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Abstract. Generalizing the obvious representation of a subspace Y ⊆ X as a sublo-
cale in Ω(X) by the congruence {(U, V ) | U ∩Y = V ∩Y } one obtains the congruence

{(a, b) | o(a) ∩ S = o(b) ∩ S}, first with sublocales S of a frame L, which (as it

is well known) produces back the sublocale S itself, and then with general subsets
S ⊆ L. The relation of such S with the sublocale produced is studied (the result is

not always the sublocale generated by S). Further, one discusses in general the as-

sociated adjunctions, in particular that of relations on L and subsets of L and views
the aforementioned phenomena in this perspective.

1. Introduction

Consider a subset (subspace) Y of a topological space X. The sublocale

(generalized subspace) corresponding to Y in the frame of open sets Ω(X) is

associated with the congruence

{(U, V ) | U ∩ Y = V ∩ Y, U, V ∈ Ω(X)}

(which, of course, comes from the quotient map Ω(j) : Ω(X) → Ω(Y ) where

j : Y → X is the embedding: Ω(j)(U) = j−1[U ] = U ∩ Y ). More generally,

any sublocale S of a frame L is obtained as the quotient L/RS where

RS = {(a, b) | o(a) ∩ S = o(b) ∩ S}

(o(x) are the open sublocales associated with x ∈ L).

Now take an arbitrary subset A ⊆ L. Unlike a general subset of a topological

space, which always carries a subspace topology, such an A will not be, in

general, a generalized subspace (i.e., a sublocale). But the congruence

RA = {(a, b) | o(a) ∩A = o(b) ∩A}

produces a sublocale L/RA—we call it sat(A)—even if A is not one. One

naturally asks what is its relation to the set A (for instance whether it is the

sublocale generated by A). The study of this relationship is one of the main

motivations of this article.

We start with a much more transparent situation of sup-lattices (generaliz-

ing frames) from [8] and their meet-subsets (generalizing sublocales). There,

the situation is simple, and we show, in Section 2, that the procedure creates
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for any subset the smallest meet-subset containing it. In connection with that

we encounter an adjunction between relations on L and subsets of L; this is

described in Section 3.

Turning to frames one soon learns that sat(A) is not always the smallest

sublocale containing A, as one might at the first sight assume. In fact it does

not have to contain A at all. This is analyzed in Sections 4 and 5. Among

other we show that A ⊆ sat(A) if and only if the meet-subset generated by A

is already a sublocale, and on the other hand we present an example of the set

of cozero elements with this inclusion that does not satisfy a condition that

otherwise naturally relates meet-subsets and sublocales.

In Section 6 we discuss the adjunction of relations vs. subobjects in this

special setting and show how the mentioned phenomena appear in its perspec-

tive, and in Section 7 we finish the article presenting a localic version of the

frame quotient theorem.

2. Preliminaries

2.1. Sup-lattices. Recall from [8] the category SupLat of sup-lattices, with

complete lattices for objects and
∨

-homomorphisms (mappings preserving ar-

bitrary suprema) for morphisms. The right Galois adjoint of a
∨

-homomor-

phism f : K → L will be denoted by f∗ : L→ K. The correspondence f 7→ f∗
gives rise to a natural duality

SupLat ∼= SupLatop.

2.2. Sup-lattice quotients. For a relation R ⊆ L×L on a sup-lattice L call

an s ∈ L weakly saturated (more precisely, weakly R-saturated) if

aRb ⇒ (a ≤ s iff b ≤ s).

Obviously

a meet of weakly saturated elements is weakly saturated

and hence we have the least weakly saturated upper bound

κ(x) = κR(x) =
∧
{s | x ≤ s, s weakly saturated}

of x giving rise to a monotone mapping κ : L→ L such that

x ≤ κ(x) and κκ(x) = κ(x).

If we set

L/wR = κ[L] = {x | x = κ(x)}
we obtain a sup-lattice (with, in general, the suprema differing from those in

L) and a
∨

-homomorphism

κ′ = (x 7→ κ(x)) : L→ L/wR.

It is a standard fact that

(1) xRy ⇒ κ′(x) = κ′(y), and
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(2) if for a
∨

-homomorphism h : L → K one has xRy ⇒ h(x) = h(y) then

there is precisely one
∨

-homomorphism h : L/wR→ K such that h·κ′ = h;

moreover, for x ∈ L/wR, h(x) = h(x).

