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We use the liquid drop model, with the stabilized jellium model, and the Strutinsky shell correction method
[Nucl. Phys. A 95, 420 (1967); 122, 1 (1968)], with the two-center asymmetric deformed harmonic-oscillator
potential, to evaluate fission barriers for three representative simple metal clusters (sodium, aluminum, and
potassium). We obtain fission barrier heights as a function of size, charge, and mass asymmetry for all possible
decay channels of doubly charged clusters with up to 30 atoms. We show how fragment deformations change
the barrier height. For small sodium and potassium clusters we find good agreement of the fission barriers with
molecular-dynamics calculations. The critical number (cluster size for which fission competes with evapora-
tion) is correctly reproduced for doubly charged clusters of the three metals considered.

[S0163-1829(98)00808-X]

I. INTRODUCTION

The liquid drop model (LDM) is useful to understand the
main trends of metal cluster fission. If we consider a charged
simple metal cluster as a spherical liquid drop consisting of
valence electrons in the field created by a positive back-
ground (jellium’ or stabilized jellium,? which is essentially
jellium corrected by introducing a constant potential inside
the metal), there are two main competing terms: the surface
energy, which tries to keep the system spherical, and the
Coulomb energy, which tends to deform it. Fission is con-
trolled by the fissibility x, which is half of the ratio between
those two quantities. Assuming that the fission channel is
determined by minimizing the heat of reaction, very asym-
metric reactions are favored for small x and as x approaches
unity, the Coulomb term becomes dominant and symmetric
splitting prevails.

However, the decay channel is determined by the fission
barrier rather than the heat of reaction. We studied in Ref. 3
fission barriers of metallic clusters using the LDM within the
jellium model. In particular, we calculated the barrier height
as a function of mass and charge asymmetry for different
fissibilities. A good account of the experimental critical num-
bers (cluster sizes for which the evaporation energy is equal
to the fission barrier) was made.

Quantal shell effects change the LDM heats of reaction:
The channels with the more stable fragments become clearly
the most favorable.*” These corrections to the liquid drop
energy are essential for obtaining not only realistic heats of
reaction but also good barrier heights. The shell correction
method (SCM) is adequate to study complex quantal systems
when more rigorous methods are useless, such as large or
deformed nuclei or clusters, and has been systematically ap-
plied to nuclear fission with great success. In the SCM, shell
corrections are evaluated replacing the effective potential
“felt”” by the valence electrons by a simpler, non-self-
consistent potc:ntial.6 The total energy is obtained by adding
these shell fluctuations to the smooth LDM energy. One ad-
vantage of the SCM is that it may be used, with little in-
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crease of computational cost, for systems with arbitrary size
and charge.

In a previous work,” we used the SCM to study symmetric
fragmentations of sodium clusters, concluding that shell cor-
rections play a crucial role in shaping fission barriers and
that the two-center harmonic oscillator is able to reproduce
the major quantal oscillations. Yannouleas and Landman®
used recently the two-center asymmetric harmonic oscillator’
to study the influence of shell effects on a couple of sodium
cluster decays. These authors have pointed out the impor-
tance of allowing for fragment deformations to obtain correct
fission barriers. The present work is an extension of those
studies aiming at systematically evaluating fission barriers
for several charged metal clusters. We study fission barriers
of double charged clusters of sodium, aluminum, and potas-
sium containing up to 30 atoms. The barriers are calculated
for all possible decay channels including independent ellip-
soidal deformations of both fragments. We analyze the role
of mass asymmetry and fragment deformations in the fission
barriers.

The experimental information on the fission of charged
clusters is scarce. Niher ef al.'® determined critical numbers
for a set of alkali-metal clusters ionized up to seven times. In
addition to the critical numbers, we know the barrier heights
of systems with a size close to N, and the main decay chan-
nel. Bréchignac efal'' measured barriers heights.
Recently,'? her group was able to determine the internal and
the external fission barriers for charged metal clusters by
measuring the decay rates and the kinetic energy of the emer-
gent fragments. For systems with N=N_ the fissibilities are
moderate (x=~0.5),> corresponding to very asymmetric reac-
tions. The most favored decay channel, within the LDM, has
then one small singly charged fragment. Shell corrections do
not change this result. Therefore, symmetric fission, common
in nuclei, !s not expected and has not been observed in
alkali-metal clusters. Notwithstanding, we will point out a
small number of examples for which symmetric fission may
be found due to the special stability of the fragments.

