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Abstract

In this paper we consider general linear damped wave equations with memory. We
establish energy estimates that under the assumption of exponentially bounded kernels, induce
exponential decaying solutions. Numerical waves that mimic their continuous counterpart
are also introduced using a finite element approach.

1 Introduction

Let Ω ⊂ Rn be an open bounded domain. This paper is concerned with the study of the decay of
the solutions of the following damped wave equation with memory

ρu′′(t) + cu′(t) +Au(t) =

∫ t

0
Ker (t− s; τ)Bu(s)ds+ f(t), t ∈ R+. (1)

In (1) u : Ω × R+
0 −→ R and, for t ∈ R+

0 , u(·, t) can be seen as a function defined from Ω into
R that is denoted by u(t), c is a function depending only on spatial variables and accounts for
the damping of the wave, Ker denotes a function, called the memory kernel, that depends on a
parameter τ > 0, f denotes a source term and A and B are second order differential operators.
Equation (1) is completed with homogeneous Dirichlet boundary conditions and the following
initial conditions {

u(0) = u0,

u′(0) = u1.
(2)

This type of differential problem arises in many contexts, such as modelling the displacement
of materials with viscoelastic properties. Indeed, let u denote the displacement of the material,
f an external force being applied to the material and σ the stress tensor associated. Newton’s
second law states that

ρu′′(t) = ∇ · σ(t) + f(t), (3)

where ρ is the density of the material. Usually, the relation considered between the stress tensor
τ and the strain tensor ε is

σ(t) = Dε(t) (4)

where D is an elastic tensor. Assuming that the components of the strain and the displacement
satisfy

ε(t) =
1

2

(
∇u(t) +∇u(t)t

)
,
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relation (4) accounts for a fickian type effect. However, if we assume that the material has vis-
coelastic properties modelled by a Maxwell-Wiechert model and assume the following constitutive
equation

σ(t) = E(0)Dε(t)−
∫ t

0

∂

∂s
E(t− s)Dε(s) ds,

where

E(t) = E0 +

N∑
i=1

Eie
−αit

and E0 is the Young modulus of the spring arm, Ei, i = 1, . . . , N, are the Young modulus of the
Maxwell arms and αi = Ei

µi
, i = 1, . . . , N, being µi, i = 1, . . . , N, their associated viscosities, then

from (3) we obtain for the displacement the following second order integro-differential equation

ρu′′(t)−∇ ·
(

1

2
E(0)D(∇u(t) +∇u(t)t)

)
=

−
∫ t

0
Ker (t− s)∇ ·

(
D(∇u(s) +∇u(s)t)

)
ds+ f(t),

with Ker (t) = 1
2

∑N
i=1Eiαie

−αit, t > 0.
Equations of type (1) have already been introduced in the literature, see [5, 13, 15], to model

viscoelastic physical phenomena.
Let us consider the classical wave equation with homogeneous Dirichlet boundary conditions.

It is well known that the energy of its solution (which is the sum of kinetics and potential energies)
is conserved in time. If a damping effect is added then it can be shown that such energy decreases
exponentially in time (see Section 3). In certain scenarios, the wave equation with a memory term
can be seen as a singular perturbation of the diffusion equation with memory. The solution of
this last equation has, in several cases, an energy that goes to zero exponentially (see Section 4).

A question that naturally arises is which conditions on the memory kernels lead to the same
energy behaviour for the solution of the wave equation or its generalization in presence of a
memory effect. This problem has been object of research in recent years and will be addressed in
the present paper.

The study of qualitative properties of partial differential problems defined by equations of
type (1) was presented for instance in [1, 4, 3, 8, 12, 14, 16, 18]. However, these works deal
essentially with energy estimates for the case when A and B represent the Laplace operator,
combined with exponential or polynomial decaying kernels. For example, in [3], the authors
studied the energy decay for a wave equation with nonlinear boundary damping. Also, in [14],
acoustic boundary conditions were considered and the authors established energy decrease results
when the kernel function does not necessarily decay exponentially. Similar results were obtained
in [18] considering homogeneous Dirichlet boundary conditions but imposing weak assumptions
on the memory kernel. The study of the decay of the solution of systems of wave equations has
also been addressed in [1, 16]. In [1] the authors established energy decreasing results for systems
of two linear wave equations with memory with homogeneous Dirichlet boundary conditions with
kernels exponentially dominated.

Energy decreasing results for quasilinear wave equations with memory were considered in
[4, 12]. In the first paper the authors consider a nonlinear reaction term and a wave equation
where the coefficient of the second derivative depends on the solution was introduced in the second
paper. Wave equations with memory as singular perturbations of nonfickian diffusion equations
with memory have also been studied. Without being exhaustive we mention [2, 9, 10, 11].
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This work aims at establishing energy estimates (and show their exponential decay) for several
variants of equation (1). This shall be accomplished in the case A and B represent the Laplace
operator, but also in the more general setting as presented by (1), always under the assumption
that the memory kernel decays exponentially.

The paper is organized as follows: we start in section 2 by introducing the functional context
necessary for the development of the energy estimates, as well as some properties of the kernels.
In section 3 we start by considering the wave equation with no memory (A = B = −∆) and
review classical estimates for this case. In section 4, we explore the case where the coefficient of
the second time derivative vanishes, that is, the wave equation with memory is replaced by the
diffusion equation with memory that is usually used to model diffusion phenomena (characterized
by a nonfickian behaviour). We show that under suitable assumptions on the parameters of the
equation, exponential decay of the waves is obtained. Damped wave equations with memory is
the object of study of section 5. In this section we introduce a new energy functional that is
obtained from the classical one adding a new term induced by its memory character. We establish
conditions that lead to the exponential decreasing of such energy functional. To measure the
deviation of the gradient of the solution and its evolution in time, a new term is added to the
energy functional under analysis. For this new energy functional we prove also its exponential
decreasing. The techniques used to obtain these estimates (as well as the estimates themselves)
are the motivation of a new energy functional definition for the first equation to be explored in
the coming section. Indeed, similar results are established in section 6 for more general problems.
Numerical wave equations that mimic their continuous counterpart are introduced in section 7
and their behaviour is explored in section 8. Finally we summarize some conclusions in section 9.

2 Notations and preliminaries

We introduce now the functional context needed in the following sections. Let L2(Ω), L∞(Ω) and
H1

0 (Ω) be the usual Sobolev spaces. In L2(Ω) we consider the usual inner product (·, ·) and the
norm induced by this inner product is denoted by ‖·‖. In H1

0 (Ω) we consider the usual norm ‖·‖1.
Let L2(R+, H1

0 (Ω)) be the space of functions v : R+ −→ H1
0 (Ω) such that∫ T

0
‖v(t)‖21 dt <∞, ∀T > 0.

Let H1(R+, H1
0 (Ω)) be the subspace of L2(R+, H1

0 (Ω)) of all functions v such that its weak
derivative v′ : R+ −→ H1

0 (Ω) belongs to L2(R+, H1
0 (Ω)). By H2(R+, L2(Ω)) we represent the

subspace of L2(R+, L2(Ω)) of all functions v such that its weak derivatives v(j) : R+ −→ L2(Ω),
j = 1, 2, belong to L2(R+, L2(Ω)).

We start by proving the following auxiliar lemmas for the kernel function.

Lemma 1. Let Ker ∈ L2(R+). If there exist constants K,α > 0, such that

|Ker (s)| ≤ Ke−αs, s ∈ R+
0 , (5)

then
‖Ker‖L1 ≤ K

α
and ‖Ker‖L2 ≤ K√

2α
.

