW 21| < A2p 2/aA27“npneXp( i+ g )\) Z Cov(X1, X;)
e:p7z+2

)\2 1+2/0‘A2 exp ( enltl/e g )\) u(pn + 2).

IN

We can now use this together with Markov’s inequality to find that, for every € > 0,

Tn T'n
P(Tn ol > nl/p{-:) < ef)\nl/‘”s Ee)\Tn,od - H Ee)\i/nﬂjfl + e*)\nl/F’s H EeAYn,zj,l
Jj=1 Jj=1

)\2 1+2/0‘A2 exp ( cn1+1/aA A — )\nl/p?f) u(pn +2)

IN

+exp (x\Qc*AinHz/adn — )\nl/pe) ,

and remember that u(p, + 2) < u(p,), due to the nonnegativity of the covariances. ®
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We may now prove the almost sure convergence of n~'/PT},, assuming a convenient
decrease rate on the Cox-Grimmett coefficients.

THEOREM 3.2 Assume the random variables X,,, n > 1, are centred, associated, strictly
stationary and bounded (by ¢ > 0). Assume that 0 < p < 2 and o > 1 are such that
11 1

5= a =3 7T& for some & >0, and u(n) < p", for some p € (0,1). If the nonnegative

weights satisfy (1), then, with probability 1, n=*/PT,, — 0.

Proof. Consider the decomposition of T), into the blocks Y, ; defined previously, taking
pn = n?, for some max(0, % —¢) < 6 < min(1, %—i—f). It is obviously enough to prove that
both n~Y PT, 0q and n~/PT n,ev converge almost surely to 0. As these terms are analogous
we will concentrate on the former, starting from (5). A minimization of the exponent on
the second term of the upper bound in (5) leads to the choice

e nl/p—1-2/a

A oear a, @

meaning that

e2n?
exp (AZC*AinHQ/O‘dn — )\nl/ps) = exp <_4c*Aadn> i

Assume that, for some 5 > 1,

£2n2 &2 n26

4c*A2d, flogn < 4e* A2 5 logn ®)

As & > 0, it follows that, for n large enough, we have d,, > 1 as required by Lemma 2.2.
In order to use this lemma we also need to verify that the following condition on A is
satisfied: \ < d’&zlm. Replacing (7) and remembering d,, is larger than 1, the
assumption on Lemma 2.2 translates into

e nl/pml=2a _dam1 1 _ 1
2c* Aa dn dn CAocnl/apn CAoznl/apn .

Using now (8) to replace d,,, the previous inequality is equivalent to

€ pVpr-1-2/a 1 e n* e lc 1 nl/2He
2c* A2 cAgnt/ot9 4c* A2 B logn ~ 2cAy B nflogn’

As 0 < % + £ this upper bound grows to infinity, so this inequality is satisfied, at least
for n large enough.

We consider now the first term, involving the Cox-Grimmett coefficients, in (5). The
exponent in this term is

cE n1/2+§ 52 n2§

4c* Ay dn  20°A2 d,

%anI/aAa)\ —\nlPe =

The second term above is, up to multiplication by 2, the exponent that was found after the
optimization with respect to A of the exponent on the second term of (5). So, to control
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the upper bound (5) we can factor this part of the exponential, leaving to control, after
substitution the expressions for € and d,,,

%)\QnHz/o‘Ai exp <65n1/2_5 log n) u(pr)- (10)
€

As the term that we factored defines a convergent series, it is enough to verify that (10)
is bounded. Further, the polynomial part in (10) is clearly dominated by the exponential,
thus we may drop it, verifying only that there exists some cq > 0,

exp (Cﬁnl/g‘f log n) ulpn) < ey & LEMIE logn +n’logp <logcy.  (11)
e 13

But this is a consequence of 6 > % — ¢ and p € (0,1). Thus, given the above choices

we have that P (]Tn70d| > nl/ps) < (cog+1)n=?, where 8 > 1, so n_l/anvod — 0 with
probability 1. Reasoning analogously we obtain the same result for n~'/ PT ev, SO the

proof is completed. u
Remark 3.3 The decrease rate for u(n) in Theorem 3.2 could be relaxed to a polynomial
rate assuming that % — ¢ < 0. But this implies that 1% — i > 1, hence that p < 1.

This, together with the boundedness assumption on the random variables makes the
convergence proved trivial.

A small modification of the previous arguments allows for the identification of a con-
vergence rate for the almost sure convergence just proved. To leave it clear about what
we mean by a convergence rate in our framework, we will say that a sequence of random
variables Y, — 0 almost surely with rate ¢, \, 0, if €,1Y;, — 0 with probability 1.

THEOREM 3.4 Assume the random variables X,,, n > 1, are centred, associated, strictly

stationary and bounded (by ¢ > 0). Assume that 0 < p < 2 and « > 1 are such that
% — é = % + &, for some £ > 0, and u(n) < p", for some p € (0,1). If the nonnegative
weights satisfy (1), then, with probability 1, n~YPT, — 0 with convergence rate iffgf},

for arbitrarily small 6 > 0.

Proof. We start again as in the proof of Theorem 3.2 by choosing 0 = % + 9, with
0<d< min(%,f) and p, < n’. Now, on (8), allow ¢ to depend on n:

9 43c* A%d,, logn
En — T.