2.3. Frames and locales. A frame L is a complete lattice satisfying

(
∨
A) ∧ b =

∨
{a ∧ b | a ∈ A} (2.1)

for every A ⊆ L and b ∈ L. A frame homomorphism h : L → K is a
∨

-

homomorphism that preserves, moreover, all finite meets. Thus, the resulting

category of frames Frm is a subcategory of SupLat, not a full one.

A typical frame is the lattice Ω(X) of open sets of a topological space X,

and a typical frame homomorphism is Ω(f) = (U 7→ f−1[U ]) where f : X →
Y is a continuous map. Thus we have a contravariant functor Ω: Top →
Frm. Frames can be viewed as generalized spaces (for sober spaces, Ω is a

full embedding); hence it is of advantage to modify Ω to a covariant functor

Top → Frmop. The category Frmop is called the category of locales and

denoted by Loc (see, e.g., [6]). It is expedient to represent the morphisms of

Loc as the right adjoints h∗ of frame homomorphisms. We then speak of such

maps as of localic maps and think of them as of generalized continuous maps

between generalized spaces.

The distributivity law (2.1) states that the maps (x 7→ x ∧ b) : L → L

preserve all suprema. Consequently, they have right adjoints (y 7→ (b →
y)) : L→ L which results in a Heyting operation → satisfying

a ∧ b ≤ c iff a ≤ b→ c.

A frame homomorphism does not necessarily preserve the Heyting opera-

tion. Nevertheless, the operation → plays an important role.

For more about frames see, e.g., [7, 10, 11, 12].

2.4. Frame quotients. Analogously as in 2.2 we have quotients constructed

as follows. We call an s ∈ L saturated (more precisely, R-saturated) if for every

a, b ∈ L
aRb ⇒ ∀c, a ∧ c ≤ s iff b ∧ c ≤ s

(in other words,

aRb ⇒ a→ s = b→ s).

Again, a meet of saturated elements is saturated, we have a monotone mapping

κ = (x 7→ κ(x)) =
∧
{s | x ≤ s, s saturated} satisfying

x ≤ κ(x), κκ(x) = κ(x) and, moreover, κ(x ∧ y) = κ(x) ∧ κ(y)

(the nucleus of R), and if we set

L/R = {x | x = κ(x)}

we obtain a frame homomorphism κ′ = (x 7→ κ(x)) : L→ L/R such that

(1) xRy ⇒ κ′(x) = κ′(y), and
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(2) if for a frame homomorphism h : L → K one has xRy ⇒ h(x) = h(y)

then there is precisely one frame homomorphism h : L/R → K such that

h · κ′ = h; moreover, for x ∈ L/R, h(x) = h(x)

(see, e.g., [11]).

2.5. Sublocales. Onto frame homomorphisms h are precisely the extremal

monomorphisms in Frm; consequently, the associated one-to-one localic mor-

phisms f = h∗ (the extremal epimorphisms in Loc) naturally model embed-

dings of subspaces. This leads to the concept of a sublocale S ⊆ L as a subset

satisfying

(S1) A ⊆ S ⇒
∧
A ∈ S, and

(S2) if x ∈ L and s ∈ S then x→ s ∈ S.

Sublocales are precisely the images j[K] of one-to-one localic maps j, which

is the same as the L/R obtained from arbitrary relations R ⊆ L×L (see, e.g.,

[9, 11]).

Now, let L be a sup-lattice. We will consider the meet-subsets M ⊆ L, i.e.,

subsets of L which satisfy

(M) A ⊆M ⇒
∧
A ∈M .

The set of all sublocales of a frame L will be denoted by S(L). Ordered

by inclusion it is a complete lattice. The meets in S(L) coincide with the

intersections, and the joins are defined by∨
Si = {

∧
A | A ⊆

⋃
Si}. (2.2)

S(L) is a co-frame, that is, the opposite S(L)op is a frame ([9]).

Similarly we have, for any sup-lattice L the complete lattice M (L) of all

the meet-subsets. Again, the meets coincide with the intersections and the

joins are given by Formula (2.2). Thus, if L is a frame then S(L) is a complete

sublattice of M (L).

