KZ-MONADIC CATEGORIES AND THEIR LOGIC

JIRI ADAMEK AND LURDES SOUSA

ABSTRACT. Given an order-enriched category, it is known that all its KZ-monadic
subcategories can be described by Kan-injectivity with respect to a collection of mor-
phisms. We prove the analogous result for Kan-injectivity with respect to a collection
H of commutative squares. A square is called a Kan-injective consequence of H if by
adding it to H Kan-injectivity is not changed.

We present a sound logic for Kan-injectivity consequences and prove that in “reasonable”
categories (such as Pos or Topy) it is also complete for every set H of squares.

1. Introduction

Scott characterized continuous lattices in [15], 3.8 and following, as those T} spaces that
are, in modern terminology, Kan-injective with respect to all embeddings. The Kan-
injectivity of an object X of an order-enriched category with respect to a morphism
h : A— B was defined by Escardé [8] as follows: for every morphism f : A—= X we
have a commutative triangle

A-". B

o

X

where f/h is the left Kan-extension of f along h. That is, if g : B— X fulfils f < gh,
then f/h < g.

Later Carvalho and Sousa [6] extended the above concept from objects to morphisms:
a morphism u : X — X’ is Kan-injective with respect to h when X and X’ are Kan-
injective objects and for every morphism f : A— X the following triangle

B x

(Uf)/hl /

X/
commutes. Example: the morphisms of Top, Kan-injective with respect to all embeddings
are precisely the continuous maps between continuous lattices preserving all infima. A
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trivial example: in Pos Kan-injectivity with respect to

e |

defines the subcategory of join-semilattices and their homomorphisms.

Moreover, in locally ranked categories, e.g., in Top, or Pos, Kan-injectivity yields
a characterization of KZ-monadic categories in the following sense: given a class H of
morphisms, let LInj(H) be the subcategory of all objects and all morphisms Kan-injective
with respect to all members of J{. Then

(1) every KZ-monadic subcategory has the form LInj(FH) for some class H of morphisms,
see [6],

and
(2) for every set H of morphisms the subcategory LInj(HH) is KZ-monadic, see [4].

The topic of our paper is the logic of Kan-injectivity, generalizing the logic of or-
thogonality studied in [1] and [2]. Observe first that given an ordinary category with
its trivial order-enrichment (that is, equality), then LInj(H) is nothing else than the full
subcategory H1 on objects X orthogonal to every member i : A—= B of 3 (that is, each
f : A— X has a unique factorization through h). The logic of orthogonality aims to
characterize those morphisms h for which orthogonality to H implies that to h, i.e. with
HE = (HU{h})". See Section 4 where the simple logic presented in [1] is recalled.

Analogously, we hoped to present a logic that would characterize, in order-enriched
categories, those morphisms for which Kan-injectivity with respect to H implies that with
respect to h. But we have failed so far. What saved our effort was the idea to ”enrich”
our language by considering, instead of Kan-injectivity with respect to morphisms, Kan-
injectivity with respect to commutative squares S:

A M B

|
Az — > Bs

2

An object X is Kan-injective with respect to S if it is Kan-injective with respect to hy
and hs and for every morphism f : Ay — X the following triangle

commutes. And a morphism is Kan-injective with respect to S iff it is Kan-injective with
respect to hy and hs.
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For every class H of commutative squares we thus obtain a (non-full) subcategory
LInj(3H) analogously to above. These categories characterize again KZ-monadicity: we
prove in Section 3 below that the above statements (1) and (2) remain valid. In other
words, this richer language does not lead to more examples! However, it enables a for-
mulation of a sound logic (see Section 4) which for sets of squares is, under mild size
conditions, also complete (see Section 5). It is our present impression that this enrich-
ment of the structure from morphisms to commutative squares is probably necessary: we
suspect that no logic for Kan-injectivity with respect to just morphisms is sound and
complete.

2. KZ-monadic subcategories

2.1. ASSUMPTION. Throughout the paper X is a category enriched over Pos. All squares
i our paper are commutative, so when stating that something is a square, we mean a
commutative one.

We introduced Kan-injectivity with respect to a morphism and a square above. Ob-
serve that the latter is a generalization of the former: for every morphism h : A— B let
S(h) be the following square

A-"-B
509 =
Then Kan-injectivity with respect to h and S(h) is the same concept for objects and

morphisms.