This work is organized as follows. In Sec. II we discuss
briefly the liquid drop formula for charged spherical and de-
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TABLE 1. Liquid drop coefficients for the stabilized jellium
model. The values for aj=4'rrrfo- and a,=2r,y are taken from
Fiolhais and Perdew (Ref. 14). The values of ¢ are from Vieira,
Brajczewska, and Fiolhais (Ref. 4) (Al) and from Seidl and Brack
(Ref. 16) (Na; these authors used jellium instead of stabilized jel-
lium). The values of d, are from Kiejna (Ref. 15).

Metal (r,) a; (eV) a, (eV) ¢ d, (au.)
Na (3.93) 0.58 0.26 —0.082 127
Al (2.07) 0.87 0.65 —0.1 1.01

formed clusters and present the potential to be used in the
SCM. In Sec. III we present results for barrier heights of
doubly charged sodium, aluminium, and potassium clusters,
with up to 30 atoms. The results of our calculations, for
spherical as well as deformed fragments, are compared with
molecular dynamics and experiment. The critical numbers
are determined and compared with experiment. Section IV
contains the conclusions, after further comparison with other
theoretical results. A short report on some of these results
appears in Ref. 13.

II. SHELL CORRECTION METHOD

A. Liquid drop model

For a spherical cluster with N valence electrons and z
missing electrons, the LDM energy is (we use [=c=f=1)

Eipm(N,z2)=a,V+aS+yC+z +(2)%acou

(1)

where V=%mR} is the volume (Ro=rN'" is the cluster
radius, 7, being the density parameter), S:417R% is the sur-
face, and C=2wR, is half the mean curvature. The param-
eters a,, o, and 7y are the volume, surface, and curvature
coefficients for a neutral cluster (see Table I). The fourth
term of Eq. (1) includes the work function W and its first-
order size correction, so that the chemical potential is u
=—(W+c/R,). The last term is the classical electrostatic
energy, obtained under the assumption that the cluster is a
perfect conductor: acq,= 1/2(Ry+d;). The parameter d; ac-
counts for the charge spill-out effect: The position of the
excess charge lies on a radial centroid displaced d, from the
jellium surface.

For a deformed cluster, Eq. (1) holds with the following
modifications: (i) §=[dA; (ii) C=5[(1/R pint /R pa) dA,
with R ;, and R, the principal radii of curvature at a point
of the surface; (iii) since the correction to the work function
is unknown for deformed systems, we have used an interpo-
lation formula between the limits ¢/R, and c¢(1/R |+ 1/R,),
where R, and R, are the radii of the final spherical frag-
ments; (iv) @egy i calculated numerically assuming always
that the excess charge is distributed on the surface (we fol-
low Ref. 17 to obtain the distribution of charge). Volume is
conserved during deformation and fragmentation.

W+ -
Ry
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FIG. 1. Top: a cluster shape described by Eq. (7) with d
=25, § =20, §,=0.5, and A= 1.52. Bottom: the z dependent po-
tential given by Eq. (4).

The LDM gives a good average of the Kohn-Sham ener-
gies of spherical jellium clusters, even for very small clus-
ters, neutral'® as well as charged.4 If the spherical symmetry
is broken, the agreement of the LDM with quantal results is
even better since the shell fluctuations becomes less
pronounced. 19

For very asymmetric reactions, the usually neglected cur-
vature term, the work function size correction, and the spill-
out effect may be relevant to the LDM fission barriers. Let us
estimate the contribution of these terms to the heat of the
reaction [N]** —=[N—p]*+[p]" for large N and small p.
The curvature term cont\ribution is a, p'®. Additionally, we
get terms like ‘ ’

C
r_p—l.fB (2)
and
d;,  _
“ 527 " 3)
r.ﬁ‘
For Na™ with p=3, we obtain 0.74+(—0.39)

+(—0.03)=0.32 eV, with the successive terms associated
with a,, ¢, and d,, respectively. We remark that in the LDM
we always refer to electronic density shapes, which do not
need to agree with positive background shapes, when using
jellium type models for the ions.