The intersection of any system of sublocales of a frame (resp. meet-subsets

of a sup-lattice) is a sublocale (resp. meet-subset). Thus, for any subset A of

a frame (resp. sup-lattice) we have the smallest sublocale sl(A) containing A

(resp. the smallest meet-subset m(A) containing A). Thus we have monotone

maps

sl : P(L)→ S(L) (resp. m : P(L)→M (L))

(P(L) is the power-set of L), obviously right adjoints to the inclusion maps

j : S(L) ⊆ P(L) (resp. j : M (L) ⊆ P(L)). By abuse of notation, we will

also use the symbol sl for the restriction of sl to M (L) → S(L). Note that,

trivially,

m(A) = {
∧
B | B ⊆ A}.
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2.6. Special sublocales. In analogy with closed (open) subspaces of spaces

we have closed sublocales

c(a) = ↑a = {x | x ≥ a}

and open sublocales

o(a) = {x | a→ x = x} = {a→ x | x ∈ L}.

c(a) and o(a) are complements of each other and we have o(a∧b) = o(a)∩o(b),

o(
∨
ai) =

∨
o(ai), c(a ∧ b) = c(a) ∨ c(b) and c(

∨
ai) =

⋂
c(ai).

3. The relation associated with subspaces and sublocales

Let X be a topological space and let A ⊆ X be a subset. The resulting

subspace can be represented as the sublocale

Ω(X)/ρ(A)

where

ρ(A) = {(U, V ) | U ∩A = V ∩A}.

In the point-free context we have a more general theorem about sublocales

(see [11, VI.1.4.1]).

Proposition 3.1. Let S be a sublocale of a frame L. Set

ρ(S) = {(a, b) ∈ L× L | o(a) ∩ S = o(b) ∩ S}.

Then S = L/ρ(S).

Obviously, ρ(S) can be equivalently defined as

ρ(S) = {(a, b) ∈ L× L | c(a) ∩ S = c(b) ∩ S} = {(a, b) | ↑a ∩ S = ↑b ∩ S}.

The last formula can be adopted for sup-lattices. In analogy with Proposi-

tion 3.1 we have

Proposition 3.2. If M is a meet-subset of a sup-lattice L and

ρ(M) = {(a, b) | ↑a ∩M = ↑b ∩M}

then L/w ρ(M) = M .

Proof. Indeed, set x =
∧
{m ∈M | x ≤ m}. Since M is a meet-subset, x ∈M .

Obviously, x ≤ y ⇒ x ≤ y, x = x, and (a, b) ∈ ρ(M) iff a = b. If m ∈ M ,

(a, b) ∈ ρ(M), and a ≤ m then b ≤ b = a ≤ m = m, and we see m is weakly

saturated. If m is weakly saturated then, as m = m, we have (m,m) ∈ ρ(M)

and hence m ≤ m and m = m ∈M . �
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4. The contravariant adjunction ρ vs. ε

The formula from 3.2 defines a

ρ : P(L)→ Rel(L) = P(L× L).

On the other hand, for a relation R ⊆ L× L consider the set

ε(R) = L/wR.

This set can be expediently described as follows. For (a, b) ∈ L× L set

Q(a, b) = {x | a ≤ x iff b ≤ x}.

Then obviously

ε(R) =
⋂
{Q(a, b) | (a, b) ∈ R}. (4.1)

Proposition 4.1. ε is an antitone map Rel(L) → P(L), and ε and ρ are

contravariantly adjoint on the right, that is,

R ⊆ ρ(A) iff A ⊆ ε(R).

Proof. Let R ⊆ ρ(A) and let x ∈ A. If (a, b) ∈ R then (a, b) ∈ ρ(A) and hence

x ∈ Q(a, b). Since this holds for all (a, b) ∈ R, x ∈
⋂
{Q(a, b) | (a, b) ∈ R} =

ε(R).

On the other hand, let A ⊆ ε(R) and let (a, b) ∈ R. Then in particular

A ⊆ Q(a, b) and for all x ∈ A, x ≥ a iff x ≥ b. Thus, ↑a ∩ A = ↑b ∩ A, and

(a, b) ∈ ρ(A). �

Observation 4.2. For every relation R ⊆ L× L, ε(R) is a meet-subset, and

for every A ⊆ L, ρ(A) is a
∨

-congruence.