Let γ be a nonnegative real and let us denote Kerγ the function defined by

Kerγ (s) = eγsKer (s), s ∈ R+
0 .

For this function, the following result holds, which generalizes Lemma 1.
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Lemma 2. If Ker satisfies the hypothesis of Lemma 1 and γ < α then∥∥Kerγ∥∥L1 ≤
K

α− γ and
∥∥Kerγ∥∥L2 ≤

K√
2(α− γ)

.

Moreover, if Ker ∈ H1(R+) and Ker′ satisfies (5) then∥∥Ker′γ∥∥L1 ≤
K(1 + γ)

α− γ and
∥∥Ker′γ∥∥L2 ≤

K(1 + γ)√
2(α− γ)

.

3 Damped wave equation with no memory

We consider in this section the following (simpler) version of equation (1),

ρu′′(t) + cu′(t)−D1∆u(t) = −D2

∫ t

0
Ker (t− s; τ)∆u(s)ds, t ∈ R+, (6)

where D1, D2, ρ denote positive constants and c ∈ L∞(Ω) is such that there exists a constant
c0 > 0 such that c0 6 c. The variational formulation for (6) reads as: let u ∈ L2(R+, H1

0 (Ω)) ∩
H2(R+, L2(Ω)) and, for all T > 0, holds the following

(ρu′′(t) + cu′(t), w) +D1(∇u(t),∇w) = D2

∫ t
0 Ker (t− s)(∇u(s),∇w) ds,

a. e. in (0, T ), ∀w ∈ H1
0 (Ω),

u′(0) = u1,
u(0) = u0,

where τ is a parameter. If we assume that the kernel function Ker, when τ → 0, is such that the
integral term in equation (6) formally reduces to −D2∆u(t), then equation (6) is replaced by the
wave equation

ρu′′(t) + cu′(t)− (D1 −D2)∆u(t) = 0, t ∈ R+. (7)

We remark that this is the case for exponential kernels of the type Ker (s) = 1
τ e
− s
τ . Indeed,

the wave equation with memory is reduced to the classical wave equation.
Figure 1 illustrates the behaviour of the solution of the IBVP defined by (6) with Ω = (−1, 1)2,

with homogeneous Dirichlet boundary conditions, a gaussian profile u(x, y, 0) = e−10(x2+y2), (x, y) ∈
Ω, as initial data and Ker (s; τ) = τ−1e−

s
τ , ρ = c = 1 for different values of τ at t = 4. When

the memory parameter τ decreases, we observe that the corresponding solution approximates the
case with no memory and wave coefficient (D1 −D2).

We recall that for the solution of the IBVP involving equation (7), the energy

Eu (t) =
ρ

2

∥∥u′(t)∥∥2
+
D

2
‖∇u(t)‖2 , t ∈ R+

0 ,

where D = D1 −D2, satisfies the following:

1. when the damping effect is zero (c = 0),

Eu (t) = Eu (0) , t ∈ R+
0 ; (8)

2. if c 6= 0, then
Eu (t) + c0

∥∥u′(t)∥∥2
ds ≤ Eu (0) (9)

and the energy has an upper bound.
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Figure 1: Restriction of solution at [−1, 1]×{0} for c = 0.25 and two choices of D2 at t = 4. The
solid line solutions ref1 and ref2 correspond, respectively, to the choice of parameters D1 = 0.9
and D2 = 0 and D1 = 0.99 and D2 = 0. These figures were obtained with the fully discrete
method presented in section 8, using a fine mesh and small timestep.

The proofs of (8) and (9) are classical and omitted here. However, the decay of Eu, which is not
guaranteed in the previous cases, can be established in the presence of an additional term m2u,
that is, if we consider instead

ρu′′(t) + cu′(t)− (D1 −D2)∆u(t) +m2u(t) = 0, t ∈ R+. (10)

In this case it can be even shown a stronger result that states that∥∥u′(t)∥∥2
+ ‖u(t)‖21 −→ 0, t→∞,

exponentially (see [7] and the references cited in this paper). Indeed, considering the new variable
uγ(t) = eγtu(t), t ∈ R+

0 , the wave equation for uγ and the energy method, it can be shown that
there exists a class of wave problems (10) and a corresponding constant γ > 0 such that

‖u′(t)‖2 + ‖u(t)‖21 ≤ Ce−2γt
(
‖u(0)‖21 + ‖u′(0)‖2

)
, t ∈ R+

0 , (11)

where C > 0 denotes a constant that depends on the coefficients of the wave equation (10) and
on γ. Estimate (11) leads to the exponential decay of Eu when t→ 0.

4 Damped wave and diffusion equations with memory

Let us consider now in equation (6) the damping factor c = 1 and ρ→ 0. Formally, we obtain
the following diffusion equation with memory

u′(t)−D1∆u(t) = −D2

∫ t

0
Ker (t− s)∆u(s)ds, t ∈ R+. (12)

Figure 2 illustrates the behaviour of the solution of the IBVP defined by (6) with Ω = (−1, 1)2,
with homogeneous Dirichlet boundary conditions, the same gaussian profile used for obtaining
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Figure 1 as initial data and Ker (s) = τ−1e−
s
τ , s ∈ R+

0 , c = 1, D1 = 0.1, D2 = 0.01, τ = 0.001
for different values of ρ. When ρ decreases we observe that for two different time instances, that
solution of the wave problem approaches the one of the diffusion equation.

−1 −0.5 0 0.5 1

0

0.2

0.4

ρ = 0.5 ρ = 0.1

ρ = 0.05 ρ = 0

(a) t = 0.5

−1 −0.5 0 0.5 1

0

0.1

0.2

ρ = 0.5 ρ = 0.1

ρ = 0.05 ρ = 0

(b) t = 1

Figure 2: Restriction of solution at [−1, 1] × {0} for c = 1 and two values of t. These figures
were obtained with the fully discrete method presented in section 8, using a fine mesh and small
timestep.

We present now two different estimates for the energy

Eu (t) = ‖u(t)‖2 +

∫ t

0
‖∇u(s)‖2 ds, t ∈ R+

0 ,

of the solution of the IBVP defined by (12) with homogeneous Dirichlet boundary conditions. The
first one is obtained using the energy method and the second one is similar to the one established
for instance in [6].

Proposition 1. Let Ker ∈ L1(R+) be a kernel satisfying (5). If the weak solution u ∈
L2(R+, H1

0 (Ω)) ∩H1(R+, L2(Ω)) then there exist ε 6= 0, γ < α and C1, C2 > 0 such that

‖u(t)‖2 + C1

∫ t

0
‖∇u(s)‖2 ds ≤ ‖u(0)‖2 , (13)

and

‖u(t)‖2 + C2

∫ t

0
e−2γ(t−s) ‖∇u(t)‖2 ≤ e−2γt ‖u(0)‖2 , (14)

where

C1 = 2

(
D1 − ε2 −

D2
2K

2

4ε2α2

)
, C2 = C1 +

D2
2K

2

2ε2α2

(
1 + (α− γ)2

(α− γ)2

)
− γCΩ,

and CΩ is the constant from the Friedrichs-Poincaré inequality.