B. Potential

The two-center asymmetric harmonic-oscillator potential
(Fig. 1), with centers at z; <0 and z,>0, is
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1 2 2 1 2 2 2
Ewpl(Z)Pl+5wz](Z_Zl) + Vaeet(2)+ L), <0

Vip.z)=

—_—

2

The frequency associated with the coordinate p, w,(2), in-
terpolates smoothly between the frequencies in the p direc-
tion on the left-hand side Wp, and the right-hand side wp:

wy(2)= o +af(z—2)*+Elz—2)*0(|z| — |z])],
)
where «; and &; are parameters to be determined and & is the

step function. The term V., which is included to smooth
the cusp in the origin, has the form

1
Vneck:igi wgi(z_zi)‘tg(!d—lzil)- (6)

The cluster shape corresponding to the single-particle poten-
tial is obtained by assuming that the surface is an equipoten-
tial with value V=1 w3R? (see Fig. 1):

VogRy— w}(z—z;)*— Ew}(z—2,)* 0(|z| |z/])

w,(2)

plz)=
(7)
The quantity

wo=e€x/(3N)'"?, (8)

with ep the Fermi energy, is the corresponding harmonic-
oscillator frequency. The shapes obtained are ellipsoids (pro-
late or oblate) connected by a smooth neck (see Fig. 1).
The values of ¢; and «; are obtained by imposing the
continuity condition on p(z=0) and V(p,z=0) and on their
first derivatives dp(z)/dz|,-o and dV(p,z)/dz|,~¢. The re-
sults are :

1
5= 2_z,-2’ €))
W, Z1= 0,22, (10)
2, ) ) 2
wp1+ Ealzl_wp2+§a252' (11)

When d=z,—z,—, we should get two independent Nils-
son potentials, i.e., @;—0 for large z; (i=1,2). Using
wf,(z =0)= %(“’:231 + miz), we obtain

o:-=l(cu2 —w2) (12)
A Py’
i

2 2.1 2 2 >0
5 @p,(2)0°+ 50 (2723)"+ Viea(2) + U(F), 220

)

These continuity conditions together with the volume conser-
vation condition lead to four independent shape parameters:
the distance between the two semiellipsoides d=z,—z;. the
deformation of each fragment c?,-:ij/ w;, (i=1,2), and A

= mpl/mpz, which is related to the mass asymmetry param-
eter a=p/N by

5 (1-a)]?
&

(13)

The Schrodinger equation for the potential of Eq. (4) is
separable in the coordinates p and z by expressing the wave
function as |n, N,)=|n_)|N,), with n, and N,=2n,+ |m|
the quantum numbers in the z and p directions, and |#,) and
IN,) the respective wave functions. For the symmetry axis,
the wave functions and respective eigenvalues €, are ob-
tained by numerical integration. The energy spectrum is
given by [neglecting the U(F) term]

Enz,np'm=€z+wp(Np+1), (14)

where w,= (@, + wy)/2.
To this energy we add a contribution due to the term

U(P)=~Up wi{(IP—{P),). (15)

This decreases the degeneracy of the harmonic oscillator by
favoring the electrons with higher angular momentum. The
effect of this term is calculated following Ref. 20, with the
parameter Up=0.04 adjusted to mimic the energy-level
structure of the self-consistent spectrum obtained from the
spherical jellium model.