(The first statement follows from the definition; further, if ↑ai∩A = ↑bi∩A
for all i and if

∨
ai ≤ x ∈ A then ai ≤ x for all i, hence bi ≤ x for all i, and∨

bi ≤ x.)

Proposition 4.3. ε(ρ(A)) = L/wρ(A) = m(A), the smallest meet-subset con-

taining A.

Proof. By 4.1, A ⊆ ε(ρ(A)) and ε(ρ(A)) is a meet-subset. Now let M be a

meet-subset and let A ⊆ M . Then ε(ρ(A)) ⊆ ε(ρ(M)) = L/wρ(M) = M

by 3.2. �

Comparing propositions 3.2 and 4.3 with 3.1 one may conjecture that in

the frame context we should have L/ρ(A) = sl(A), the sublocale generated by

A ⊆ L. But this is not generally true: in fact, A is not necessarily a subset of

L/ρ(A). We will discuss the relation of A ⊆ L and sl(A) in the next section.
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5. Saturation and generating sublocales

If A is a subset of a frame L we will say that an s ∈ L is A-saturated if it

is ρ(A)-saturated (recall 2.4), that is, if

↑a ∩A = ↑b ∩A ⇒ a→ s = b→ s.

Obviously this condition is equivalent to

↑a ∩A ⊆ ↑b ⇒ a→ s ≤ b→ s.

The set of all A-saturated elements, that is, the sublocale L/ρ(A) will be

denoted by

sat(A).

Lemma 5.1. sat(A) ⊆ m(A).

Proof. Let s ∈ sat(A) and let x be a lower bound of A∪↑s. Then A∪↑s ⊆ ↑x
and hence 1 = s → s ≤ x → s, hence x ≤ s, and we see that s =

∧
(A ∩ ↑s),

and A ∩ ↑s ⊆ A. �

Proposition 5.2. The following statements on a subset A in a frame are

equivalent.

(1) sl(A) = sat(A) = m(A).

(2) sl(A) = sat(A).

(3) A ⊆ sat(A).

Proof. Trivially (1)⇒(2) and (2)⇒(3).

(3)⇒(1): Let A ⊆ sat(A). Then, by 3.1, sl(A) ⊆ sat(A) and by 5.1, sl(A) ⊆
sat(A) ⊆ m(A) ⊆ sl(A). �

Here is a simple criterion for A ⊆ sat(A) (and hence sat(A) = L/ρ(A) =

sl(A)).

Proposition 5.3. Let L be a frame. If A ⊆ L is such that

∀a ∈ A, ∀x ∈ L, (x→ a)→ a ∈ A, (H)

then A ⊆ sat(A).

Proof. Let A ∩ ↑u ⊆ ↑v. Let a ∈ A and set x = u→ a. Then u ≤ x→ a ∈ A
and hence v ≤ x→ a and finally u→ a = x ≤ v → a. �

Note that (H) is precisely condition (S2) from 2.5 since ((x → y) → y) →
y = x → y for every x, y ∈ L. It may be a slight surprise that condition (S2)

is not necessary, and that there is an important case of an A with A ⊆ sat(A)

which does not satisfy it (see Example 5.7 below).

Now, recall the relation ≺ (a ≺ b iff a∗ ∨ b = 1 where a∗ is the pseudo-

complement—see the standard literature on frames, also for regularity and

complete regularity we will speak of below).

Definition 5.4. A relation � ⊆ L× L is said to be a ∗-inclusion if
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(∗1) a� b ⇒ a ≺ b,
(∗2) a� b ⇒ b∗ � a∗, and

(∗3) ∀a ∈ L, a =
∨
{x | x� a}.

Thus for instance the strong inclusions from Banaschewski [1] are ∗-inclu-

sions. But also the relation ≺ itself is one in a regular frame L.

Definition 5.5. A subset A ⊆ L is �-dense if for each x�y there is an a ∈ A
such that x ≤ a� y.

Proposition 5.6. Let � be a ∗-inclusion in a regular frame L and let A be a

�-dense subset closed under finite joins. Then A ⊆ sat(A).

Proof. Let A ∩ ↑u ⊆ ↑v and let a ∈ A. We need to show that u→ a ≤ v → a.