2.2. EXAMPLE. In Pos consider Kan-injectivity with respect to h : 0 < 1, the empty
map into the terminal poset. This means the existence (and preservation) of the least
element, 1. Kan-injectivity with respect to the embedding

e |2

characterizes existence (and preservation) of joins of pairs having a lower bound. Com-
bining those two in a square as follows

e
1 g
<

\‘{ « .
yields by Kan-injectivity join-semilattices with 1 and their homomorphisms.
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We have already remarked that using squares does not lead to new examples. In-
deed, join-semilattices with L are also given by Kan-injectivity with respect to h and the
following embedding

e

2.3. ExampPLE. Which posets are Kan-injective with respect to all order-embeddings (i.e.,
regular monomorphisms) in Pos?

As shown in [4], these are precisely the complete lattices, and a monotone map is Kan-
injective with respect to order-embeddings iff it preserves joins. We now characterize all
squares S that are Kan-injectivity consequences of order-embeddings. That is, such that
every complete lattice and every join-preserving map between complete lattices is Kan-
injective with respect to S.

Let us denote by €)y the contravariant endofunctor of Pos assigning to every posed
X the posed QyX of all |-sets of X, and to every monotone function f : X —Y the
function Qpf : QoY — QX forming preimages. Observe that () f has a left adjoint

(Qof>* : Q(]X ‘>Q()Y, U ’—>\l/ f [U] (fOI‘ all U € Q()X)

2.4. PROPOSITION. For every square

in Pos the following conditions are equivalent:
(1) S is a Kan-injectivity consequence of order-embeddings;

(2) h and k are order-embeddings such that whenever k(z) < b(y), there exists x € A’
with h(x) <y and z < a(x);

and
(3) h and k are order-embeddings yielding a (commutative) square
QB 2 A

(Qob)*l l(ﬂoa)*
QoB T(ﬂc) Q[)A
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PROOF. The equivalence of (1) and (2) was proved in [16].
3 = 2 The inequality k(z) < b(y) states precisely that

2 € Qok - (Qb)* (L y) = (Qa)* - Wh(l y),

that is, z lies in | a [Qoh(] y)]. This means that an z as in (2) exists.
2 = 3 It is easy to verify that the inequality

(Qoa)* : Qoh S (on) . (Qob>*

holds for every square S. Thus we need to show the opposite inequality only. Let V' be a
l-set of B’ and z be an element of (Qok)(Q0)*(V), i.e., 2 € k71 [ b[V]]. Then for some
y € V we have k(z) < b(y). Given z as in (2) we conclude z € (Q2qa)*Qoh(V), establishing
the required inequality. n

2.5. EXAMPLE. The category Top, of topological Tj-spaces is order enriched via the
opposite of the specialization order. Recall that the specialization order is given by x E y
iff # € {y}. Thus, for continuous functions f,g: X —Y we define

f<g iff  g(z) C f(x) for all x € X.

Escardé and Flagg proved that Kan-injectivite objects with respect to topological embed-
dings (= regular monomorphisms) are precisely Scott’s continuous lattices, see [9]. Recall
that a Ty-space is a continuous lattice iff for the specialization order its topology is the
Scott’s one, and it is a complete lattice with

y = |_| (nU) for all y € X.
Uéenbh(y)

The morphisms Kan-injective with respect to topological embeddings are precisely the
continuous functions preserving meets, see [6]. We characterize the squares which are
injectivity consequences of topological embeddings. Let €2 : Top, —Pos be the functor
assigning to a space X the poset (2.X of open sets and to a continuous function f : X—Y
the preimage function Qf : QY — QX. By (Qf). we denote the right adjoint of Qf: to
an open set U it assigns the union of all openV C Y with f~*(V) C U.

2.6. PROPOSITION. A square
A _h B
S = al ib
in Topy is a Kan-injectivity consequence of topological embeddings iff h and k are topolog-
ical embeddings yielding the following (commutative) square

0A M 0p

o |

QA —— QB
(Qh).
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PROOF. (a) Sufficiency. For every continuous lattice X and every embedding f : A—=X
the Kan-extension f/k is, as proved in [9], given by

f/k(z) =U{NU; U € QX and z € (Qk).[Qf(U)]}, (1)
and analogously for (fa)/h. We are to prove

(f/k)-b=(fa)/h.