Proof. We start by proving (13). Using the energy method, it can be shown that, for t > 0,

1

2

d

dt
‖u(t)‖2 +D1 ‖∇u(t)‖2 =

(
D2

∫ t

0
Ker (t− s)∇u(s) ds,∇u(t)

)
,
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which leads to

d

dt
‖u(t)‖2 + 2(D1 − ε2) ‖∇u(t)‖2 ≤ D2

2

2ε2

(∫ t

0
|Ker (t− s)| ‖∇u(s)‖ ds

)2

. (15)

As (∫ t

0
|Ker (t− s)| ‖∇u(s)‖ ds

)2

≤ ‖Ker‖L1

∫ t

0
|Ker (t− s)| ‖∇u(s)‖2 ds,

using Lemma 1, from (15) we obtain

‖u(t)‖2 + 2(D1 − ε2)

∫ t

0
‖∇u(t)‖2 ds

≤ D2
2

2ε2
K

α

∫ t

0

∫ s

0
|Ker (s− µ)| ‖∇u(µ)‖2 dµds+ ‖u(0)‖2 .

Moreover, as ∫ t

0

∫ s

0
|Ker (s− µ)| ‖∇u(µ)‖2 dµds ≤ ‖Ker‖L1

∫ t

0
‖∇u(s)‖2 ds,

we conclude (13).
To prove estimate (14), we use the technique presented in [17]. Let γ > 0 be a fixed constant

and let uγ(t) = eγtu(t), t ∈ R+ for γ < α. Then, we have

1

2

d

dt
‖uγ(t)‖2 − γ ‖uγ(t)‖2 +D1 ‖∇uγ(t)‖2

=

(
D2

∫ t

0
Kerγ (t− s)∇uγ(s) ds,∇uγ(t)

)
.

Considering that ‖uγ(t)‖2 ≤ CΩ ‖∇uγ(t)‖2 and using Lemma 2, the analysis presented before
allow to conclude that

‖uγ(t)‖2 + C2

∫ t

0
‖∇uγ(s)‖2 ds ≤ ‖u(0)‖2 , (16)

where C2 = 2
(
D1 − ε2 − CΩγ − D2

2
4ε2

K2

(α−γ)2

)
. Inequality (16) leads to (14).

For the energy Eu we conclude its boundedness in bounded time intervals. Moreover, from
(14) we can establish conditions on the coefficients such that ‖u(t)‖ decreases exponentially.

Corollary 1. Under the assumptions of Proposition 1, if

D1 −
D2K

α
> 0, (17)

then there exist constants C > and 0 < γ < α such that

‖u(t)‖2 +

∫ t

0
e−2γ(t−s) ‖∇u(s)‖2 ds ≤ Ce−2γt ‖u(0)‖2 , t ∈ R+

0 . (18)

7



Proof. From Proposition 1 we have (14), that is,

‖u(t)‖2 + g(γ)

∫ t

0
e−2γ(t−s) ‖∇u(s)‖2 ds ≤ e−2γt ‖u(0)‖2 ,

with g(γ) = 2
(
D1 − ε2 − CΩγ − D2

2
4ε2

K2

(α−γ)2

)
. Taking ε2 = D2K

2α , as g(0) = D1 − ε2 − D2
2

4ε2
K2

α2 , it
follows from (17) that g(0) > 0. Therefore, there exists 0 < γ < α such that (18) holds.

Corollary 1 establishes sufficient conditions that lead to the exponential decreasing of

‖u(t)‖2 +

∫ t

0
e−2γ(t−s) ‖∇u(s)‖2 ds.

We remark that condition (17) means that the fickian character of the diffusion process dominates
the nonfickian counterpart.

5 Wave equation with memory

We consider in what follows the IBVP defined by the following damped wave equation with
memory

ρu′′(t) + cu′(t)−D1∆u(t) +m2u(t) = −D2

∫ t

0
Ker (t− s)∆u(s) ds, t ∈ R+, (19)

with homogeneous Dirichlet boundary conditions and D1, D2, ρ and c satisfy the assumptions
made in section 3.

We start by establishing a stability result, under a general assumption on the kernel function
Ker, for the energy

Eu,γ (t) =
∥∥u′(t)∥∥2

+ ‖u(t)‖21 +

∫ t

0
e−2γ(t−s) ‖∇u(s)‖2 ds, t ∈ R+

0 , (20)

where γ > 0 is a constant. The last term in the definition of Eu,γ is motivated by the energy
functional for the diffusion equation with memory. If the kernel Ker satisfies (5) then we show
that Eu,γ decreases to zero exponentially. We observe that the energy functional introduced here
incorporates more terms that those considered in the literature. It should be pointed out that
other versions of the last energy functional were also studied in the literature. For instance, in [3]
and [18], the authors considered the classical energy functional

Eu (t) = ‖u(t)‖21 , t ∈ R+,

while in [14] a term induced by the boundary conditions was added to the last energy functional.
In [4], for a quasilinear problem, a term related with the reaction term was also taken into account.
The energy functional

Eu (t) =
1

2

∥∥u′(t)∥∥2
+

1

2

(
1−

∫ t

0
Ker (t− s)ds

)
‖∇u(t)‖2

+

∫ t

0
Ker (t− s) ‖∇u(t)−∇u(s)‖2 ds,

was studied in [16]. A similar definition was analyzed in [18].

8



A modification of the functional energy (20) will be introduced in this work adding the term∥∥∥∥∫ t

0
Ker (t− s)∇u(s)ds−∇u(t)

∥∥∥∥2

.

For this new functional energy we also prove its exponential decay.

Proposition 2. Let u ∈ L2(R+, H1
0 (Ω)) ∩ H2(R+, L2(Ω)) be the weak solution of the IBVP

defined by (19) with homogeneous Dirichlet boundary conditions. If Ker ∈ H1(R+) is a kernel
such that Ker and Ker′ satisfies (5), then the following estimate holds

ρ
∥∥u′(t)∥∥2

+ 2c0

∫ t

0

∥∥u′(s)∥∥2
ds+ (D1 − ε2) ‖∇u(t)‖2 +m2 ‖u(t)‖2

+ 2D2

(
Ker (0)−

(
D2K

4ε2
+ 1

)
K

α

)∫ t

0
‖∇u(s)‖2 ds

≤ ρ
∥∥u′(0)

∥∥2
+D1 ‖∇u(0)‖2 +m2 ‖u(t)‖2 . (21)

where ε 6= 0.

Proof. Let

I(t) =

∫ t

0
Ker (t− s)∇u(s)ds and Id(t) =

∫ t

0
Ker′ (t− s)∇u(s)ds,

for t > 0. Using the energy method it can be shown that

ρ

2

d

dt

∥∥u′(t)∥∥2
+ c0

∥∥u′(t)∥∥2
+
D1

2

d

dt
‖∇u(t)‖2

+
m2

2
‖u(t)‖ ≤ D2

(
I(t),∇u′(t)

)
.