The verification of the assumptions of Lemma 2.2, given above by (9), becomes now:

né 1 n§+§

< 1 ?
2(ﬁc*)1/2Aad,1/2(logn)1/2 = 2¢BAanztlogn

which is equivalent to d,, > %ﬁn% logn. Thus, as we are interested in a slow growing
sequence, we choose d,, < n? logn. As a consequence, £2 = n2(5_5)(log n)? — 0, given
the choice for §. To complete the proof, it is enough to bound exp(%cnlﬂ/o‘)\)u(pn). It
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is easily verified that nltl/a) = %nlﬂ_‘;, S0,
1
§cn1+1/a)\ + logu(pn) =< n'/?7% 4 nflogp = nl/2=0 4 1240 o0 p-

But, the boundedness of this term is an immediate consequence of p € (0,1) and 6 > 0,
so the proof is concluded. |

Ezxample 3.5 Let €,, n € Z, be independent and identically distributed bounded and
centred random variables with finite second order moment o2. Let p € (0,1), and define
X, = Zfio plen—i, which is an increasing transformation of the €,, so the variables X,
are associated. Moreover, it is easy to verify that Cov(X,, X,) = o2(1 — p?)~Lpln=ml
and the Cox-Grimmett coefficients are u(n) = 20%(1 — p?)~1(1 — p)~!p", hence satisfy
the assumptions on Theorems 3.2 and 3.4. So, if we assume that the weights a,,; satisfy
(1) for some o« > 1, and 0 < p < 2, it follows that n=1/p Yoy aniX; — 0 almost
surely. This application may also be addressed using Theorem 2.1 in Bai and Cheng [5]
by rewriting the X, in terms of the independent random variables €,,. These authors also
assume (1) on the weight coefficients. However, after rewriting the variables, this means
assuming that sup,, n~* 2?21(2511 play)* < oo. If we take, for example, a,; = n%~?,
with a < b, it is easy to verify that this is strictly stronger than what follows from (1).

Example 3.6 As another application of the previous results consider now the weighted
empirical distribution function

Hn(x) = %Zan,z(ﬂ(—oo,z} (Xl) - F(.%')), (12)
=1

where T4 represents the characteristic function of the set A, the X,, are associated and
strictly stationary random variables with continuous distribution function F' with a boun-
ded derivative, and the weights verify Y " | an; = n. Weighted empirical distribution
functions appear in the literature when estimating the distribution function of a mix-
ture of distributions (see, for example, Shcherbina [14]), or in goodness-of-fit problems
as alternatives to the traditional empirical function (see, for instance, He et al. [15]). In
order to apply Theorem 3.4, we need to control the Cox-Grimmett coefficients of the
variables I(_ ,1(X;). It follows from Corollary 2.36 in [16] that there exists a constant
M, depending only on the derivative of the distribution of the random variables, such

that,
Z COV(H(_OO ] (Xl), ]I(—oo ] (X])) < M Z COVl/S()(l7 X])
j=n j=n

So, if Cov(X1,X;) < p/, for some p € (0,1), the assumption in Theorem 3.4 on the
Cox-Grimmett coefficients is satisfied.

The following result follows immediately from the discussion of the previous example.

COROLLARY 3.7 Let the random variables Xy, n > 1, are centred, associated and strictly
stationary with distribution function I with bounded derivative. Assume that o > 2, and
Cov (X1, X,) < p", for some p € (0,1). If the nonnegative weights satisfy % Yo ng —
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1 and %Zn al . — ¢ < 00, then, for each x € R, with probability 1,

=1 "n,

* 1 -
Hyy(w) = — > anil( oo m)(Xi) — F(x),
=1

with convergence rate %, for arbitrarily small § > 0.
Proof. Define p such that % = é—i— % +&, for some £ > 0. The assumptions of Theorem 3.4
are satisfied so, a direct application of its conclusion gives that, with probability 1,

n1+£fl/pf6
—FH, — 0.
logn

As, 14+E&— % —0 = % — é —4& > 0, it follows that H,, — 0 almost surely. The definition of
p identifies the convergence rate immediately and the assumptions on the weights imply
that, with probability 1,

Hy(z) — H(z) = % S tniF(x) — F(z).
=1

Remark 3.8 Regarding the choice of weights in the previous corollary, one may try to
define a,; = n%’. The assumptions imply that n®t and n®@+Y are asymptotically
constant, hence are fulfillable if a + b = 0.

A straightforward adaptation of Example 3.6 applies to nonparametric regression. In-
deed, consider the model Y,, = f(z,) + €, n > 1, where the z,, are fixed design points,
f an unknown regression function and the error variables e, are centred, associated,
strictly stationary and uniformly bounded. Define, for a given x € R, the estimator

Fule) = 13 ani(a)¥i (13)
=1

COROLLARY 3.9 Lete,, n > 1, be centred, associated, strictly stationary, and uniformly
bounded random variables. Assume that o > 2 and Cov(ei,e,) < p", for some p €
(0,1), and x,, n > 1, are fized design points. For each x € R define weights such that
IS ani(®) f(z;) — f(x). Then, with probability 1, the estimator Fa(@) converges to
f(x) with rate %, for arbitrarily small § > 0.

4. General random variables with infinitely many moments

We begin by treating the case of general random variables assuming the existence of
Laplace transforms in some neighbourhood of the origin. This is a strong assumption,
as it implies the existence of moments of every order. However, it is in this case that we
can fully extend the results proved in the previous section. Let us assume the random
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variables X,,, n > 1, are centred, strictly stationary and

IM > 0,n > 0, sup Be™ < M < 0. (14)
[tI<n

For the present framework we cannot use directly Lemma 3.1, as this result depends on
the boundedness of the variables. To circumvent this difficulty we introduce a truncation
on the random variables, allowing to treat these truncated variables using the results in
Section 3, and then control the remaining tails. Define, for each ¢ > 0, the nondecreasing
functions g.(u) = max(min(u, c), —c), v € R, which perform a truncation at level c. Let
cn, n > 1, be a sequence of nonnegative real numbers such that ¢, — oo and define, for
each 7,n > 1,