Indeed, given b € B’, then b(y) € (Qk).[Qf(U)] means that y € (2b)(Qk).[Qf(U)],
and, by the commutativity of the last square, this means that y € (Qh).[Q(fa)(U)].
Consequently, taken into account the definitions of (f/k)(b(y)) and ((fa)/h)(y) given by
(1), we conclude the desired equality.

(b) Necessity. Since the Sierpinisky space S is Kan-injective with respect to S, k and
h are topological embeddings (see 4.3 and 4.4 of [6]). We verify the above square.

Every V € QA defines the corresponding characteristic function f,, : A—S and,
using the formula (1) above, we get (by setting V' = {1})

(fv/k)(z) =1 iff z € (Qk).(V).

Since fy - a = faqv), the characteristic function of a=!(V), we analogously get

(fv-a)/h(x) =1 iff x € (Qh).(Qa(V)).
Thus, our formula (fy - a)/h = (fy/k) - b reads:

€ (Qh).(Qa(V)) iff b(z) € (2k).(V)
for all x € B’. That is,
(€20).(Qa(V)) = Qb((2K).(V)),

as desired. -

2.7. REMARK. A slight modification: Scott continuous domains are, as proved by Escardé
[8], precisely the Ty-spaces Kan-injective with respect to dense embeddings, see [10],
Exercise 3.19. And the morphisms Kan-injective with respect to dense embeddings are
the continuous functions preserving nonempty meets (see [6]). The above corollary holds
analogously, just h and k are required to be dense embeddings.

2.8. EXAMPLE. Let Loc be the category of locales and localic maps. Thus, the objects
of Loc are complete lattices with the infinite distributive law

a/\\/B:\/{a/\b|b€B},

and the morphisms are the monotone maps f which preserve all infima and whose left
adjoint f* preserves finite meets. We recall that a localic map h is an embedding provided
that h*h = id. Johnstone characterized the stably locally compact locales as the locales
injective with respect to flat embeddings, i.e. those preserving finite joins, see [11]. More-

over, with convenient morphisms, stably locally compact locales are precisely LInj(3H) for
H = flat embeddings (see [11] and [7]).
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2.9. PROPOSITION. A square
A i}B/

o

in Loc is a Kan-injectivity consequence of flat embeddings iff h and k are flat embeddings
yielding the following (commutative) square

PROOF. Let Fy, F; and Fy be the free frames generated by the empty set, 1 = {0} and
2 = {0, 1}, respectively, and let f; : F; — Fy, i = 0,2, be the localic maps determined
by fo(L) =0, fo(0Vv 1) =0 and fo(x) = L for x # L, 0V 1. In [7] flat embeddings
were characterized as precisely those morphisms with respect to which both fy and fs
are Kan-injective. Furthermore, it was shown there that for every finitely generated free
frame F', in particular for every F; (i = 0, 1,2), given a flat embedding A : A— B and a
morphism f: A—F, the map (hf*), is localic and

f/h = (hf).. (2)

(a) Necessity: suppose the given square is a Kan injectivity consequence of flat em-
beddings. Since we already know that flat embeddings are characterized by means of fj
and fy, we only need to prove ha* = b*k.

Given z € A, we want to show that b*k(z) = ha*(x). Let g : F; — A be the frame
homomorphism sending 0 to z. By hypothesis, the localic map g, : A — F} satisfies
(9+/k) - b = (g«a)/h, that is, by (2), (kg).b = h(g.a)* = ha*g. Consequently, by applying
the operator —* to the localic maps (kg)., b and ha*g, we obtain b*kg(0) = ha*g(0), i.e.,
b*k(x) = ha*(x).

(b) Sufficiency: if the lower square commutes, we prove that, given f : A — F},
(fa)/h = (f/k)b. Indeed, from (2), deduce that

(fa)/h = [(h(fa)]x = (ha™f*)« = (O°kf")s = (Kf7)ub = (f/K) - b.