Let x, y ∈ L be such that x� y � u→ a. Then y∗ � x∗ and because of the

�-density we can find a c ∈ A such that y∗ ≤ c� x∗. Then

x ∧ c = 0 and c ∨ (u→ a) ≥ y∗ ∨ (u→ a) = 1

so that

u = u ∧ (c ∨ (u→ a)) = (u ∧ c) ∨ (u ∧ (u→ a)) ≤ c ∨ a ∈ A ∩ ↑u

and v ≤ c ∨ a. Now (as x ∧ c = 0)

x ∧ v ≤ x ∧ (c ∨ a) = x ∧ a ≤ a and hence x ≤ v → a.

Recalling the choice of x and y, using (∗3) twice, we conclude that u → a ≤
v → a. �

In particular, A ⊆ sat(A) whenever

A is a ≺-dense subset closed under finite joins. (5.1)

For subsets A ⊆ L closed under finite joins, conditions (S2) and (5.1) are not

independent. In fact, (S2) implies (5.1): since 0 ∈ A, (S2) implies that x∗∗ ∈ A
for every x ∈ L, which clearly means that A is ≺-dense, since x ≺ y implies

x ≤ x∗∗ ≺ y.

Example 5.7. Recall that in classical topology, a cozero set in a space X

is a preimage f−1[R r {0}] where f : X → R is a continuous map. Cozero

sets, hence, are special open sets. The system of cozero sets is closed under

countable unions and finite intersections.

All that can be precisely translated in the point-free setting, but it is much

easier to work with the following equivalent definition. An element a of a

frame L is cozero if

a =
∨
{an | an ≺≺ a, n = 1, 2, . . .} (5.2)

where x ≺≺ a expresses the familiar relation that x is really inside, or com-

pletely below, a ([7, p. 126]): x ≺≺ a if there exists an interpolating sequence

(xr)r∈D with x0 = x, x1 = a and xr ≺ xs whenever r < s (where D denotes

the set of the dyadic rationals between 0 and 1). The set of all cozero elements
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will be denoted by CozL. It is obviously a σ-frame (that is, a lattice with

countable joins and with the distributivity (2.1) assumed for such joins) and

a sub-σ-frame of L (see, e.g., [3, 5]).

In a completely regular frame L the Formula (5.2) can be replaced by

a =
∨
an, a1 ≺≺ a2 ≺≺ · · · ≺≺ an ≺≺ · · ·

from which we easily infer that in a completely regular frame, if a ≺≺ b then

there is a c ∈ CozL such that a ≺≺ c ≺≺ b (hence, it is ≺≺-dense even in a

stronger sense than required in 5.5). Thus, the very important subset A =

CozL ⊆ L satisfies the conditions of 5.6 and hence A ⊆ sat(A). However,

there are completely regular frames L such that CozL does not satisfy (S2)

(see, e.g., [4, 2]).

The mapping sl : M (L)→ S(L) from 2.5 is a right adjoint of the inclusion

j : S(L)→M (L). But j has also a left adjoint ls : M (L)→ S(L) where ls(A) is

the largest sublocale contained in A. This construction plays a role, e.g., in the

image-preimage adjunction for a localic map (see [11]). Note that A ∈M (L)

is essential; ls does not work for the embedding S(L) ⊆ P(L). Here it will

help us to understand better the general relationship between A and sat(A).

Lemma 5.8. sat(A) = sat(m(A)).

Proof. If M ⊆ A then
∧
M ≥ u iff a ≥ u for each a ∈ M . Consequently,

m(A) ∩ ↑u ⊆ ↑v iff A ∩ ↑u ⊆ v. �

Proposition 5.9. We have

sat(A) = ls(m(A)).

Proof. By 5.1, sat(A) ⊆ m(A) and it is a sublocale; hence sat(A) ⊆ ls(m(A)).

The operation sat is obviously monotone, and by propositions 5.3 and 5.2, if

S is a sublocale then sat(S) = S. Thus, if S is a sublocale and S ⊆ m(A) then

S = sat(S) ⊆ sat(m(A)) and hence, by the lemma, S ⊆ sat(A) so that sat(A)

is the largest sublocale contained in m(A). �

6. More about the inclusion A ⊆ sat(A)

Consider an element b ∈ L and the closed sublocale c(b) = ↑b. In c(b), the

element b is the zero, and we have the pseudocomplement

x∗b = x→ b

and the relative rather below relation

x ≺b y iff x∗b ∨ y = 1.