Xtin = ge, (Xi) = —cnll—o —c,) (Xi) + Xil|_, c.](Xi) + cnle, 00) (Xi),
(15)

XQ,i,n = (Xz - Cn)H(cn,oo)(Xi)a X3,i,n = (Xz + Cn)]l(foo,fcn)(Xi)-
Notice that the above transformations are monotonic, so these new families of variables
are still associated. Moreover, it is obvious that, for each n > 1 fixed, the variables
X1,1,ns -5 X1,nn are uniformly bounded. Consider, as before, an increasing sequence of
natural numbers p;, such that, for each n > 1, p, < § and define 7, as the largest integer
less than or equal to #. For¢=1,2,3,and j =1,...,2r,, define

JPn
Yojm= Y ani(Xein—BEXgin), (16)
i:(j_l)pn“l‘l
and
Tn Tn
TQ7n70d = Z Y 72j_17n7 Tq,TL7€’U = Z }/;]72j7n' (17)
Jj=1 Jj=1

For g = 2, 3, as we have assumed that the variables are strictly stationary, we find

1/p—1
P < > nl/p&?) < nP <\Xq717n ~EX, 10 > H)

The following result is an easy extension of Lemma 4.1 in [11].

n
Z Ani (Xq,i,n - EXq,i,n)
i=1

Aq
3-2/p 42 3-2/p 42
n n
< TaVaT(Xq,l,n) < TQEX;M

LEMMA 4.1 Let X,,, n > 1, be strictly stationary random variables satisfying (14). Then,
fort € (0,7],

P<'

n
Z ani (Xqin —EXqin)
=1

2MA2 3—2/p_ —tcn
> nl/Ps> < —— =23 (18)

We may now prove the extensions of the results proved for uniformly bounded sequences
of random variables. The main argument in the proofs in Section 3 was the control of the

10
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exponent in the exponential upper bounds found for the tail probabilities. The bound
obtained in (18) is, essentially, of the same form, depending on the choice of the truncating
sequence. So, we will obtain the same characterizations for the almost sure convergence
and for its rate, as in the case of uniformly bounded sequences of random variables. Note
that, due to the association of the variables,

COV(Xl,l,naXl,j,n) == Gl,j(cnacn) S GLj(O0,00) == COV(Xl,Xj).

Obviously, this inequality holds even if Cov(X1, X;) is not finite.

THEOREM 4.2 Assume the random variables X,,, n > 1, are centred, associated, strictly
stationary and satisfy (14). Assume that 0 < p < 2 satisfies % >4—n, and o > 1 are

such that % — é = 3 +¢&, for some & > 0, and u(n) < p", for some p € (0,1). If the
nonnegative weights satisfy (1), then, with probability 1, n=YPT, — 0.

Proof. To control the tail terms, that is, T, ,q and T}, ey, for ¢ = 2,3, choose the
truncating sequence ¢, = logn and t = f > 4 — %. Thus, according to Lemma 4.1,

the probabilities depending on these tail terms are bounded above by n=#+3-2/? which
defines a convergent series. Concerning the remaining term, we follow the proof of Theo-
rem 3.2 keeping in mind that ¢ and ¢* now depend on n. Taking into account Lemma 2.1,
we have ¢ = c2 + u(0) < (logn)?. Thus, instead of (7), we find the choice

nl/p7172/045 nl/pflfQ/aE

2cxA2d, ~ dy(logn)?’

and

n2te? 51 o 4 g2 n%
————— = fBlogn =
4A2d, (logn)? & 48 A2 (logn)3

As £ > 0, this means that d,, will, for n large enough, be larger that 1, as required by
Lemma 2.2. To define the size of the blocks used to decompose the summations, choose
pn < nY, for some max(0,1 — &) < 6 < min(1, 3 + £). The condition on A required by

Lemma 2.2 translates now into

-1

] nl/2+€ 3 nl/2+E—0

< =
= 2¢,Aan? logn (logm)?’

thus, is verified, at least for n large enough. We still have to control the behaviour of
the term corresponding to (11). The exponent in this expression takes now the form
epnttl/e) < nl_l/p+1/°‘(log n)?, that is, the same we found in course of proof of Theo-
rem 3.2 multiplied by a logarithmic factor that, as is easily verified, does not affect the
remaining argument of that proof. [ |

Remark 4.3 Note that in Theorem 4.2 the lower bound % > 4 — 7 is trivially satisfied
whenever n > 4. Although a general interpretation seems difficult to find, it is possible
to look at a few examples. Assume the random variables are distributed as Y — af where
Y has distribution I'(a, ) with density proportional to z® 'e=®/%. Then, in (14) we
may take n = % and the assumption in Theorem 4.2 becomes trivial for § < i, that is,

remembering that Var(Y) = 6%« if the distribution of the random variable Y — af is

11
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concentrated enough around its mean. The same characterization for the behaviour of
the random Variables holds if these follow a centred Gumbel distribution as the variance
is now given by . Finally, to give an example with discrete distribution, assume the
random variables behave now as a centred geometrically distributed variable with mean
%, where 6 € [0, 1]. Referring to (14), we have now = —log(1—p), hence our condition of
Theorem 4.2 is trivially verified whenever # > 1 — e~4, which corresponds to a geometric
distribution with a rather low, smaller than ﬁ ~ 0.019, variance.

We state next the description of the convergence rate. The proof follows easily along
the arguments used to prove Theorem 3.4 with adaptations similar to the ones used in
the previous proof.

THEOREM 4.4 Assume the random variables X,,, n > 1, are centred, associated, strictly
stationary and satisfy (14). Assume that 0 < p < 2 satisfies % >4—n, and o > 1 are

such that % — 1= % + &, for some & > 0, and u(n) < p=", for some p € (0,1). If the

«
nonnegative weights satisfy (1), then, with probability 1, n=Y/PT, — 0 with convergence

(log

rate ~—2=—, for arbitrarily small § > 0.