2.10. REMARK. (a) Given an order-enriched category X, by a right adjoint retraction we
mean a morphism r : X —Y with r* : Y — X satisfying rr* = id and r*r > id.
(b) Recall that a KZ-monad over X is a monad T for which

T <nT.
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Then T-algebras are precisely the right adjoint retractions of n4 : A—=TA. Thus, X7 is
a (non-full) subcategory of X.

(c) In [4] we proved that KZ-monadic subcategories are precisely the subcategories K
which are

(1) reflective, i.e., the embedding has a left adjoint,

(2) inserter-ideal, i.e., contain the inserter ins(u,v) of every parallel pair (u,v) with u
in Mor(X),

and
(3) closed under right adjoint retractions.

That is, with every morphism p : X — Y the subcategory contains all morphisms p :
X —Y for which there exists a square with right adjoint retractions x and y as follows

X oy

4 ®)

X —Y
p

(d) Every KZ-monadic subcategory X has the form K = LInj(H) for some class 3 of
morphisms of X ([6]). And we proved that, conversely, for “reasonable” categories X (such
as Top, and Pos), every set H of morphisms defines a KZ-monadic subcategory LInj(H).
(The latter is not true for proper classes H in Top, as demonstrated by an example in

[4])-

2.11. LEMMA. For every class H of squares the category LInj(H) is inserter-ideal and
closed under right adjoint retractions.

PRrROOF. A. Given a pair of morphisms u,v : X —Y and a square

A h B

1

with respect to which u is Kan-injective, we prove that so is the inserter ¢ = ins(u,v) :
I—X. We have already proved in [4] that the fact that u is Kan-injective with respect to
h and A’ implies that so is the morphism 7. It remains to show that, for every f: A—1,
(f/h)b = (fa)/h', or equivalently, since i is mono, i(f/h)b = i(fa)/h’. But the last
equality follows immediatly from the fact that ¢ is Kan-injective with respect to both h
and A’ and X is Kan-injective w.r.t. the above square.

B. Given a square (3) with the left adjoints z* and y*, respectively, and such that the
morphism p : X —Y is Kan-injective with respect to the square (4), we prove that also
p is Kan-injective with respect to this square.
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(a) X is Kan-injective with respect to the above square, and for every morphism f :
A— X we have: f/h = x([z*f]/h).

A/LB/

S

~

i (x*f)/h

X=—=X

*

This last formula was proved in [6]. Analogously one proves (fa)/h' = x([z*fa]/R').
Consequently, since the Kan-injectivity of X yields

(2" fa] /B = ([z" f]/h)b
we conclude (fa)/h" = (f/h)b.
(b) Y is Kan-injective. This is completely analogous.

(c) p is Kan-injective with respect to h and hA’. This was also proved in [6].

3. The reflection chain

Throughout the rest of the paper X denotes an order-enriched category with weighted
colimits. Given a set H of squares, we associate with every object X a transfinite chain
starting in X. For “reasonable” categories we then prove that there exists a connecting
morphism from X in our chain which is the reflection of X in the subcategory LInj(H).

3.1. DEFINITION. Let H be a set of squares. For every object X define a transfinite chain
X; (1 € Ord) with connecting morphisms called z;; or simply X;——->X; (fori <j). We
proceed by transfinite recursion. In the isolated steps, given i we define X; --+ X;y1 -+
Xii2, therefore, we can assume that i is an even ordinal (that is, i = 2n or i = ig + 2n
forn <w and iy a limit ordinal).

(a) Initial step. Xo = X.

(b) Limit steps. If i is a limit ordinal then

X; = colim X

J<t

is the colimit of the previous chain with X; --» X; forming the colimit cocone.
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(c) Isolated step i — i+ 1 (i even). Consider all pairs (S, f) where
A s By
S = l ib (5)
Ay — B

is a member of H and f : A, —= X; a morphism with r =1 or 2. Form the pushout of h,
along f:

A’I‘LBT

| o

XlTT>Qf

Define X; --» X;y1 as the wide pushout of all the morphisms h,:

X, = (7)
L

ranging over all the above pairs (S, f).
Notation: put

Flhy: By—1- Q2 Xii (8)

This “approximates” the desired Kan extension f/h, in the following sense: we get a
(commutative) square