Now if L is regular, c(b) is regular, as every sublocale of L, and we have for

x ≥ b, x =
∨
{y | y ≺b x}.

In the sequel, b, x∗b and ≺b will be always used in the sense just indicated.
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Theorem 6.1. Let A be a subset of a regular frame L. Set b =
∧
A and

consider the following statements.

(1) A is ≺b-dense in c(b) and closed under finite joins.

(2) A ⊆ sat(A).

(3) m(A) is ≺b-dense in c(b).

Then (1)⇒ (2)⇒ (3).

Proof. (The proof of the first implication is in fact a repetition of the proof

of 5.6 but we do it in detail, because the circumstances are changed.)

(1)⇒(2): Let A be ≺b-dense in c(b) and let A ∩ ↑u ⊆ ↑v. Pick an a ∈ A
and x, y with x ≺b y ≺b u→ a. Then

y∗b ≺b x∗b and y∗b ∨ (u→ a) = 1.

Using the ≺b-density choose a c ∈ A with y∗b ≤ c ≺b x∗b. Then

x ∧ c = b and c ∨ (u→ a) ≥ y∗b ∨ (u→ a) = 1

and hence (use the closedness of A under ∨)

u = u ∧ (c ∨ (u→ a)) = (u ∧ c) ∨ (u ∧ (u→ a)) ≤ c ∨ a ∈ A ∩ ↑u.

Thus, v ≤ c ∨ a and since a ∈ A and hence a ≥ b,

x ∧ v ≤ x ∧ (c ∨ a) = (x ∧ c) ∨ (x ∧ a) = b ∨ (x ∧ a) ≤ a

and we conclude that x ≤ v → a, and since x ≺b y ≺b u → a were otherwise

arbitrary, finally u→ a ≤ v → a.

(2)⇒(3): By 5.2, m(A) is a sublocale, and since b ∈ m(A) we have x∗b =

x → b ∈ m(A) for every x. In particular, x∗b∗b ∈ m(A) and hence, if x ≺b y
we can insert x ≤ x∗b∗b ≺b y. �

Note 6.2. The previous statement is, of course, still far from a necessary and

sufficient condition (in particular, the requirement of the finite joins in (1)

is very strong: for instance, (2) is trivial for A a sublocale, and a sublocale

typically is not closed under joins). On the other hand, in view of the fact

that A ⊆ sat(A) iff m(A) = sat(A) = sat(m(A)), the discrepancy in the density

condition in (1) and (2) does not seem to be quite so bad.

From 5.3 we immediately obtain

Fact 6.3. For every up-set A, that is, every A = ↑A = {x | ∃a ∈ A, x ≥ a},
we have A ⊆ sat(A).

(This is also obvious from the following observation: if A = ↑A then

A =
⋃
a∈A ↑a =

⋃
a∈A c(a) and hence m(A) =

∨
a∈A c(a) in the coframe of

sublocales.)

On the other hand, for down-sets, that is, the A = ↓A = {x | ∃a ∈ A, x ≤
a}, the inclusion A ⊆ sat(A) is rare. We will analyze the case of the A = ↓u
generated by a single element u.
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Obviously

m(↓u) = ↓u ∪ {1}.

Lemma 6.4. ↓u ⊆ sat(↓u) iff

∀a ≤ u, x ∧ y ≤ a ⇒ (x ≤ a or y ≤ u). (6.1)

Notes.

1. The implication (6.1) is to be taken literally, that is, with the order of x, y

as indicated: if x � a then y has to be ≤ u even if x ≤ u.

2. Note that (6.1) is a stronger form of primeness; in particular, applying the

implication for a = u we see that u has to be prime.

Proof. By 5.2, ↓u ⊆ sat(↓u) iff m(↓u) = ↓u ∪ {1} is a sublocale.

Let m(↓u) be a sublocale, let a ≤ u and let x∧y ≤ a, that is, y ≤ x→ a. We

have x→ a ∈ m(↓u) and hence if x � a, that is, x→ a 6= 1, y ≤ x→ a ≤ u.

On the other hand, let (6.1) hold and let a ∈ m(↓u). If a = 1, x→ a = 1 ∈
m(↓u) trivially. Else, a ≤ u and since x ∧ (x → a) ≤ a we have either x ≤ a

and x→ a = 1 or x→ a ≤ u. �

Proposition 6.5. We have ↓u ⊆ sat(↓u) in a frame L if and only if u is a

prime and L = ↓u ∪ ↑u.