C. Shell corrections

Shell corrections arise because of fluctuations in the ac-
tual distribution of single-particle ievels with respect to a
smooth distribution. Strutinsky has proposed a technique to
extract an average total energy from a given single-particle
energy spectrum €; (i=1,2,...).° The shell correction is
given by '

N
Esc:zl e—E, (16)

where E is a conveniently defined average energy. The po-
tential energy is the sum of the LDM term and the shell
correction
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E=E; pytEsc. (17)

Let us estimate the shell corrections effect on the fission
barrier. Using the simple harmonic-oscillator potential, the
largest shell correction for a spherical cluster with N valence
electrons is Eg-=eN'>. Shell corrections are more impor-
tant for high-density metals, such as aluminum (ep~ Ilrf).
On the other hand, for the spherical potential with infinite
walls, we have Eg-=¢epN . Since the effective potential
“felt” by the valence electrons in the cluster is intermediate
between these two potentials, we expect that, for a given
metal, shell corrections do not depend very much on cluster
size.

For z=+y=0, the LDM barrier height is

Ey=aa®+(1-a)P—1]N?3, (18)

We compare now the shell correction with this quantity

Esc  €r N

Ey s [o®(1-a)®-1]

AESC: (19)

We conclude that (i) shell corrections are essential for small
clusters, (i) AEg. decreases with N™27 for symmetric fis-
sion, and (iii) for a given fragmentation channel p, AEg.
goes with p~ % when N— o, so that shell corrections may
be important even for the fission of big clusters.

We may use Eq. (19) to compare shell corrections of clus-
ters and nuclei. For typical values a,~1 eV and e;~3 eV
for clusters and a;~18 MeV and e;~8 MeV for nuclei, we
find that, for a given number of particles, AEg- may be
about 6 times higher for clusters than for nuclei.

III. RESULTS

To test the SCM, we compare in Fig. 2 the barrier for the
reaction Na,,>"—Na;*+Na; " calculated with the SCM
with that obtained by Barnett e al.”' using quantal molecular
dynamics (MD) in the local-spin-density approximation. The
agreement is rather good. In the same figure, we also com-
pare our results with those obtained by Rigo et al.® for the
reaction Na,,>* —Nay; ¥ +Nay ™ by solving the Kohn-Sham
equations for two intersecting jellium spheres. The two de-
formation energies agree, having their minimum and maxi-
mum at similar positions.

Encouraged by these agreements, we proceed to study
systematically the barrier heights of several small clusters
decaying in all possible channels. We consider the potential
energy of Na;s°" as a function of the distance d between
fragments and the fission channel p (Fig. 3). This system is
interesting since emission of the magic piece Na;* competes
with symmetric fission in two magic pieces.

We present the result of two calculations. In the first we
keep the mother and the daughter clusters with a spherical
shape, fixing the deformation parameters to be §;=48,=1
(SCM-sph). In the second case (SCM-def) we consider the
four degrees of freedom (d, A, &, and &,). The determina-
tion of the fission path when the energy depends on more
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FIG. 2. (a) Comparison of SCM results with molecular dynam-
ics for the reaction Nao>" —Na; " +Nay™ (Ref. 21). In the SCM
both the mother and the daughter clusters are kept spherical for both
reactions. (b) Comparison of the fission barrier obtained in the SCM
with Kohn-Sham (KS) results for deformed jellium (Ref. 22).

than three parameters is a difficult task. Instead, we fix the
distance d and the asymmetry A and choose &; and &, mini-
mizing the total energy. Doing this, we are assuming that for
a given separation between unequal fragments the system
adjusts instantaneously its shape to the lowest-energy con-
figuration (adiabatic approximation). However, this proce-
dure does not guarantee that we are following the path with
the lowest-energy barrier among all possibilities in the mul-
tidimensional landscape.

In the first case, the channel p=2 has a minimal energy
just before reaching the scission point (d=~23 bohrs). How-
ever, as the system crosses this point, a sudden energy in-
crease occurs due to the Coulomb self-energy of the smaller
fragment. The channel with the lowest barrier corresponds to
the splitting in two magic fragments (p=9). In the second
case, the channel p==6 has the lowest barrier (0.12 eV).