The above statements includes an assumption on the Cox-Grimmett coefficients of the
original untruncated variables. In fact, this assumption may be relaxed, as we only need
the coefficients corresponding to the truncated variables defined as, assuming already the
stationarity of the variables,

w(n) =2 Y Cov(XiimXijm) =2 Y Gijlcn,cn) <2 Y Gy (o0,00) = u(n).

j=n+1 j=n+1 j=n+1

This allows for an immediate extension of Corollary 3.9 dropping the boundedness as-
sumption on the errors. We state here the result, without proof as this is a straightforward
adaptation of the arguments used before, as the final convergence rate is multiplied by
a logarithmic factor.

COROLLARY 4.5 Let e,, n > 1, be centred, associated and strictly stationary random
variables and satisfy (14) with n > 0. Assume that o > 2 and Cov(ey, ey,) < p", for some

€ (0,1), and x,, n > 1, are fized design points. For each x € R deﬁne weights such that
1 =Y iy anji(x) f(x;) — f(x). Then, with probability 1, the estimator fn( ) converges to

f( ) with rate %, for arbitrarily small 5 > 0.
We discuss now a few examples, completing the analysis started in the previous section.

Example 4.6 Consider the linear process Y, = Z?:o an,iXn—i, where the variables
X, are centred, strictly stationary and associated with Cov(X;, X;) = cpli=il, for some

€ (0,1) and ¢ > 0. With respect to Example 3.5, we are dropping the boundedness
assumption. The Cox-Grimmett coefficients for the variables X,, are now given by u(n) =
2¢(1—p)~1p". Assume the weights satisfy a,; = n~%~°, for some a,b > 0. We then have
Y,=n"¢ Zl 01 °X,—; and (1 ) is 0bV1ously satisfied. It follows from Theorem 4.2 that
Y, — 0 almost surely if a = 2—1— L 4 ¢ where € > 0 and a > 1, that is, 1fa> 5

This application improves the result proved after Corollary 2 in Louhichi [7 ] Indeed,
to derive the almost sure convergence Y,, — 0 for the same choice for the weights a,, ; =
n~%~° in [7] it is assumed that the random variables X,, are independent, identically

distributed, a > é + % and b > max(1,2 + é — aa), hence require stronger conditions

12
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than those that follow from our Theorem 4.2.

Example 4.7 Consider again Y,, = Z?:o an,iXn—i, where the variables X, are as in the
previous example. Assume now the weights satisfy a, ; = n% % with 0 < a < b, so that
(1) is fulfilled and consider n=1/ry, = p-1l/pta Yoo i~%X,,_;. The assumptions on the
normalizing parameters p and « above translate into % —a— é = % + ¢, for some £ > 0,

or, equivalently, a < % - % So,if 0 < a < mim(b,}l7 — %), the linear process n~1/?Y,,

converges almost surely to 0.

5. General random variables with variance but only finitely many moments

Assumption (14) used in the previous section is a rather strong one, as it implies the
existence of every moment. Moreover, Lemma 4.1 does not use the dependence struc-
ture of the random variables to control the tail terms. In this section we will relax the
assumptions on moments, thus requiring a different control on the tail terms. Instead of
(14), we will assume a decrease rate on the tail joint probabilities:

sup A; j(z,y) = O (max(|z|,|y[)”*), for some a >0, as max(|z|,|y[) — oo. (19)
4,521

Remark 5.1 It is easily verified that we have two different representations for the A, ;,
each producing a different upper bound:

z,y) =P(X; >z, X; >y) —P(X; > 2)P(X; > y) < 2min(P(X; > z),P(X; > y))
z,y) =P(Xi <2, X; <y) - P(X; < 2)P(X; <y) < 2min(P(X; < z), P(X; <y)).

A
A
Thus, for |z| or |y| large enough, it follows that A; j(x,y) < 2min(P(|X;| > |z]), P(|X;| >
lyl)). So, if we assume that X,,, n > 1, are identically distributed with tails such that
P(|X1| > z) < 7%, as x — o0, then the asymptotic behaviour described by (19) holds.
As an example of a sequence fulfilling (19), consider X,,, n > 1, Pareto distributed and
associated variables.

It is easily seen that the tail behaviour described in (19) only implies the existence of
moments of order k < a. Besides, under (19), for ¢ = 2,3, and 7,5 > 1,

861
a—2

Cov(Xsm X Seu [ [ maxtlal ) dody = 570, 0

if a > 2, where ¢; > 0 is a generic constant independent from 4, j and n.

The control of the tail terms will be achieved through a maximal inequality on weighted
partial sums. Corresponding to the variables defined in (15), introduce the partial sums
Tyn =Yy ani(Xgqin—EXgin), n>1,¢=1,2,3. The following is an adapted version
of Lemma 2.1 in Oliveira [8].

LEMMA 5.2 Let X,, n > 1, be centred and associated random variables. Assume the
weights are such that

ani > 0, and Ani > Qp-14, t<mn, n>1. (21)

13
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Then, forq=1,2,3, E (maxkgn Tjk) < ET2,.

Now that a maximal inequality is available, we may reproduce the arguments in the
proof of Theorem 2 in Birkel [17] to prove a strong law of large numbers for the weighted
sum. We include here the result without proof.

THEOREM 5.3 Let X,,, n > 1, be centred and associated random variables. Assume that

0<p<2anda>1 are such that * — é = %—i— &, for some & > 0. If the nonnegative

P
weights satisfy (21) and
=1
n=1

then, with probability 1, n=/PT, — 0.