A, . B (9)
fl lf//hr
Xi—-—=X;n

(d) Isolated step i + 1 — i + 2 (i even). Consider all triples (S, f,q) consisting of
S € H, as above, and two morphisms forming an inequality as follows:

A - B, (10)
fl < lg (r=1or2)
Xi—-—-=X,n

For every decomposition of f as follows

f= ATLXjff>Xi (j < even) (11)
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"Nh
form the coinserter of A, S 41— —>=Xip1 and g:

Cfg = COinS(ijrl,iJrl[fl//hr]a 9) c X1 — Of,g-

And in case r = 1 for every decomposition of f as follows
_ a f!
f = Al e AQ e Xz

'Ih
form the coinserter of B —t. B, MXHI and g:

cs.g = coins([f’ [ ha].b, g).

Define X1 --» Xiyo as the wide pushout of all cy 4 above:

Cf.g
Xipn —=Cyy
|
|
¥ lrg

Xito

11

(14)

(15)

3.2. LEMMA. Gien a morphism py : Xo —= P where P is Kan-injective with respect to
H, there exists a unique cocone p; : X; —= P (i € Ord) of the reflection chain such that

for all pairs (S, f) in step i — i+ 1 the following triangle

A,

7 hy
f//hrl %)/

X; P

+1 pir1
commautes.
PrROOF. We only need to prove the isolated step of the transfinite induction
even, we obtain p;,; as follows. From the following square
A, "B,
f i(pif)/ hy
P

Xi i

(16)

. Given p;, 1

we conclude that the pushout (6) yields a unique factorization morphism py : Qf — P.
These morphisms py form a cocone of the wide pushout (7). Define p;;; as the unique

factorization morphism
Pit1-qf =Py

It fulfils pi1 - (f)he) = pic1-qr - f = ps-f = (pif)/hr. Conversely, whenever the above

triangle commutes, then p;;; is a factorization map of the wide pushout (7).
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Next we define p;,o: since X;11 --+ X;1o is a wide pushout of epimorphisms, p; o is
unique. And for the proof of existence we only need to verify that p;., factorizes through
each cf 4. That is:

(a) In case of (11) we want to verifiy the inequality

Br g Xi+l
o
Xjt1 < Pit1

|
|
\l

X1 —5——>P

Pit1
The lower passage is, due to pjt+1 = piy1 - Tj414+1 and (16), equal to (p;.f")/h,. By
composing (10) with p;1; we get
pif < pivighy
hence,
(i ")/ hr < Pitag
(b) In case of (13) we want to verify the inequality

By < Xit

)

B < Pit1
f’//hzl

Xy ———> P

Pi+1
Indeed, the lower passage is, due to (16) and injectivity of P with respect to S, equal to
[(pif')/holb = (pif'a)/hy = (pif)/h1.

By composing (10) with p;11 we get p;f < pir1.9.h1. This proves (p;f)/h1 < pir1.9 as
desired. -

Recall that in a category with a factorization system (€,M) an object is said to have
rank A (a regular cardinal) if its hom-functor preserves A-directed colimits of morphisms
in M. We use the following concept introduced in [4]:

3.3. DEFINITION. Let X be an order-enriched category with a factorization system (€, M)
such that € C Epi and M C Order-Mono (i.e., given m € M then mu < muv implies
u<w). We call X locally ranked if

(i) it has weighted colimits,
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(i1) it is E-cowellpowered,
and
(iii) every object has a rank.

3.4. EXAMPLE. Pos is locally ranked w.r.t. €& = Epi and M = Order-Embedding. Top,
is locally ranked w.r.t. & = surjective morphisms and M = subspace embeddings.

3.5. REMARK. Let X be locally ranked and let (X;) be a transfinite chain with con-
necting morphisms X; - ->X; (i < j). By Proposition 4.1 of [12] there exists a chain
(Y;) of monomorphisms in M, a join-preserving function ¢ : Ord — Ord and natural
transformations

X, ;% X i (i € Ord)

such that for all ¢:

(1) By is the connecting morphism X; — - > Xy 41y ;

(2) the composite Y; i>X¢(i+1) - ->X, liesin M for all j > (i + 1);
and

(3) if ¢ is a limit ordinal, then a colimit of the chain (Y});<; is given by the following
cocone

ﬁ.
Y —= Xogan — = = X

Moreover, given such a function ¢, every join-preserving function ¢’ > ¢ works too.
Consequently, we can clearly choose ¢ so that ¢(i) is even for all ordinals 1.