As
d

dt
(I(t),∇u(t)) = Ker (0) ‖∇u(t)‖2 + (Id(t),∇u(t)) +

(
I(t),∇u′(t)

)
,

we obtain

ρ

2

∥∥u′(t)∥∥2
+ c0

∫ t

0

∥∥u′(s)∥∥2
ds+

D1

2
‖∇u(t)‖2

+D2Ker (0)

∫ t

0
‖∇u(s)‖2 ds+

m2

2
‖u(t)‖2

≤ D2 (I(t),∇u(t))−D2

∫ t

0
(Id(s),∇u(s)) ds

+
ρ

2

∥∥u′(0)
∥∥2

+
D1

2
‖∇u(0)‖2 +

m2

2
‖u(0)‖2 . (22)

We remark that, for ε 6= 0, holds the following

2D2 (I(t),∇u(t)) ≤ D2
2

ε2
‖Ker‖2L2

∫ t

0
‖∇u(s)‖2 + ε2 ‖∇u(t)‖2 ,

and

−2

∫ t

0
(Id(s),∇u(s)) ds ≤ 2

∥∥Ker′∥∥
L1

∫ t

0
‖∇u(s)‖2 ds.
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Taking the last estimates in (22) we obtain

ρ
∥∥u′(t)∥∥2

+ 2c0

∫ t

0

∥∥u′(s)∥∥2
ds+ (D1 − ε2) ‖∇u(t)‖2

+ 2D2

(
Ker (0)− D2

2ε2
‖Ker‖2L2 −

∥∥Ker′∥∥
L1

)∫ t

0
‖∇u(s)‖2 ds+m2 ‖u(t)‖2

≤ ρ
∥∥u′(0)

∥∥2
+D1 ‖∇u(0)‖2 +m2 ‖u(t)‖2 . (23)

Using Lemma 2 (with γ = 0), from (23) we obtain (21).

Corollary 2. Under the assumptions of Proposition 2 and if

Ker (0)− K

α
> 0 (24)

and
D2

D1
− 4

α

K2

(
Ker (0)− K

α

)
> 0, (25)

then there exists a constant C > 0 such that

Eu,0 (t) +

∫ t

0

∥∥u′(s)∥∥2
ds ≤ C

(∥∥u′(0)
∥∥2

+ ‖u(0)‖21
)
, t ∈ R+.

Corollary 2 establishes that Eu,0 is bounded. In what follows we establish conditions that
allow us to conclude that the energy decreases to zero exponentially.

Theorem 1. Let u ∈ L2(R+, H1
0 (Ω)) ∩H2(R+, L2(Ω)) be the weak solution of the IBVP defined

by (19) with homogeneous Dirichlet boundary conditions. If Ker ∈ H1(R+) is a kernel such that
Ker and Ker′ satisfies (5), then for 0 < γ < α, there exists a constant C > such that

ρ

2

∥∥u′(t)∥∥2
+ (D1 − ε2) ‖∇u(t)‖2 + 2(c0 − 2ργ)e−2γt

∫ t

0

∥∥u′γ(s)
∥∥2
ds

+ (m2 − γ ‖c‖∞) ‖u(t)‖2 + 2D2g(γ)e−2γt

∫ t

0
‖∇uγ(s)‖2 ds

≤ Ce−2γt
(∥∥u′γ(0)

∥∥2
+ ‖∇u(0)‖2 + ‖u(0)‖2

)
, t ∈ R+

0 , (26)

where uγ(t) = eγtu(t),

g(γ) = Ker (0)−
(
D2K(1 + γ)

4ε2
+ 1

)
K

α− γ , (27)

and ε 6= 0.

Proof. Lets consider γ > 0 and define uγ(t) = eγtu(t), t ≥ 0. It can be shown that, for uγ , we
have

ρu′′γ + (c− 2γρ)u′γ −D1∆uγ(t) + (ργ2 − cγ +m2)uγ = −D2

∫ t

0
Kerγ (t− s)∆uγ(s).

10



Following the analysis presented in Proposition 2, it can be shown there exist ε and η, arbitrary
nonzero constants, and γ < α such that

ρ
∥∥u′γ(t)

∥∥2
+ 2(c0 − 2γρ)

∫ t

0

∥∥u′γ(s)
∥∥2
ds

+ (D1 − ε2) ‖∇uγ(t)‖2 + (ργ2 − ‖c‖∞ γ +m2) ‖uγ(t)‖2

+ 2D2

(
Ker (0)−

(
D2K(1 + γ)

4ε2
+ 1

)
K

α− γ

)∫ t

0
‖∇uγ(s)‖2 ds

≤ ρ
∥∥u′γ(0)

∥∥2
+D1 ‖∇uγ(0)‖2 + (ργ2 − γ ‖c‖∞ +m2) ‖uγ(t)‖2 . (28)

We compute now a lower bound for
∥∥u′γ(t)

∥∥2. Since, for θ 6= 0, we have

∥∥u′γ(t)
∥∥2 ≥ (1− θ2)

∥∥eγtu′(t)∥∥2
+ γ2

(
1− 1

θ2

)
‖uγ(t)‖2 ,

we deduce, for θ2 =
1

2
, ∥∥u′γ(t)

∥∥2 ≥ 1

2

∥∥eγtu′(t)∥∥2 − γ2 ‖uγ(t)‖2 . (29)

Considering (29) in (28) we obtain

ρ

2

∥∥eγtu′(t)∥∥2
+ (D1 − ε2) ‖∇uγ‖2 + 2(c0 − 2ργ)

∫ t

0

∥∥u′γ(s)
∥∥2
ds

+ (m2 − γ ‖c‖∞) ‖uγ(t)‖2 +D2g(γ)

∫ t

0
‖∇uγ(s)‖2 ds

≤ ρ
∥∥u′γ(0)

∥∥2
+D1 ‖∇uγ(0)‖2 + (ργ2 − γ ‖c‖∞ +m2) ‖uγ(t)‖2 ,

where g(γ) is defined by (27). This inequality leads immediately to (26).

Corollary 3. Under the assumptions of Theorem 1 and if (2) and (25) hold, then there exist
constants C, γ > 0 such that, for all t ∈ R+

0 ,

Eu,γ (t) + e−2γt

∫ t

0

∥∥u′γ(s)
∥∥2
ds ≤ Ce−2γt

(∥∥u′(0)
∥∥2

+ ‖u(0)‖21
)
. (30)

Proof. By (24) and (25) and choosing a suitable value for ε,

g(0) =

(
Ker (0)−

(
D2K

4ε2
+ 1

)
K

α

)
is positive. Then there exists γ ∈

(
0,min

{
α, c02ρ ,

m2

‖c‖∞

})
such that, from (26), we obtain (30).

From Corollary 3 we conclude that

lim
t→∞

(
Eu,γ (t) + e−2γt

∫ t

0

∥∥u′γ(s)
∥∥2
ds

)
= 0

exponentially. We observe that condition (25) imposed to guarantee the boundedness of Eu,0 is
sufficient to prove the existence of γ > 0 such that Eu,γ decreases to zero exponentially.
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Remark 1. If we consider a wave propagation in viscoelastic material following by a Maxwell-

Wiechert model, then Ker (s) =
1

2

n∑
i=1

Eie
−αis, s ∈ R+

0 where αi = Ei
µi
. In this case we can

take
α =

mini=1,...,nEi
maxi=1,...,n µi

.

To guarantee condition (25) we need to assume that the Young models Ei, i = 1, . . . , n, are
significantly larger than the viscosities µi, i = 1, . . . , n.

We establish in what follows an estimate for the energy functional

Eu,∇,γ(t) = Eu,γ (t) +

∥∥∥∥∫ t

0
Ker (t− s)∇u(s) ds−∇u(t)

∥∥∥∥2

, (31)

for t ∈ R+, where u is a solution of (42). Under suitable regularity conditions and using the
energy method, it is straightforward to show the following result.