It is easily verified that if Cov(X,, Xmm) =< pl"~™, for some p € (0,1), then (22) is
satisfied. Although Theorem 5.3 states an asymptotic result, it does not allow for the
characterization of a convergence rate. For this purpose, we will use our previous approach
based on exponential inequalities. We start by proving a simple upper bound for the tail
probabilities of the weighted sums.

LEMMA 5.4 Let X,,, n > 1, be centred and associated random variables satisfying (19)

with a > 2. Assume 0 < p < 2 and o > 1 are such that%—é:%—}—f, for some & > 0,

and the weights satisfy (1) and (21). Then there exists a generic constant ¢; > 0 such
that, for q = 2,3,

861 1
a— 2)e2 p2-1c4-2"

P (qu,n\ > nl/ps) <7 (23)

Proof. This is a straightforward consequence of Lemma 5.2, a,; < nt/@ A4, and (20). m
We may now state sufficient conditions for the almost sure convergence of n~/?T,.

THEOREM 5.5 Assume the random variables X,,, n > 1, are centred, associated, strictly
stationary satisfying (19) with a > 2. Assume that 0 < p < 2 and « > 1 are such that
%—é = %4—5, for some € € (%, 1), and u(n) < p", for some p € (0,1). If the nonnegative
weights satisfy (1) and (21), then, with probability 1, n=Y/PT, — 0.

Proof. Choose c2~2 = n?=2¢(logn)?, for some b > 1. As £ < 1, the truncating sequence
¢, does converge to 0o. Replacing this expression in (20), it follows that, for ¢ = 2, 3,

> 861 > 1
E P<T . 1/p ) < § .
v Tanl > n'Te) < (a —2)e? ~= n(logn)® =

Thus, it remains to prove that ) P (\Tl,n] > nl/ps) < oo. For this purpose, we will go

2—2¢&
a—2 <

along the arguments for the proof of Theorem 3.2. Choose p, = n’ with % - &+

0 < % + €& — %1_—325 (it is easily verified that, as a§ > 2, this interval is nonempty). The
minimization of the exponent in (5) leads to A = ﬁ%, which gives raise to the

term exp (—%) on the upper bound. Thus, we will be interested in choosing the

14
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sequences such that, for some 8 > 1, % = Blogn, that is

g2 n2¢ €2 909
d, = = a2 (1 —(1+2b/(a-2)) 24
44252 logn  4A23" (logn) (24)

As a& > 2 it follows that £ — 2;—:5 > 0, so d, chosen as above converges to co, becoming,
for n large enough, larger than 1, as required by Lemma 2.2. This lemma also requires
the verification of a condition on A. Reasoning as in the proof of Theorem 3.2, this means
that instead of (9) we need to verify that

1/2+
et b P L et -eae),
~ 24,800, logn 24,08
As 0 < % +&— % the exponent of n in the previous expression is nonnegative, so this

condition will be met, at least for n large enough. To conclude the proof, we still have
to bound the term

1
Z)\QnHwaAi exp (fcnnl/z_g log n> u(pn),

where, as before, we may drop the polynomial term outside the exponential. After taking
logarithms, the boundedness of this term is equivalent to finding an upper bound for

= (log n)Hﬁ + n? log p.

a—

cant/?7€ logn + n? logp = n?

But, taking into account that p € (0,1) and the choice for 6, the expression above is
indeed bounded. u

We may now adapt the arguments to characterize a convergence rate.

THEOREM 5.6 Assume the random variables X,,, n > 1, are centred, associated, strictly
stationary satisfying (19) with a > 2. Assume that 0 < p < 2 and o > 1 are such that
1_ 1 _ % + &, for some € > 2, and u(n) < p", for some p € (0,1). If the nonnegative

P o a’
weights satisfy (1) and (21), then, with probability 1, n=*/PT,, — 0, with convergence
rate %, for arbitrarily small my,m2 > 0.

Proof. For the block decomposition choose p, = n?, with 6§ = % + §, where 0 < 6 <

1 af-2
27 a—2 )

Theorem 3.2 for ¢ = 1, and the previous theorem for ¢ = 2,3. For the case ¢ = 1, it
follows that we want to choose

min( We will control the tail probabilities for Tj, using the arguments of

o AAZBc2dylogn
€n = s ,

for some 8 > 1, where d,, > 1 and ¢,, — oo. As in the proof of Theorem 3.4, we need
to choose d, = fn?logn to fulfill the assumptions of Lemma 2.2. Now, to define the
truncating sequence ¢, we use inequality (23), the representation for &, above and the

15
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choice just made for d,,n?® logn, to find

00 8c e 1 8c > n
P (171l > n'l7e) < ! =
nz::l Tin|l >nPe) < (a —2) nZ::l £2n 26102 a—2nz::1 dpct logn

[e.9]

861 1
~ Bla-2) ; n2-1ca(logn)?

Choose ¢ = n2(1=9) (logn)®, for some b > 0, so the series above is convergent. With this
choice we have

(log n)?—i—?b/a
n2(6—0)—4(1-8)/a’

e2 = 4A2?

«

which identifies the convergence rate stated by taking n; = 2 and 79 = 0(1 + %) To
conclude we still need to control the term exp (%cnnlﬂ/o‘)\) u(pn). Now, %cnnlﬂ/a)\ =

%n1/2_5, SO
%Cnnl—i-l/a)\ /24 l0g p = %n1/2—6 + 020 log .
is bounded as p € (0,1). [ |

Cagin and Oliveira [9] prove in their Corollary 3.5 a result similar to our Theorems 4.2
and 5.5. The result in [9], besides always assuming the weights satisfy (1), (21) and
p € (1,2), assumed

(a—=2)p

o
E / v a2 3G1,n(v,v) dv < 0.
n—1 (n+1)(a=2p)/(ap)

It is easily verified that if Cov(X7, X)) = p", for some p € (0,1), the above assumption
is satisfied whenever o > ;Tpp, but this is equivalent to % — é > % So, our Theorems 4.2
and 5.5 complement Corollary 3.5 in Cagin and Oliveira [9], strengthening the moment
assumptions and enlarging the choice for the weights and the variability of p.