Table II shows the barrier heights corresponding to the

decays Nay®*—Nay_," +Na,”, with 6<N=<30, for the
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FIG. 3. (a) Potential energy for the system Nas*>* as a function
of the distance d between the fragments and the fission channel p,
keeping the fragments spherical (SCM-sph). (b) Same as (a) but
minimizing the energy with respect to the parameters 8, and &,
(SCM-def). The energy is in eV.

most favorable channel p, for several cluster sizes (see Fig. 1
of Ref. 13). We conclude that shell effects are quite strong
and that spherical and deformed approaches give rather dis-
tinct results. For N=10, the LDM barrier vanishes and the
barrier is exclusively due to electronic shell effects. The
LDM predicts that symmetric fission is favored for x>0.57,
corresponding to N<21. This prediction is partially corrobo-
rated by our SCM-def results since we find fission to be
symmetric for N=6, 8, 12, 14, 16, and 18.

The most favorable channel has, in general, a magic, or
near-magic piece (p=3, 9, or 21), in agreement with the
heat of reaction analysis.> However, the channel p=3 is the
most favored only for a small number of systems. The very
asymmetric channel p=2, not predicted on the basis of the
heats of reaction, is the most favored for small clusters in the
SCM-sph. For 6=N=12, the favored decay channel in our
calculations is not always p=3, as indicated by Barnett et
al.*" and, for N=6 and 7, the SCM-sph predicts spontane-
ous fission. The most favored channel for the decay of
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TABLE 1II. Barrier heights E, (in eV) for the most favorable
decay channel p of Na,** and Aly** clusters obtained with the
SCM with spherical and deformed fragments.

NaNZ i Al NZ i

Spherical Deformed Spherical Deformed
N Ey P E, P E, 2 Ey P
2 000 I 000 1
3 178 1 1.00 1
4 176 1 182 2
5 176 1 18 2
6 000 3 049 3023 3 102 2
7 000 3 045 3 1.05 1 256 I
8 011 2 056 4 130 1 1.23 1
9 032 2 073 4 131 1 094 4
10 054 2 091 5 140 1 154 3
11 020 2 070 5 117 1 166 3
12 042 2 057 6 255 1 18 2
13 046 2 0.59 6 175 5 198 6
14 046 2 064 7 088 5 076 6
15 059 2 038 7 122 2 067 6
16 064 5 034 8 .09 2 100 5
17 034 5 012 8 122 2 1% 7
18 025 9 013 8 148 2 302 2
19 026 6 046 5 178 1 1.90 5
20 027 5 080 5 166 1 2350 10
21 037 3 0% 4 267 & 245 )
23 053 4 113 4
23 038 3 084 4
24 034 2 057 3
25 025 2 061 4
26 026 2 068 4 N
27 046 2 088 4
28 074 2 1.06 4
29 076 4 087 5
30 077 3 097 5

Na,;*t is p=4 (SCM-def) or p=2 (SCM-sph), close to the
result p=3 of Ref. 23.

For both spherical and deformed versions of the SCM,
initial clusters with a magic number of electrons, such as N
=10 and 22, are particularly stable with respect to fission.
For these clusters, we find that the SCM-def barrier is higher
than the SCM-sph one. This is due to the fact that, in the path
to fission, the system goes through a configuration with
lower potential energy. By virtue of their special stability,
these clusters are good candidates for the experimental study
of the so-called rapid fission (characterized by charging cold
clusters by photoionization).

The SCM-def gives rise, in general, to higher fission bar-
riers than the SCM-sph, especially for N=<16 and 20<=N
=23. This may be due to the deformation of nonmagic clus-
ters, whose ground-state energies can be much lower than
those of spherical ones. For N=28, 29, and 30 the barrier is
only slightly higher than the evaporation energy for spherical
fragments. This fact agrees with experimental data from
Bréchignac er al.,* who detected a strong competition be-
tween fission and evaporation in that size range. The critical
number for these clusters is N.= 27 (SCM-def) or 28 (SCM-
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FIG. 4. (a) Fission barrier height of K" for the magic channel
p=23 in the SCM with spherical fragments (SCM-sph), in compari-
son to the molecular-dynamics (MD) results of Bréchignac er al.
(Ref. 26). (b) Fission barrier heights for Ky** for the magic chan-
nel p=3 in the SCM with deformed fragments (SCM-def), in com-
parison to the experimental results (Expt.) (Ref. 27). E.,, denotes
the LDM evaporation energy.