Theorem 2. Let u ∈ L2(R+, H1
0 (Ω)) ∩H2(R+, L2(Ω)) be the weak solution of the IBVP defined

by (19) with homogeneous Dirichlet boundary conditions. If Ker ∈ H1(R+) is a kernel such that
Ker and Ker′ satisfies (5), then for 0 < γ < α, there exists C > 0 such that

ρ

2

∥∥u′(t)∥∥2
+ (m2 − γ ‖c‖∞) ‖u(t)‖2 + (D1 −D2) ‖∇u(t)‖2

+ 2(c0 − 2ργ)e−2γt

∫ t

0

∥∥u′γ(s)
∥∥2
ds

+D2

∥∥∥∥∫ t

0
Ker (t− s)∇u(s)ds−∇u(t)

∥∥∥∥2

+D2g(γ)

∫ t

0
e−2γ(t−s) ‖∇u(s)‖2 ds ≤ Ce−2γt

(∥∥u′(0)
∥∥2

+ ‖u(0)‖21
)
, t ∈ R+

0 , (32)

where ε 6= 0, uγ(t) = eγtu(t) and g(γ) is defined by

g(γ) = Ker (0)− K

α− γ

(
1 + γ +Ker (0) +

K(1 + γ)

α− γ

)
. (33)

Proof. Let γ > 0 be a real such that γ < α and let

I(t) =

∫ t

0
Kerγ (t− s)∇uγ(s)ds and Id(t) =

∫ t

0
Ker′γ (t− s)∇uγ(s)ds,

for t > 0. It can be shown that uγ(t) satisfies the following relation

ρ
d

dt

∥∥u′γ(t)
∥∥2

+ (ργ2 − γ ‖c‖∞ +m2)
d

dt
‖uγ(t)‖2 + 2(c0 − 2ργ)

∥∥u′γ(t)
∥∥2

+D1
d

dt
‖∇uγ(t)‖2 ≤ 2D2

(
Id(t),∇u′γ(t)

)
. (34)

It follows that (
I(t),∇u′γ(t)

)
= −1

2

d

dt
‖I(t)−∇uγ(t)‖2 −Ker (0) ‖∇uγ(t)‖2

+
1

2

d

dt
‖∇uγ(t)‖2 +Ker (0) (I(t),∇uγ(t))

− (Id(t),∇uγ(t)) + (I(t), Id(t)) ,

12



and, together with (34), we obtain

ρ
∥∥u′γ(t)

∥∥2
+ (ργ2 − γ ‖c‖∞ +m2) ‖uγ(t)‖2 + 2(c0 − 2ργ)

∫ t

0

∥∥u′γ(s)
∥∥2
ds

+ (D1 −D2) ‖∇uγ(t)‖2 +D2 ‖I(t)−∇uγ(t)‖2

+ 2D2Ker (0)

∫ t

0
‖∇uγ(s)‖2 ds ≤ 2D2Ker (0)

∫ t

0
(I(s),∇uγ(s)) ds

− 2D2

∫ t

0
(Id(s),∇uγ(s)) ds+ 2D2

∫ t

0
(I(s), Id(s)) ds

+ ρ
∥∥u′γ(0)

∥∥2
+ (ργ2 − γ ‖c‖∞ +m2) ‖uγ(0)‖2 +D1 ‖∇uγ(0)‖2 . (35)

It can be shown the following∫ t

0
(I(s),∇uγ(s)) ds ≤

∥∥Kerγ∥∥L1

∫ t

0
‖∇uγ(s)‖2 ds, (36)

−
∫ t

0
(Id(s),∇uγ(s)) ds ≤

∥∥Ker′γ∥∥L1

∫ t

0
‖∇uγ(s)‖2 ds

and ∫ t

0
(I(s), Id(s)) ds ≤

∥∥Kerγ∥∥L1

∥∥Ker′γ∥∥L1

∫ t

0
‖∇uγ(s)‖2 ds. (37)

Using Lemma 2 and (36)-(37), from (35) we get

ρ
∥∥u′γ(t)

∥∥2
+ (ργ2 − γ ‖c‖∞ +m2) ‖uγ(t)‖2 + 2(c0 − 2ργ)

∫ t

0

∥∥u′γ(s)
∥∥2
ds

+ (D1 −D2) ‖∇uγ(t)‖2 +D2 ‖I(t)−∇uγ(t)‖2

+ 2D2

(
Ker (0)− K

α− γ

(
1 + γ +Ker (0) +

K(1 + γ)

α− γ

))∫ t

0
‖∇uγ(s)‖2 ds

≤ ρ
∥∥u′γ(0)

∥∥2
+ (ργ2 − γ ‖c‖∞ +m2) ‖uγ(0)‖2 + (D1 −D2) ‖∇uγ(0)‖2 .

Considering that ∥∥u′γ(t)
∥∥2 ≥ 1

2

∥∥eγtu′(t)∥∥2 − γ2 ‖uγ(t)‖2 ,

we obtain

ρ

2

∥∥eγtu′(t)∥∥2
+ (m2 − γ ‖c‖∞) ‖uγ(t)‖2 + 2(c0 − 2ργ)

∫ t

0

∥∥u′γ(s)
∥∥2
ds

+ (D1 −D2) ‖∇uγ(t)‖2 +D2

∥∥∥∥∫ t

0
Kerγ (t− s)∇uγ(s)ds−∇uγ(t)

∥∥∥∥2

+ 2D2g(γ)

∫ t

0
‖∇uγ(s)‖2 ds

≤ ρ
∥∥u′γ(0)

∥∥2
+ (ργ2 − γ ‖c‖∞ +m2) ‖uγ(0)‖2 + (D1 −D2) ‖∇uγ(0)‖2 , (38)

where g(γ) is given by (33). Inequality (32) is easily obtained from (38).
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Corollary 4. Under the assumption of Theorem 2, if

0 <
K

α

K + α

K − α < Ker (0) (39)

and
D1 −D2 > 0, (40)

then there exist constants C, γ > 0 such that

Eu,∇,γ(t) + e−2γt

∫ t

0

∥∥u′γ(s)
∥∥2
ds ≤ Ce−2γt

(∥∥u′(0)
∥∥2

+ ‖u(0)‖21
)
, t ∈ R+

0 , (41)

where uγ(t) = eγtu(t).

Proof. From (39) it follows that g(0) > 0. Then there exists

γ ∈
(

0,min{α, c0

2ρ
,
m2

‖c‖∞
}
)

and C > 0 such that

∥∥u′(t)∥∥2
+ ‖u(t)‖2 + e−2γt

∫ t

0

∥∥u′γ(s)
∥∥2
ds

+ ‖∇u(t)‖2 +

∥∥∥∥∫ t

0
Ker (t− s)∇u(s)ds−∇u(t)

∥∥∥∥2

∫ t

0
‖∇u(s)‖2 ds ≤ Ce−2γt

(∥∥u′(0)
∥∥2

+ ‖u(0)‖21
)
,

and this inequality leads to (41) .

From the last result we conclude

lim
t→∞

(
Eu,∇,γ(t) + e−2γt

∫ t

0

∥∥u′γ(s)
∥∥2
ds

)
= 0,

exponentially, and consequently Eu,∇,γ decreases exponentially.