6. A Marcinkiewicz-Zygmund law for random variables without means

In the previous sections we considered stationary random variables with finite moments
of order at least 2. We now drop the stationarity assumption and lower the requirement
on moments to prove some Marcinkiewicz-Zygmund strong laws of large numbers. In this
section, the method of approach is different, based on controlling moments of truncated
variables, as done in Shen et al. [18], where these authors were interested in negatively
associated random variables. As mentioned earlier, the dependence structure studied in
[18] means that the control of variances of sums is easier than in the present framework,
as these variances are smaller than the ones we find for sums of independent random
variables. Thus, some extra care is required to control the moments in the sequel. This
methodology does not allow for doubly indexed weights as in the previous sections, so
we will obtain results with a somewhat more limited scope with respect to Oliveira [8]

16
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or Cagm and Oliveira [9]. However, we will complete a Marcinkiewicz-Zygmund strong
law proved in Louhichi [7] by allowing normalizations of the form n'/P with p < 1 for
random variables that do not have means. We start by recalling some general results on
almost sure convergence. We recall that, unlike in the previous sections, we will not be
assuming the stationarity of the random variables.

THEOREM 6.1 (Theorem 3.1 in Prakasa Rao [19]) Let X, n > 1, be centred, square
integrable and associated random variables. If Z?;‘:l Cov(X;, Xj) < oo then Sy is almost
surely convergent (or, alternatively, > X, converges almost surely)

This result gives way to a version of the Three Series Theorem for associated sequen-
ces. Recall the nondecreasing functions g.(u) = max(min(u,c), —c), u € R, where ¢ > 0
is fixed, and remember that if the original variables are associated then, as g. is nonde-
creasing, the sequence g.(X,,) is also associated.

THEOREM 6.2 (Theorem 3.2 in Prakasa Rao [19]) Let X,,, n > 1, be associated random
variables. Assume that for some ¢ > 0 we have

Y P(Xal>c) <00, > Ege(Xn) <oo, Y Covi(ge(Xi),ge(X;)) <oo. (25)
n=1 n=1 i,j=1

Then Sy, converges almost surely (or, alternatively, > X, converges almost surely).

As for independent variables, the previous result enables the control of weighted sums
of the form )" % We will assume the weights a,, are, for every n > 1, nonnegative, so

the quotients %, n > 1, are still associated. Introduce now a new sequence of associated

random variables Z,, = gl(%), n > 1. Note that the truncation at level 1 means no loss
of generality, as truncation at any other level may be achieved replacing a, by ca,. In

order to prepare for the convergence result, we need some auxiliary inequalities.

LEMMA 6.3 Let h(-) be an even function that is nondecreasing for x > 0 and such that

% is also nondecreasing for x > 0. Then |EZ,| <E (Z((f:))> and EZ2 < E (Z((f:)))

Proof. Write EZ,, = E <%H|Xn|§an) +E (H|X,,,\>an>' As h is even and nondecreasing for

2> 0, ay < |X,| implies h(a,) < h(X,), thus E (I y 5, ) < E (%jﬂmban). Now,

r .
as pigy 18 nondecreasing for x > 0,

| X, an h(ay) an X, (X))
Xyl <an = < & .
[Xn| < @ h(X,) ~ h(ay) h(X,)

Hence ‘E (%H|Xn|§an)‘ < E(}L((f:))]l‘xngan), so summing the two upper bounds,

the first inequality is proved. On what concerns the second inequality, write EZ2 =
E (%HIX"E%) +E (]I‘Xn|>a”) and repeat the arguments above noting that, when | X,,| <

h(X)
h(an)

an, we have, as h is nondecreasing for x > 0, 0 < <1,so0 fg% < ((’;L((f")))); < };L((f”)). [ ]

LEMMA 6.4 Assume the same conditions as in Lemma 6.3. Then, for every i # j,

h(X;) h(X;
B (2:2)) < B (524 559) .
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Proof. Write the mathematical expectation as

X X X;
E(ZiZ;) =E (a 7a H\X 1<a:l1x;|<a; ) +E (a‘lH|X,;|§a,;]I|Xj|>aj)
1

X
+E (CL;HIXiIMiHIXjSaj) +E (Ix,150. 1%, >0, ) -

Reasoning as in the proof of Lemma 6.3 we can get the following inequalities:

Xi X h(X;) h(X
E (Hlx <a.l|x, |<aj>’ =< E< (a >) h((a ))H|X <alix, <aj> :
X; (X;) h(X;)
E ( “Tix 1 <a, )X, |>aj>‘ <h (@) hl(ay) Ix,<a.ix, >aj> ;
X; h(X;) h(X;)
E (]1|X >a. X, |<aj>‘ < h(a) h(a]j Ix,>a.]ix, |<a,> ;
(X,) h(X;)

[E x>0 lixi>a,) | < B < hla) Blay) Xi>alix; >a7> :

Summing up these inequalities the conclusion of the lemma follows. [ |
We may now state a general convergence result.

THEOREM 6.5 Let h(-) be an even function that is nondecreasing for x > 0 and such
that % is also nondecreasing for x > 0. Assume X,, n > 1, are associated random

2
h(f”))> < 0. (26)

variables such that

Then )", % is almost surely convergent.