3.6. THEOREM. Let X be a locally ranked order-enriched category. For every set H of
squares the subcategory LInj(H) is reflective: the reflection of every object X is given by
X --» Xy (in Definition 3.1) where k is a suitable cardinal.

PROOF. Apply the above remark to the chain of Definition 3.1, using notation ¢ = o(i+1).
Since I is a set, there exists a cardinal A such that for every square in I all the four
objects involved have rank \. The cardinal £ of our theorem is chosen to be

k= p(N).

(1) We first prove that the object X} is Kan-injective with respect to every square in
H:
Ay = 4

=

31T2>B2
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(a) Kan extensions modulo hy and hsy exist. Indeed, every morphism fj : A,—=Xj, (r =
1,2) has, since A, has rank A, a factorization f through some colimit injection of the
colimit X} = colim;., Y; of Remark 3.5(3):

4,
s
Y; 5 Xi———-—~- > X

Put f' = B;f. We use Notation (8) and prove that the desired Kan extension is
f, hT
folhe= A X ooy (17)
Indeed, from (9) we get fo = (fo/h:) - he via f' = (f'Jh) - by
(fo/h) -he = A —T> X5, - -~ X,

Next, let g9 = B, — X}, fulfil
Jo < gohe.

Since B, has rank A, we can find an analogous factorization:

B,
|
, g0
g
Y, X5 - - X

Bi i

for some ordinal ¢ < k. Without loss of generality, j < i. The above inequality yields the
following one:

iﬁi
f < X;
|
|
\
YV, —= X=X
J B; 7 P k
! v
| s
Yy -
Yji X%
A
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Since by Remark 3.5 the colimit morphisms lie in M, (thus, they are order-monomorphisms)
this proves

Yii- [ <g-hy
which by composition with f; yields the inequality

A, i B,
f/l lg,
Xj. < X;

|

| .

y y
Xi———---- . Xi+1

This is an instance of (10) and (11) with respect to z;;,,-¢'. Let cfy be the corresponding

coinserter (12). Since the map X; , --» X; , factorizes through cs,, we obtain the
following inequality

i+1

|

f'Ihr I

\

X§‘+1 < ‘

| I

| |

¥ ¥
Xippm— ===~ = Xt

Composed with X;, , --» X} this states that

Lit1k " (f' ) <

which is the desired inequality
Jo/hr < go.

(b) It remains to prove that for every fy: Ay — X}, we have
(foa)/h1 = (fo/h2)b.

Put fo = foa and factorize it analogously as fy above, assuming (without loss of generality)
that the same colimit injection can be applied:
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Thus the equality to be proved is, due to (16), the following square

' Im

By *>X3‘+1 (18)
|
[
BQ |
[
f’//h2l [
\
Xip— = =X

Since x. - f; is monic byARemark 3.5, the equality fo = foa clearly implies f = f-a which
multiplied by f; yields f' = f’-a. From (9) we thus get the square

A B

!

Ay I
r|
Xj=—>Xjn

This is an instance of (10) and (13). Let ¢, be the corresponding coinserter. Since the
map X, --» X;_ , factorizes through it, we obtain the following inequality

B, — 1M x.

)

|
|
|
By < |
|
f’//h2i [
y

Xjp—=——~ = Xjpa

which multiplied by X;,, --+ Xj yields "almost” the desired square (18): indeed, the
opposite inequality (fo/hs2) - b > (foa)/hy is trivial.