6 Continuous energy estimates for general operators

In this section we extend the results presented before for the wave equation to general integro-
differential equation (1) where the operators A and B are defined by

Av = −
n∑

i,j=1

∂

∂xi

(
aij

∂v

∂xj

)
+

n∑
i=1

∂

∂xi
(aiv) + a0v,

Bv = −
n∑

i,j=1

∂

∂xi

(
bij

∂v

∂xj

)
+

n∑
i=1

∂

∂xi
(biv) + b0v,

where aij , bij , i, j = 1, . . . , n and ai, bi, i = 0, . . . , n are functions whose regularity shall be
specified later and v ∈ C2(Ω).
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Let us introduce the weak form of the IBVP (1)-(2): let u ∈ L2(R+, H1
0 (Ω)) ∩H2(R+, L2(Ω))

and, for all T > 0, holds the following

(
ρu′′(t) + cu′(t), w

)
+ a(u(t), w) =

∫ t

0
Ker (t− s)b(u(s), w) ds+ (f(t), w),

a. e. in (0, T ), ∀w ∈ H1
0 (Ω),

u′(0) = u1,
u(0) = u0,

(42)

where, for v, w ∈ H1
0 (Ω),

a(v, w) =

n∑
i,j=1

(
aij

∂v

∂xj
,
∂w

∂xi

)
−

n∑
i=1

(
aiv,

∂w

∂xi

)
+ (a0v, w),

b(v, w) =
n∑

i,j=1

(
bij

∂v

∂xj
,
∂w

∂xi

)
−

n∑
i=1

(
biv,

∂w

∂xi

)
+ (b0v, w).

We assume that aij , bij ∈ L∞(Ω), i, j = 1, . . . , n, ai, bi ∈ L∞(Ω), i = 1 . . . , n and a0, b0, c ∈ L∞(Ω)
and these coefficients satisfy the following assumptions:

H1. There exists c0 > 0 such that c ≥ c0 in Ω.

H2. a(·, ·) is symmetric, continuous and elliptic, ie,

a(u, v) = a(v, u), ∀u, v ∈ H1
0 (Ω),

and there exist ae, ac > 0 such that

|a(u, v)| ≤ ac ‖u‖1 ‖v‖1 , ∀u, v ∈ H1
0 (Ω),

and
a(u, u) ≥ ae ‖u‖21 , ∀u ∈ H1

0 (Ω)

H3. b(·, ·) is continuous and elliptic, ie, there exist be, bc > 0 such that

|b(u, v)| ≤ bc ‖u‖1 ‖v‖1 , ∀u, v ∈ H1
0 (Ω),

and
b(u, u) ≥ be ‖u‖21 , ∀u ∈ H1

0 (Ω)

Let Eu,γ be defined by (20). In the first result we establish an estimate for the usual energy
for the wave equation

Eu,0 (t) +

∫ t

0

∥∥u′(s)∥∥2
ds, t ∈ R+

0 ,

where u is a solution of (42), that leads to the boundedness of Eu,0 in bounded time intervals.

Theorem 3. Let u ∈ H2(R+, L2(Ω)) ∩ L2(R+, H1
0 (Ω)) be a solution of (42). If hypothesis

H1-H3 hold, Ker ∈ H1(R) and Ker and Ker′ satisfy (5), then, for η, ε 6= 0, we have

ρ
∥∥u′(t)∥∥2

+
(
ae − ε2

)
‖u(t)‖21 +

(
2c0 − η2

) ∫ t

0

∥∥u′(s)∥∥2
ds

+

(
2Ker (0)be −

(
bcK

2ε2
− 2

)
Kbc
α

)∫ t

0
‖u(s)‖21 ds

≤ ρ
∥∥u′(0)

∥∥2
+ ac ‖u(0)‖21 +

1

η2

∫ t

0
‖f(s)‖2 ds, t ∈ R+

0 . (43)
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Proof. Considering in (42) w = u′(t) we obtain

ρ
(
u′′(t), u′(t)

)
+
(
cu′(t), u′(t)

)
+ a

(
u(t), u′(t)

)
=

∫ t

0
Ker (t− s)b

(
u(s), u′(t)

)
ds+

(
f(t), u′(t)

)
,

which can be rewritten in the following equivalent form

ρ
d

dt

∥∥u′(t)∥∥2
+ 2c0

∥∥u′(t)∥∥2
+
d

dt
a(u(t), u(t))

≤ 2

∫ t

0
Ker (t− s)b(u(s), u′(t)) ds+ 2

(
f(t), u′(t)

)
. (44)

It can be shown that holds the following∫ t

0
Ker (t− s)b

(
u(s), u′(t)

)
ds =

d

dt

∫ t

0
Ker (t− s)b(u(s), u(t)) ds

−Ker (0)b(u(t), u(t))−
∫ t

0
Ker′ (t− s)b(u(s), u(t))ds. (45)

Considering the representation (45) in (44) we further deduce that, for all η 6= 0,

ρ
d

dt

∥∥u′(t)∥∥2
+ 2c0

∥∥u′(t)∥∥2
+
d

dt
a(u(t), u(t)) + 2Ker (0)b(u(t), u(t))

≤ 2
d

dt

∫ t

0
Ker (t− s)b(u(s), u(t)) ds− 2

∫ t

0
Ker′ (t− s)b(u(s), u(t)) ds

+
1

η2
‖f(t)‖2 + η2

∥∥u′(t)∥∥2
.

Integrating over [0, t] and using H3 leads to

ρ
∥∥u′(t)∥∥2

+ a(u(t), u(t)) +
(
2c0 − η2

) ∫ t

0

∥∥u′(s)∥∥2
ds+ 2beKer (0)

∫ t

0
‖u(s)‖21 ds

≤ 2

∫ t

0
Ker (t− s)b(u(s), u(t)) ds+ 2

∫ t

0

∫ s

0
Ker′ (s− µ)b(u(µ), u(s)) dµds

+
1

η2

∫ t

0
‖f(s)‖2 ds+ ρ

∥∥u′(0)
∥∥2

+ a(u(0), u(0)). (46)

Using Lemma 1 it can be shown that

2

∫ t

0
Ker (t− s)b(u(s), u(t)) ds ≤ b2c

2ε2
K2

α

∫ t

0
‖u(s)‖21 ds+ ε2 ‖u(t)‖21

and ∫ t

0

∫ s

0
Ker′ (s− µ)b(u(µ), u(s)) dµds ≤ bc

∥∥Ker′∥∥
L1

∫ t

0
‖u(s)‖21 ds.

Considering the last two inequalities in (46) we obtain (43).
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Corollary 5. Under the assumptions of Theorem 3, if ε, ξ, η 6= 0, are such that

ae − ε2 > 0, (47)

2c0 − η2 > 0, (48)

2Ker (0)be −
(
bcK

2ε2
− 2

)
Kbc
α

> 0 (49)

there exists a constant C > 0 such that

Eu,0 (t) +

∫ t

0

∥∥u′(s)∥∥2

1
ds ≤ C

(∥∥u′(0)
∥∥2

+ ‖u(0)‖21 +

∫ t

0
‖f(s)‖2 ds

)
, t ∈ R+

0 . (50)

From the upper bound (50) we conclude that, for an isolated system (f = 0), Eu,0 is bounded
by the the energy of the system at t = 0.

In what follows we prove, for a class of differential operators A,B and kernels Ker, that there
exists a constant γ > 0 such that

Eu,γ (t) + e−2γt

∫ t

0

∥∥u′γ(s)
∥∥2

1
ds

decays to zero when t→∞. We start by establishing and upper bound for Eu,γ .