sph), in excellent agreement with the experimental value
N,=27x1.1 :

Table II presents, in parallel with the results for sodium,
the barrier heights for the decay of doubly charged aluminum
clusters (see Fig. 2 of Ref. 13). To simplify the notation, for
aluminum (valence 3), N denotes the number of atoms and
not the number of valence electrons (we take 2<N=21).
Systems with 7, 13, and 18 atoms are particularly stable,
while clusters with 6, 9, 14, 15, and 16 atoms have smaller
barriers. In contrast to sodium clusters, and with the excep-
tions of N=7, 17, and 18, the SCM-def and SCM-sph bar-
riers are very similar.

Shell effects are more pronounced than in the case of
sodium [about two times higher, as predicted by Eq. (19)].

TABLE III. Channel p with the lowest (first number) and the
second lowest energy barrier (second number) in comparison to the -
observed potassium decay channels (Ref. 23).

N SCM-sph SCM-def Expt.
20 3.4 34 37
21 4,3 3,6 37
22 3.2 3,6 3
23 3.4 34 i 3
24 23 34 3
25 3.4 34 35
26 23 43 39
27 2,3 43 3

These strong shell effects are responsible for the following
features. First, the SCM critical numbers (N =21 and 20 for
SCM-sph and SCM-def, respectively) are much lower than
the LDM value, due to the high stability of Alg*". Second,
the favorable decay channels predicted by the heat of reac-
tion analysis* are not those with the lowest barrier, except for
N=5,17, 8, 10, and 11. Finally, smaller clusters (N<14)
have significant barriers, with heights between 1 and 2 eV,
while for N<5 the LDM shows no barrier. The cluster
Al,*" breaks spontaneously in two magic fragments.

Performing an all-electron ab initio calculation, Martinez
and Vela®® concluded that p=1 is the favored decay channel
of small doubly charged aluminum clusters, with 2<<N<6,
in good agreement with our SCM-sph results.

Let us consider the fission of doubly charged potassium
clusters. Figure 4 presents our results in comparison with
MD calculations done by Bréchignac ez al.*® For potassium
we use the jellium values of the LDM coefficients: a,
=0.54 eV, a,=0.17 eV, ¢=-0082, and d;=1.17
bohr. The SCM-sph fission barriers are in good agreement
with MD results for 7<N=10, but for N=11 and 12 the
barriers are overestimated. The system K;>* has no fission
barrier in our calculations, while MD gives a 0.08-eV barrier.
The magic cluster K ,,** has the highest barrier in both
cases.

Figure 4 also compares our barriers heights for the decay
of doubly charged potassium clusters with an experimental
estimate by Bréchignac et al.”” Although our barriers are, in
general, lower than the experimental ones, the trend of the
data is reasonably reproduced. There is a maximum at the
magic cluster with N=22 and a minimum at N=24 due to
the decay in two magic pieces: K> " — Ky "+ K3 ™. Using
the experimental surface energy, our results would be shifted

TABLE IV. Critical numbers obtained by the LDM (N-°M) and
the SCM considering spherical (N*™) and deformed (N%) frag-
ments. We use the LDM for the evaporation energy. Experimental
values (NP are taken from Ref. 10, for sodium and potassium
and from Ref. 24 for aluminum. '

Metal N NP NI N
Na2* 28 28 27 27+1
Al 34 21 20 17+1
Kt 23 28 22 201
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TABLE V. Barrier height for several doubly charged sodium clusters given by several methods. CAP
refers to the cylindrical averaged pseudopotential and MD to molecular dynamics.