(2) For every morphism p : Xg—= P where P lies in LInj({) we prove that the
morphism p; : Xy — P in Lemma 3.2 is Kan-injective with respect to H. The proof is
entirely analogous to that of Part (2) of the proof of Theorem 6.10 of [4]. The proof that
the extension of the morphism p via X --+ X} is unique in LInj(H) is entirely analogous
to Part (3) of the proof mentioned above. "

3.7. REMARK. (a) The ordinal k above depends on the choice of the object X. However,
given two objects X and X, we can find an ordinal k such that both of the reflection
chains for X and X yield reflections in LInj(JH) after k steps. This follows from the choice
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k = p(A) made in the above proof, since the same function ¢ can be used for both chains.
(This can be deduced from the fact that we can always use any function ¢’ > ¢ preserving
joins.)
(b) Denote by
R : X—LInj(H)

the reflector, i.e., the left adjoint of the embedding. And by nx : X — RX the reflection
morphisms. We have just proved that for all objects X we have

nx =X --» X

How is R characterized on morphisms u : X —= X7

We prove below that B
Ru = U - Xk — Xk

for the following natural transformation u; : X; — X, (z € Ord) Here X; denotes the

reflection chain for X (and we use the obvious notation Q i C .90 €bC.).

3.8. NOTATION. Let u : X —~X bea morphism of X. We define a natural transformation
u; : X; —= X; (i € Ord) of the reflection chains of X and X by the following transfinite
induction:

Initial step: ug = u.
Limit step: this is automatic from naturality.

Isolated step i +— i + 1 (z even): every pair (S, f) with respect to X; defines a pair
(S,u; - f) with respect to X;. For the corresponding pushouts Qs and Qu 7, see (6), we
get a unique factorization f* as follows:

AT L r B’I‘
| fl
l ’ Y
X; _ e,
3 Qu.s

Then (qu,r - f*)ﬁr = Z;it1 - u; is independent of f. Therefore we can define u;4, via the
following squares (for all (S, f)):
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Observe also that (u;f)//h, is the composite of f/h, and wu;1:

~ B == B~
b el
e Q> Quy | (21)
ar %,-fi

N~ Xi+1 Tupq Chitl <

Isolated step ¢ + 1 — i + 2 (i even). Every triple (5, f, g) in the definition of X, yields
a triple (S, f, ) with respect to X, as follows:

f/E Ar 4f> Xl L )’Z.z and g = Br g X’i+1 s )’ZfiJrl
The naturality of (u;) guarantees that every factorization (11) of f yields the correspond-
ing factorization
fE Ar*)XjL)’Zj— —>)’Zi

of f And we prove below that this leads to a unique morphism d; , forming the following
square

Cf.g
Xi+1 > Cf,g

o e 22

Xiv1 ——Cf5

Analogously, every factorization (13) of f yields one for fand we again obtain a square
(22). We define ;. via the following squares (for all (S, f, g)):

dfg =
Cfvg ’ Cfag

l Ji7s (23)
X )?z'+2

—_
2 Tuigs

3.9. PROPOSITION. The above natural transformatign w Xy — X, (i € Ord) is well
defined, and u, = Ru for every morphism u : X — X.

PROOF. (1) Firstly, given an even ordinal 4, the morphisms ¢, - f* form a cocone of the
wide pushout (7) defining X; --» X, 1, hence, in (21) the morphism u;,; is unique. We
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need to verify the naturality square. For that observe that the following diagram

X

1

Us

|

|

|

_ |

I

\ |

¥ af quif N\V

Xip1

Ui41

commutes.

(2) Next we verify the existence of ds, in (22). In case (11) this is equivalent to
proving that Efg u; 11 satisfies the following inequality:

Ar I Xi—i—l
s \Lui+1
Xj1 < )?iJrl

[
l lgﬂa
y

Indeed, this follows from the definition of ¢7; and (21). And in case (13) we need the
inequality

By . Xit1

b e
B < X1

f e lzf@
Xit1 w7 Xt T éﬁg

which also follows from the definition of ¢7; and (21). The morphisms

dig gffg“ v
Crg Cis Xito

form a cocone of the wide pushout (15) due to (22):

bz dpg - Crg =15z Ciz Wit1 = Tit1,i42 - Uis1-
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Thus (23) defines u;o uniquely. Moreover, the naturality square now follows:

Ui+1 >
Xi1 Xiq1
[ . [
| 9 07 |
[ [
d
| f9 |
| Cfvg > Cf,g B [
' trg :
\L tyg \
Xin Uito Xito

(3) Consequently, for every morphism u : X —~ X the ordinal k of Theorem 3.6 provides
a square

X RX —— X,

| B

X RX—X,
X

To prove u, = Ru, we only need to verify that uy is a morphism of LInj(3H). That is, for
every square