Proof. We will verify that the Z, random variables satisfy the assumptions of Theo-
rem 6.2. As what regards the first assumption, using Markov’s inequality,

;P(|Zn|>1 ZP w) > hian)) <Z ( ha )

as the summation is assumed to be square integrable. The second summation in the
assumptions of Theorem 6.2 is controlled applying twice the first upper bound proved in

Lemma 6.3:
h(X5)
h(an) ) =

o0 [e.9]
> EZy| < 2ZE<
n=1 n=1
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Finally,

oo oo

Y Cov(Zi,Z;) < Y (E(ZiZ)| +|EZi|[EZ)))
4,j=1
o

ij=1
) h(X; . Bh(X;) Eh(X;)
2. *ZE< ) ha) ()

) h(a
Eh h(X; ?
= i=1 +E< h(a ) ! ( Zf))

Applying now Theorem 6.2, the conclusion follows. [ |

2,7=1

COROLLARY 6.6 Let h(-) be an even function that is nondecreasing for x > 0 and such
that % is also nondecreasing for x > 0. Assume X,, n > 1, are associated random

variables such that (26) holds and the weights a, ,/* oo. Then, a;'S, — 0 almost
surely.

Proof. Apply Kronecker’s Lemma to the conclusion of Theorem 6.5. [ ]

Example 6.7 Let €,, n € Z, be centred and associated random variables such that
sup,>1 E |en]|*? < oo, for some 0 < ¢ < 1, ¢, n > 0, be real numbers and define
X, = Y oo2 o Pi€n—i- Then, it follows from (26) applied to the e, random variables and
choosing h(z) = |z|?, that X, is, with probability 1, finite provided that Y ;7 [¢;|? < co.
This is verified if, for example, ¢, = p", for some 0 < p < 1.

Moreover, to control moments of X,,, assume that % < q <1, the ¢,, are nonnegative,

and rewrite X,, = Y 7, qﬁ?qf)g*'ysn i, for some 0 < v < 1. Applying Hoélder inequality it
2q—1

follows E|X,|* < (Z?io qﬁ?‘”) (ZZ 0¢ 1=/ (2= 1)) E |en]?, if both summations

depending on the coefficients are finite. Thus, under the assumption sup,,», E \sn\Qq < 00,

for some % < ¢ <1, it follows that sup,~; E \XnIQq < 00. So, applying again Theorem 6.5
now to the X,, random variables, it follows that » f— is almost surely convergent if

Yoo Lan? < oo.

We can find a condition for the convergence of > " 1 o that is a somewhat weaker
than (26) or, at least, may be written in a weaker form. It follows from the previous
bounds that, for i # j,

Cov(Z;, Z;) < |E(Z:Z;)| + |EZ]| |EZ;| < Cov (h(Xz-) h(Xj)> | o ER(Xi) BR(X;)

h(ai)” h(a;) h(ai)  h(aj)

Hence
2
ov ov ) h(X;) N BA(X)
;10 (Zi,25) < Z + ;1(} ( , h(%‘)) . (’i:l h(ai) )

We thus have the following alternative result.
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COROLLARY 6.8 Let h(-) be an even function that is nondecreasing for x > 0 and such
that % 18 also nondecreasing for x > 0. Assume that X,,, n > 1, are associated random

variables such that

Z Cov < Xi) MXJ)) < 00 and 2 E}il((cf)z) < 00. (27)

Then ), Xu is almost surely convergent. Moreover, if additionally the weights a, / 00,
then anlSn — 0 almost surely.

We may now prove first a result for general weights with a control on moments of the
random variables.

THEOREM 6.9 Let X,,, n > 1, be associated random variables and 0 < q < 1 be such
that sup,>1 E|X,|? < co. Assume the positive weights a, are such that

Ziq<oo and ZZ

n=1 i=1 j= z+127

G j(a;,a;) < oo. (28)

Then ), % 18 almost surely convergent. Moreover, if additionally the weights a, ' oo,
then a, 'S, — 0 almost surely.

Proof. Choose h(z) = |z|?, fulfilling the assumptions on h of the preceding results. Then,
the second summation in (27) is bounded above by

sup E | X, | Z—<oo

n>1

As what regards the second inequality in (27), we go back to Cov(Z;, Z;). We may write,
using the A; ; functions defined in (3),

COV(ZZ',Z]‘):// A; j(aiu, ajv) dudv
[~ 1,12

= AZ d d — 7G2 19
wia; //[—a,,a,]x[ . j(u,v) dudv = jlai,aj).

Finally, using the second inequality from Lemma 6.3,

iCov(Zi,Zj) = ZVar —1—22 -G j(ai, a;)

2,7=1 1<J

< ZEZQ—}—QZG ij(ai,aj)
’L

E|X1|qza—+22 Gij(ai, a;) < oo,

=1 1<j

IN

so the proof is concluded. [ ]

20



June 28, 2017 Statistics: A Journal of Theoretical and Applied Statistics weighted 'sum’and rates v5final

Ezample 6.10 Assume again that X,, = > 7 ¢ie,—;, where the &4, k € Z, are associated
and now stationary random variables such that E |e1]? < oo, for some 0 < ¢ < 1, and
¢, > 0. Note that, reproducing the arguments in the second part of Example 6.7, we
have, assuming the convergence of the series depending on the coefficients mentioned
there, sup,,~; E|X,|? < oo. For the control of the truncated covariances, recall again
that g.(u) = max(min(u,c), —c), and G; ;(u,v) = Cov(gu(X;), gu(X;)), so, for any given
0<~v<1andu,v>0,

Gislu,0) = Egu(X0gn(X;) — Egul(X:)Egu(X;)
< E (min(u, JX,) min(v, [ X)) + Emin(u, X, E min(v, |
< w7 (BUX ) + BB
< QU’YU’YE‘XI‘QG—’Y)’

if we choose 1 —~ < £, using the Hélder inequality and taking into account that the X,
n > 1, are stationary. Hence, concerning the second condition in (28), we have that

P IFTERTRIED 3) wpre e o B

=1 j=1+1 =1 j= 2+1 =1
So, if this last summation is finite, as ¢ > 2(1 — ) the first condition in (28) is also
fulfilled and, taking into account Theorem 6.9, Z =~ converges almost surely.