This work Other work Expt. ©

Cluster P LDM SCM-sph SCM-def CAP® MDP®
Nag2* 3 0 0.18 0.58 0.16 0.16
Naj2* 3 0 0.76 0.92 0.67 0.71
Na2* 3 0.07 0.55 0.68 0.30 0.29
Na g2t 3 0.37 0.34 0.53 0.50

9 0.57 0.22 0.23 0.52
Naz?t 3 0.55 0.57 0.88 0.80

*Reference 30.
PReference 21.
“Reference 11.

upward, approaching the experimental values (the surface
energy is underestimated in both jellium and stabilized jel-
lium models).

Table III presents the potassium decay channels observed
experimentally by Bréchignac et al.,”® and the two channels
with the lowest barrier obtained in the SCM. Our results are
consistent with the data.

Table IV shows the critical numbers N, obtained with
the SCM for the most favorable fission channel. For sodium
and potassium, the LDM gives a very good prediction of N,
but for aluminum this quantity is considerably overesti-
mated. This is due to the importance of shell corrections for
high-density metals. The SCM-def results are in very good
agreement with experiment for all the analyzed systems,
while SCM-sph exaggerates the critical numbers.

IV. COMPARISON WITH OTHER METHODS
AND CONCLUSIONS

Let us comment on some of the other authors results.
Garcias ef al.”® used the so-called Blocki shapes to describe
the jellium background and solved the Kohn-Sham equations
for the fusion processes Na,,* +Nay, ™ and Na,; ™ +Na;™.
Koizumi and Sugano® studied the asymmetric decay of
some doubly charged silver clusters, solving the Kohn-Sham
equations for a deformed jellium background described by
the so-called funny-hills parametrization. This family of
shapes was proposed to study symmetric, or slightly asym-
metric, fission of heavy nuclei, but is not adequate to de-
scribe the very asymmetric reactions that are typical of clus-
ters (it exhibits a very deformed surface, thus overestimating
the barrier height). Garcias er al. and Koizumi and Sugano
called attention to the importance of shell effects on the fis-
sion barrier on the one hand and of the shape of the jellium
background on the other.

Models that consider localized ions represent an improve-
ment on the continuous background models. Montag and
Reinhard®® used the cylindrical averaged pseudopotential
scheme (CAPS) model, where the ionic structure is included
in a simplified way, to study the fission of doubly charged
sodium clusters, with 10, 12, and 18 atoms. They concluded
that the preferred channel is always Na;*, although the sys-
tem Na¢** has a good chance of breaking symmetrically.

Molecular dynamics, as considered in Ref. 21, goes beyond
pseudopotential- averaging methods since the ions have full
freedom to move.

Table V presents a compilation of theoretical and experi-
mental results for barrier heights. We consider some magic
channels reported in the literature. There is an overall agree-
ment between our SCM results and the CAPS and MD re-
sults (exceptions are Nag?*, p=3, for SCM-def only; Na
2%, p=3; and Na;g**, p=9).

The case Na,2* is particularly interesting since the en-
ergetically favorable fission channel consists of two magic
daughters (Nag* and Na;™). Our barrier height is almost
twice that obtained by other authors. For Na 2", the sym-
metric (p=9) is clearly favored in comparison with the
asymmetric channel (p=3), in contrast to CAPS results,
where the two decay channels have a very similar barrier.

In summary, the SCM is able to reproduce, with reason-
able accuracy, more exact Kohn-Sham calculations for de-
formed jellium and even some MD results. These agreements .
made us confident of the method and lead us to apply it to
clusters fission in a systematic way. We reproduced well the
critical number not only for doubly charged sodium and po-
tassium clusters but also for doubly charged aluminum clus-
ters. It is therefore interesting to apply the SCM to other
nonalkali metals and to compare the results with
expf:rimf:nt.3l

We have seen that shell effects modify considerably the
LDM barriers, especially for metals with high valence-
electron density, and have confirmed the importance of frag-
ment deformations in shaping the fission barriers, a feature
that was already pointed out by Yannouleas and Landman. =

Finally, we remark that while most of experimental data
are from hot clusters (with a typical temperature of about
500 K), all our calculations were made at zero temperature.
Since the shell ‘structure is reduced at finite temperatures,32
further studies including thermal effects are needed.
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