Proof. Let (6.1) hold and let x � u. Suppose that also x � u so that a =

u∧ x 6= x, u. As u � a we have to have x ≤ u, a contradiction. The primeness

follows applying (6.1) for a = u.

On the other hand, let L = ↓u ∪ ↑u and let u be prime. Then (6.1) holds

for a = u. Thus, let a < u and x ∧ y ≤ a, that is, y ≤ x → a. If y � u

then u ≤ y ≤ x → a and u ∧ x ≤ a. Assuming u ≤ x leads to the excluded

u = u ∧ x ≤ a so that x ≤ u and x = u ∧ x ≤ a. �

7. The ρ-ε adjunction for frames

An H-subset of a frame is an A ⊆ L satisfying the property (S2) from 2.5.

Let H (L) stand for the family of all H-subsets of the frame L. Obviously

an intersection of H-subsets is an H-subset and hence we have the smallest

H-subset h(M) containing an arbitrary subset M ⊆ L, resulting in a map

h : P(L)→H (L)

left adjoint to the embedding j : H (L)→P(L).

Hence H (L) is a complete lattice with meets coinciding with the intersec-

tions and S(L) is a complete sublattice of H (L).

Note 7.1. Since every sublocale is an H-subset we have that h(A) ⊆ sl(A).

Obviously sl(A) = sl(h(A)), and by 5.3 h(A) ⊆ sat(h(A)). Hence, by 5.2

sl(A) = sl(h(A)) = sat(h(A)) = m(h(A))
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resulting in the commutative triangle

P(L)

h

��

sl

""
H (L)

m
// S(L)

Thus, recalling the facts from 5.2 we can describe the situation in the following

tangle of Galois adjunctions

P(L)

sat

��

h a

��

sl

a

!!

m

a // M (L)

joo

ls

��

slMa

��
H (L)

j

OO

mH

a // S(L)

joo

j

aa

j a

OO

Note that the only arrow in this diagram which is not adjoint to anything is

sat.

Definition 7.2. A relation R ⊆ L× L is ∧-stable if

(ai, bi) ∈ R, i = 1, 2 ⇒ (a1 ∧ a2, b1 ∧ b2) ∈ R

(thus, if L is a frame, the frame congruences are precisely the ∧-stable
∨

-

congruences). The set of all ∧-stable relations will be denoted by

Rel∧(L).

Proposition 7.3. Let A be an H-subset of a frame. Then ρ(A) is ∧-stable.

Proof. Let ↑a ∩ A = ↑b ∩ A and let x ∈ ↑(a ∧ c) ∩ A. Then a ∧ c ≤ x, hence

a ≤ c → x ∈ A and (c → x) ∈ ↑a ∩ A = ↑b ∩ A, so that b ≤ c → x and

b ∧ c ≤ x. �

Corollary 7.4. If A is an H-subset of a frame then ρ(A) is a frame congru-

ence.

Proposition 7.5. Let A be a meet-subset of L. Then the following statements

are equivalent:

(1) A is a sublocale (that is, an H-subset).

(2) ρ(A) is ∧-stable.

(3) ρ(A) is a frame congruence.
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Proof. (1)⇒(2) is in 7.3 and by 4.2, (2)≡(3).

(2)⇒(1): Let a ∈ A and let x ∈ L be arbitrary. Set c = x → a and

κ(c) =
∧
{y ∈ A | c ≤ y}. Then obviously (c, κ(c)) ∈ ρ(A) and by the ∧-

stability (c∧x, κ(c)∧x) ∈ ρ(A). We have c∧x ≤ a ∈ A and hence κ(c)∧x ≤ a
so that κ(c) = κ(x→ a) ≤ x→ a and hence x→ a = κ(x→ a) ∈ A. �

Since ε(R) is always a meet-subset we obtain

Corollary 7.6. If ρ(ε(R)) is ∧-stable then ε(R) is a sublocale.

Proposition 7.7. If R is ∧-stable then ε(R) is a sublocale.