Theorem 4. Under the assumptions of Theorem 3, for ε, η 6= 0 and 0 < γ < α, we have

ρ

2

∥∥u′(t)∥∥2
+ (ae − γ ‖c‖∞) ‖u(t)‖2 + (ae − ε2) ‖∇u(t)‖2

+ (2(c0 − 2γρ)− η2)e−2γt

∫ t

0

∥∥u′γ(s)
∥∥2
ds+ g(γ)

∫ t

0
e−2γ(t−s)‖u(s)‖21ds

≤ 1

η2

∫ t

0
e2γ(t−s) ‖f(s)‖2 ds+ cp

(∥∥u′(0)
∥∥2

+ ‖u(0)‖2
)
, t ∈ R+

0 , (51)

where cp = max{ρ, γ, ργ2 − γ ‖c‖∞ , ae}, uγ = eγtu(t), t ∈ R+
0 and

g(γ) = 2Ker (0)be −
(
bcK(1 + γ)

2ε2
− 2

)
K(1 + γ)bc
α− γ (52)

Proof. Let uγ(t) = eγtu(t). This function satisfies

ρ
(
u′′γ(t), w

)
+ (c0 − 2γρ)

(
duγ
dt

(t), w

)
+ (γ2ρ− γ ‖c‖∞)(u(t), w) + a(uγ(t), w)

≤
∫ t

0
Kerγ (t− s)b(uγ(s), w) ds+ (fγ(t), w),

for w ∈ H1
0 (Ω), where Ker (s; γ) = Ker (s)eγs. Following the proof of Theorem 3, it can be

shown the following

ρ

2

d

dt

∥∥u′γ(t)
∥∥2

+
1

2
(γ2ρ− γ ‖c‖∞)

d

dt
‖uγ(t)‖2 +

1

2

d

dt
a(uγ(t), uγ(t))

+Ker (0)b(uγ(t), uγ(t)) + (c0 − 2ργ)
∥∥u′γ(t)

∥∥2

=

∫ t

0
Ker′γ (t− s)b(uγ(s), uγ(t))ds

+
d

dt

∫ t

0
Kerγ (t− s)b(uγ(s), uγ(t)) ds+

(
fγ(t), u′(t)

)
,
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that leads to

ρ
∥∥u′γ(t)

∥∥2
+ (ργ2 − γ ‖c‖∞) ‖uγ(t)‖2 + ae ‖uγ(t)‖21

+ 2Ker (0)be

∫ t

0
‖uγ(s)‖21 ds+ 2(c0 − 2γρ− η2)

∫ t

0

∥∥u′γ(s)
∥∥2
ds

≤ 2bc

∫ t

0

∫ s

0
Ker′ (s− µ; γ) ‖uγ(µ)‖1 ‖uγ(s)‖1 dµds

+ 2bc

∫ t

0
Kerγ (t− s) ‖uγ(s)‖1 ‖uγ(t)‖1 ds+

1

2η2

∫ t

0
‖fγ(s)‖2 ds

+ ρ
∥∥u′γ(0)

∥∥2
+ (ργ2 − γc) ‖uγ(0)‖2 + ac ‖uγ(0)‖21 ,

where η 6= 0.
As before, for 0 < γ < α, we also have

ρ
∥∥u′γ(t)

∥∥2
+ (ργ2 − γ ‖c‖∞ + ae) ‖uγ(t)‖2 + (ae − ε2) ‖∇uγ(t)‖2

+ (2(c0 − 2γρ)− η2)

∫ t

0

∥∥u′γ(s)
∥∥2
ds+ g(γ)

∫ t

0
‖uγ(s)‖21 ds

≤ 1

η2

∫ t

0
‖fγ(s)‖2 ds+ ρ

∥∥u′γ(0)
∥∥2

+ (ργ2 − γ ‖c‖∞) ‖uγ(0)‖2 + ae ‖uγ(0)‖21 ,

where ε 6= 0, that implies

ρ

2

∥∥eγtu′(t)∥∥2
+ (ae − γ ‖c‖∞) ‖uγ(t)‖2 + (ae − ε2) ‖∇uγ(t)‖2

+ (2(c0 − 2γρ)− η2)

∫ t

0

∥∥u′γ(s)
∥∥2
ds+ g(γ)

∫ t

0
‖uγ(s)‖21 ds

≤ 1

η2

∫ t

0
‖fγ(s)‖2 ds+ ρ

∥∥u′γ(0)
∥∥2

+ (ργ2 − γ ‖c‖∞) ‖uγ(0)‖2 + ae ‖uγ(0)‖21 , (53)

where g(γ) is defined by (52). Finally, (51) follows immediately from (53).

Corollary 6. Under the assumptions of Theorem 4, if the parameters ε, η 6= 0 satisfy the
inequalities (47), (48) and (49), then there exist constants C, γ > 0 such that

Eu,γ (t) + e−2γt

∫ t

0

∥∥u′γ(s)
∥∥2
ds

≤ Ce−2γt

(∫ t

0
e2γs ‖f(s)‖2 ds+

∥∥u′(0)
∥∥2

+ ‖u(0)‖21
)
, t ∈ R+

0 ,

where uγ(t) = eγtu(t).

Corollary 6 allows to conclude that in a isolated system, that is, with f = 0, we have

lim
t→∞

(
Eu (t) + e−2γt

∫ t

0

∥∥u′γ(s)
∥∥2
ds

)
= 0,

exponentially and consequently Eu decreases to zero with the same rate.
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7 Decay of numerical waves with memory

In this section we establish that numerical approximations for the solution of the IBVP (1)-(2)
with homogeneous Dirichlet boundary conditions present the same qualitative behaviour of the
solution of this problem. Let Ω ⊂ R2 be a bounded polygonal domain and let h > 0 be a fixed
parameter and let Th be an admissible triangulation of Ω with diameter h, that is,

h = max
4∈Th

diam(4),

where diam(4) denotes the diameter of the element4 Let Vh be the space of piecewise polynomials
of degree m defined in Th, that is

Vh = {v ∈ C0(Ω) : v = 0 on ∂Ω, v = pm in 4, 4 ∈ Th},

where pm denotes a polynomial of degree at most m. By P∂Ω and PΩ we represent the set of
nodes of Th on ∂Ω and Ω, respectively. Let {φP , P ∈ PΩ} be a basis of Vh. The finite element
approximation for the solution of the IBVP (1), (2) with homogeneous Dirichlet boundary
conditions is uh(x, t) =

∑
P∈PΩ

αP (t)φP (x) that satisfies the following



(u′′h(t), wh) + (cu′h(t), wh) + a(uh(t), wh)

=

∫ t

0
Ker (t− s)b(uh(s), wh) ds+ (f(t), wh),

a. e. in R+, ∀wh ∈ Vh,
u′h(0) = u1,h,
uh(0) = u0,h.

(54)

In (54) u1,h and u0,h are approximations of u1 and u0 in Vh. To compute uh(t) we need to solve
the following system of second order integro-differential equations

Mhα
′′(t) + Chα

′(t) +Ahα(t) =

∫ t

0
Ker (t− s)Bhα(s) ds+ Fh(t), t ∈ R+,

α′(0) = U1,h,
α(0) = U0,h,

(55)

where α(t) = [(αP (t))P∈PΩ
] , Ui,h, i = 0, 1, are the vectors whose components are the coordinates

of ui,h, i = 0, 1, with respect to the basis {φP , P ∈ PΩ}, and

Mh = [((φP , φQ))P,Q∈PΩ
] ,

Ch = [((cφP , φQ))P,Q∈PΩ
] ,

Ah = [(a(φP , φQ))P,Q∈PΩ
] ,

Bh = [(b(φP , φQ))P,Q∈PΩ
] ,

Fh(t) = [((f(t), φQ))Q∈PΩ
] .