Note that using the same exponent v above is just Convenlent for the explicit calculation
of the series. So, choosing different ~;’s, the above construction justifies that one can find
models for which G; j(u,v) is controlled by w7,

FEzxample 6.11 For ¢ = 1 we should compare the second conclusion of Theorem 6.9
with Theorem 1 in Louhichi [7]. This later result from [7] assumes the association of
the random variables, the existence of an integrable random variable X stochastically
dominating the X,,, n > 1, that is such that, for every n > 1, P(|X,,| > z) < P(|X]| > x),
and uses a weaker normalizing sequence: n instead of a, = n'™", with > 0, as required
by our Theorem 6.9. Louhichi’s [7] result requires further an extra condition on the
growth rate of the truncated covariances:

22/1/(11)5 ij(v,v) dv < 0. (29)

=1 j=1+1

This is similar to the second condition in our assumption (28). However, our version
seems somewhat less restrictive as shown by the following example: assume, as referred
above, that a,, = n'*", for some n > 0, and Gij(z,y) = x®yP, for suitable o, 8 > 0, thus
not depending on both indices i and j. In this case, the summation in (29) diverges, as
the terms will be constant with respect to the first summation index ¢. On what regards
the second assumption in (28), we have

Z Z —G,J a;, a;) Z j(a=1D){1+m) i GB=D0+m) Zzl+(a+ﬁ (140 < o,

zl]erlz Jj=i+1 =1

provided that a + 8 < 1 . Thus, the assumptions of Theorem 6.9 are satisfied while
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Theorem 1 in Louhichi [7] is not applicable.

Ezample 6.12 For 0 < ¢ < 1, Chandra and Ghosal [12], in their Remark 3, note that
n~14S, —s 0 almost surely provided there exists a random variable X stochastically
dominating the X,,, n > 1, and E|X|? < oo. Thus, compared with Theorem 6.9, no
dependence assumption is required. Moreover, the normalizing sequence in Chandra and
Ghosal’s [12] result is strictly weaker, as the first inequality in (28) implies that the
normalizing sequence a, in Theorem 6.9 is strictly larger than n'/9. Thus our result is,
in this respect, weaker than what is proved in Chandra and Ghosal [12]. On the other
hand, Theorem 6.9 replaces the stochastic domination by the association assumption,
thus offering some relaxation in this direction. An example where Theorem 6.9 provides
convergence but the conditions of Chandra and Ghosal [12] are not necessarily fulfilled
is obtained in a similar way as in our previous example: choose the normalizing sequence
an = n'/P and Gij(z,y) = z®yB where 0 < ay, Bj < 1—p, at least for large i or j. Then,
it is easy to verify that both conditions in (28) are satisfied, thus all that is required to
have the almost sure convergence is sup,~; E|X,|? < oo, where p < ¢ < 1, which is
weaker than the stochastic dominance required in Chandra and Ghosal’s [12] result.

Remark 6.13 Concerning the normalizing sequence, Theorem 6.9 will always require a
normalizing sequence strictly stronger than the optimal one for Marcinkiewciz-Zygmund
laws. Indeed, when normalizing by n'/? we will have to require that sup,~; E | X,|? < co
for some ¢ > p, as the same function h appears in both the numerator and denominator
of the first condition in (28). Of course, to derive that n~/?S, — 0 almost surely we
still would need to assume that

[o¢] o0 1 . )
Z Z WGiyj(Zl/p,jl/p) < 0. (30)

i=1 j=i+1

Remark 6.14 The verification of (30) may be achieved by assuming a decrease rate on
the joint tail probabilities (3). In fact, assume that (19) holds for some a > 2p. It follows
that there exist up > 0 and ¢; > 0 such that for |u|,|v] > up and every i,j > 1 we have
A j(u,v) < epmax (Jul,|v])”". Remember that, as mentioned in Remark 5.1, this holds
if the tail of the distribution of the variables decreases polynomially with exponent a.
As, obviously, for every u,v € R and 4,5 > 1, A; j(u,v) < 1, we have, for i < j,

A

/P itr o
Gi i (V/7,517) < wd+ 201/ / dv [u|™* du + 201/ / du [v|™* dv
Uo —u Uo —-v

il/p il/p

J
+2¢1 / / duv™dv (31)
il/p /P

8c 4c 4c
= (w2 ) - L /pi(=a)/p

Replacing this in (30) and dropping the constants, we are left with three series to control.
For one corresponding to the first term in (31) we have, as p < 1,

o0 o0 oo 2
SN i< <Dw> <.

i=1 j=i+1 i=1
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The series corresponding to the second term in (31), taking into account that a > 2p
implies 1 — % < —1,is

i i i3=a)/p=1/p _1/1’—2 (1=a)/p Z i
i=1 j=i+1 S

= Zi(l—a)/Pil—l/P — Zil—a/l’ < 0.
=1 =1

Finally, using again that 1 — % < —1, the third term in (31) is

Z Z i 1/P e /e 0= a)/p_z Z J—a/p<ZZ] a/p_zjl a/p ~ ~o.

1=

1 j=i+1 i=1 j=i+1 7j=2 i=1
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