Proof. Suppose u ∈ ε(R) and x → u /∈ ε(R) for some x. Then there is

an (a, b) ∈ R such that x → u ∈ Q(a, b) and hence, say, a ≤ x → u and

b � x→ u. But then a ∧ x ≤ u and b ∧ x � u, while (a ∧ x, b ∧ x) ∈ R. �

Recall the contravariant Galois adjunction

P(L)
ρ //

Rel(L)
ε

oo

from 4.1. By 7.4 and 7.7 this now restricts, for a frame L, to an adjunction

H (L)
ρ′ //

Rel∧(L).
ε′

oo

Consider the compositions

P(L)
ρ′h=ρ //

Rel∧(L).
jε′=ε

oo (7.1)

We have here again a contravariant adjunction on the right. Indeed

R ⊆ ρh(A) iff h(A) ⊆ ε′(R) iff A ⊆ jε′(R).

Now, finally, we have a counterpart to the identity m = ερ from 4.3.

Proposition 7.8. For any subset A ⊆ L, sl(A) = ε ρ(A).

Proof. By 7.1, ε ρ(A) = jε′ρ′h(A) = jmh(A) = j(sl(A)). �

8. The quotient theorems in view of the adjunctions

For a relation R on a sup-lattice L and a subset A ⊆ L we will write

Ra`A

if ε(R) = ε(ρ(A)) or, equivalently, ρ(A) = ρ(ε(R)).

Observations 8.1. 1. If R = ρ(M) or A = ε(R) then Ra`M .

2. If Ra`A then ρ(ε(R))a`A and Ra`ε(ρ(A)).
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3. More generally, if Ra`A, and if R ⊆ R′ ⊆ ρ(ε(R)) and A ⊆ A′ ⊆ ε(ρ(A))

then R′a`A′.
(For 2 use the identities ερε = ε and ρερ = ρ, and for 3 the obvious fact

that if Ria`A for i = 1, 2 and R1 ⊆ R ⊆ R2 then Ra`A, and similarly for A.)

Proposition 8.2. Let Ra`A and let f : K → L be the right adjoint of a∨
-homomorphism h : L→ K. Then

∀(a, b) ∈ R, h(a) = h(b) iff ρ(A) ⊆ ρ(f [K]).

Hence, if h(a) = h(b) for all (a, b) ∈ R, then f [K] ⊆ m(A).

Proof. ⇐: Let ρ(A) ⊆ ρf [K], that is, f [K] ⊆ ε(ρ(A)). Then, as Ra`A,

f [K] ⊆ ε(R) and by (4.1), f [K] ⊆
⋂
{Q(a, b) | (a, b) ∈ R}, and we have

∀x ∈ K ∀(a, b) ∈ R, a ≤ f(x) iff b ≤ f(x),

that is,

∀x ∈ K ∀(a, b) ∈ R, h(a) ≤ x iff h(b) ≤ x.
Hence (a, b) ∈ R implies that h(a) = h(b).

⇒: If (a, b) ∈ R implies h(a) = h(b), that is, h(a) ≤ x iff h(b) ≤ x, we have

for all x ∈ K that (a, b) ∈ R implies a ≤ f(x) iff b ≤ f(x). In other words,

(a, b) ∈ R implies that f(x) ∈ Q(a, b), and

f(x) ∈
⋂
{Q(a, b) | (a, b) ∈ R} = ε(R),

so that f [K] ⊆ ε(ρ(A)). �

Modifying the definition of Ra`A to ∧-stable relations and ε, ρ as in (7.1)

we obtain by the same procedure

Theorem 8.3. Let f : K → L be a localic map and let h : L → K be its left

adjoint. Let Ra`A. Then

∀(a, b) ∈ R, h(a) = h(b) iff f [K] ⊆ sl(A).

Acknowledgement. Support from projects P202/12/G061 (Grant Agency of

the Czech Republic) and MTM2015-63608-P (Ministry of Economy and Com-

petitiveness of Spain) and from the Centre for Mathematics of the University

of Coimbra (funded by the Portuguese Government through FCT/MEC and

co-funded by the European Regional Development Fund through the Partner-

ship Agreement PT2020) is gratefully acknowledged.

References

[1] Banaschewski B.: Compactification of frames. Math. Nachr. 149, 105–115 (1990)

[2] Banaschewski B., Dube T., Gilmour C., Walters-Wayland J.: Oz in pointfree

topology. Quaest. Math. 32, 215–227 (2009)
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