Introducing the new variable Z(t) = (z1(t), z2(t)) where z1(t) = α(t), z2(t) = α′(t), then the
initial value problem (55) of second order is equivalent to Z ′(t) = AhZ(t) +

∫ t

0
Ker (t− s)BhZ(s) ds+ Fh(t), t ∈ R+,

Z(0) = Uh,
(56)

19



where

Ah =

[
0 I

−M−1
h Ah −M−1

h Ch

]
,Bh =

[
M−1
h Bh 0
0 0

]
,

Fh(t) =

[
0

M−1
h Fh

]
,Uh =

[
U0,h

U1,h

]
.

As the unique solution of the IVP (56) is smooth enough, then for the unique solution
uh(t) ∈ Vh of (54) it can be shown the following result.

Proposition 3. Let us suppose that the assumptions of Theorem 3 hold for the finite element
solution uh. If (47), (48) and (49) also hold then there exist constants C, γ > 0 such that

Euh,γ (t) + e−2γt

∫ t

0

∥∥u′h,γ(s)
∥∥2
ds

≤ Ce−γt
(∫ t

0
‖f(s)‖2 ds+

∥∥u′h(0)
∥∥2

+ ‖uh(0)‖21
)
, t ∈ R+

0 ,

where uh,γ(t) = eγtuh(t).
For f = 0 we have

lim
t→∞

(
Euh,γ (t) + e−γt

∫ t

0

∥∥u′h,γ(s)
∥∥2
ds

)
= 0,

exponentially.

For the particular case A = B = −∆ the previous result can be improved. In fact the following
result can be stated for the energy Euh,∇,γ .

Proposition 4. Let us suppose that the assumptions of Theorem 1 are valid for the finite element
solution uh. If the conditions (39) and (40) also hold then there exist constants C, γ > 0 such that

Euh,∇,γ(t) + e−2γt

∫ t

0

∥∥u′h,γ(s)
∥∥2
ds

≤ Ce−2γt

(∫ t

0
‖f(s)‖2 ds+

∥∥u′h(0)
∥∥2

+ ‖uh(0)‖21
)
, t ∈ R+

0 .

For f = 0 we have

lim
t→∞

(
Euh,∇,γ(t) + e−2γt

∫ t

0
‖uh,γ(s)‖2 ds

)
= 0,

exponentially.

8 Numerical results

In this section we illustrate the qualitative behaviour of numerical solutions of (55) for the
equation studied in section 6, a particular choice of kernel and a set of associated parameters.
The choice of kernel is motivated by the example given and its frequent reference in literature.
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Let us introduce the specifics of our test problem. Let Ω = (−1, 1)2. In this setup, consider
the following differential problem

u′′(t) + cu′(t)−D1∆u(t) = −D2

∫ t

0
Ker (t− s)∆u(s)ds, t ∈ (0, T ),

u(x, y, 0) = e−10(x2+y2), (x, y) ∈ Ω,
u′(x, y, 0) = 0, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ [0, T ],

where T > 0 and c,D1, D2, τ > 0 are constants. In this equation we take exponential kernels of
the form Ker (t) = τ−1e−

t
τ , t ∈ R+

0 .
Following the spatial discretisation in (54), we introduce the time step ∆t and a uniform

partition tj = j∆t, j = 0, 1, 2, . . . , N = [ T∆t ]. Applying standard centered finite differences schemes
in time and the composite trapezoidal rule to the formulation (55), the following second order in
time method is obtained:(

un+1
h − 2unh + un−1

h

∆t2
, v

)
+ c

(
un+1
h − un−1

h

2∆t
, v

)
+D1

(
∇un+1

h ,∇v
)

=
D2∆t

2τ

n∑
j=0

(
e−

tn+1−tj+1
τ ∇uj+1

h + e−
tn+1−tj

τ ∇ujh,∇v
)
, (57)

where ujh is an approximation for u(tj), j = 0, 1, . . . , N .
Let

In+1 =
D2∆t

2τ

n∑
j=0

(
e−

tn+1−tj+1
τ ∇uj+1

h + e−
tn+1−tj

τ ∇ujh
)
.

It is easy to show that In satisfies
In+1 = e−

∆t
τ In +

D2∆t

2τ

(
e−

∆t
τ ∇unh +∇un+1

h

)
, n > 1,

I1 =
D2∆t

2τ

(
e−

∆t
τ ∇u0

h +∇u1
h

)
.

With this new notation, method (57) can be rewritten as((
1

∆t2
+

c

2∆t

)
un+1
h , v

)
+

(
D1 −

D2∆t

2τ

)(
∇un+1

h ,∇v
)

=

(
2

∆t2
unh +

(
c

2∆t
− 1

∆t2

)
un−1
h , v

)
+ e−

∆t
τ (In,∇v) . (58)

Remark 2. The integral term in (42), discretized in (57), should be implemented following (58).

Let the fully discretisation of Euh,∇,γ (31) be defined by

Eh,n =

∥∥∥∥∥unh − un−2
h

2∆t

∥∥∥∥∥
2

+ ‖unh‖21 + ‖In −∇unn‖2 , n > 2.

The behaviour of Eh,n is clearly illustrated in Figure 3, for different values of D2 and τ . It can
be observed that the larger the damping factor c is, the faster the discrete energy approximates
zero.

A similar result is observed when analysing the numerical solution at the central point (0, 0) of
the square [−1, 1]2. As expected from the previous results, the solution at this point approximates
zero. In Figure 4 we plot the numerical solution at this point, for the same profiles as in Figure 3.

21



0 2 4 6 8 10

10−1

100

τ = 1 τ = 10−2

τ = 10−3 τ = 10−4

(a) c = 0.25, D2 = 0.1

0 2 4 6 8 10

10−4

10−2

100

τ = 1 τ = 10−2

τ = 10−3 τ = 10−4

(b) c = 1, D2 = 0.1

0 2 4 6 8 10
10−2

10−1

100

101

10−1

τ = 1 τ = 10−1

τ = 10−3 τ = 10−4

(c) c = 0.25, D2 = 0.01

0 2 4 6 8 10

10−4

10−3

10−2

10−1

100

101

τ = 1 τ = 10−1

τ = 10−2 τ = 10−4

(d) c = 1, D2 = 0.01

Figure 3: Plot of discrete energy for different damping factors and coefficients D2, τ (D1 = 1).

9 Conclusions

Wave equations with memory, can be reduced in certain scenarios, to a classical wave equation or
to the diffusion equation with memory that is often used to model diffusion processes characterized
by fickian and nonfickian mass fluxes. Based in these two facts, a new energy functional for the
wave equation with memory is introduced in this paper. Using the energy method, upper bounds
for this new energy functional are established. Such upper bounds are then used to establish
sufficient conditions for its exponential decay. We remark that exponential decay of other energy
functionals were proved in the literature and some of them can be obtained from the results
presented here. The results obtained for the wave equation were generalized for a more general
class of problems.
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Figure 4: Discrete solution at point (0,0) for different damping factors and coefficients D2, τ .

To simulate the energy behaviour we introduce a fully discrete model based on finite element
approach. We showed that the semi-discrete counterpart of the equation (obtained by discretisation
in space with finite elements) inherits the same property. The numerical waves defined using the
exponential kernel Ker (s) = τ−1e−

s
τ , s ∈ R+

0 also exhibit the same qualitative behaviour.
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