A1L>Bl

o |

AQ T2> By
in H and every morphism fy : A, — X} the triangle

B, 2 x,

(urfo)/hr N‘L%
X

commutes. We use (17) for fy/h,, and we assume without loss of generality that the same
ordinal j can be used for (uyfo)/h,. Then the triangle above commutes due to (21):

I e

A ——=X - =X,
<u5f')//k Ni i Nlu’“
Xjp1 === Xk
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3.10. REMARK. In the following diagram (see (19))

the lower square is a pushout. This follows from the fact that both the composite and
the upper square are pushouts.

4. Kan-injectivity logic

We now introduce a sound logic for deriving a square S from a given class H of squares
of X. (Recall that “square” means a commutative one throughout.) Soundness means
that every object and every morphism Kan-injective with respect to members of H is also
Kan-injective with respect to squares derived from H. In the subsequent section we prove
that our logic is also complete if H is small and the base category is locally ranked.

Since for ordinary categories Kan-injectivity w.r.t. a morphism is just the usual or-
thogonality, it is not surprising that our logic is very close to the orthogonality logic
presented in [1]. Let us recall this logic here shortly. Firstly, every isomorphism s has the
property that all objects are orthogonal to s. Hence that logic has one axiom

AXIOM — for s an isomorphism.
S

The deduction rules are such that whenever an object is orthogonal to the assumptions
(above the horizontal line), then it is orthogonal also to the conclusion. We have the
following deduction rules:

hl ]’LQ f . h1 ha
COMPOSITION —_— = or morphisms — —

hy - hy

h

h
PUSHOUT for a pushout —=

k
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hi(iel . hi
WIDE PUSHOUT l(k) for a wide pushout —
\j{ﬁi (i)
k
k : k 92
COEQUALIZER — for a coequalizer V—— _ ¢
¢ T
and a morphism k with ¢k = g2k
hg . hg hg . hl . h1 ha  hs
WEAK CANCELLATION 5 for morphisms — — —
1

This logic is sound in every category X with colimits. And for small sets of morphisms H
it is complete, i.e., every morphism h such that H+ = (H U {h})* can be derived from
H (and the isomorphisms) provided that X is locally ranked, see [1]. This means that for
some factorization system (€, M)

(a) X is cocomplete and E-cowellpowered
and

(b) every object X has a rank, i.e., an infinite cardinal A such that X(X, —) preserves
A-directed colimits of M-monics.

The logic presented below deals with collections H of squares and the following concept:

4.1. DEFINITION. A square S is said to be a Kan-injectivity consequence of a class H of
squares provided that every object and every morphism Kan-injective with respect to the
members of H is also Kan-injective with respect to S. Shortly:

Linj(H) = LInj(H U {S}).

4.2. EXAMPLE. If H = (), we are speaking about squares w.r.t. everything is Kan-
injective. Let us call a square

l lb (24)

split if hy and hy are left adjoint sections and the Beck-Chevalley condition holds. That
is, we have a commutative square

CLJ/ J{b (25)
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with hlh; = id and h;h} <id for i =1, 2.
Each such square has the property that every object is Kan-injective with respect to

it. Indeed, given f : A,— X for r = 1, 2 the formula for the Kan extension is easily seen
to be

from which this fact is obvious. Moreover, this formula implies also that every morphism
is Kan-injective w.r.t. S.

This explains why in the following deduction system the split squares can serve as
axioms.

The following logic has as formulas (commutative) squares in a given category. Recall
that every morphism h : A— B is represented by the square

4.3. DEFINITION. The Kan-injectivity Logic consists of one

AXIOM

g for split squares S
and the following deduction rules:

Sl) 52

COMPOSITION _— for a composite S, horizontal or vertical,
S
of S1 and S
LN
PUSHOUT ha for a pushout of h,, r =1 or 2, along an
_he arbitrary morphism a
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h
—_—
H ibi (Z€I) hé
bih for any wide pushout Vs
WIDE PUSHOUT Wb ) lgi Gien)
[ |5 and any j el
_— >
hok
_ kg
COINSERTER S, So, S for a coinserter V> o |
_K . o
H i/c a morphism k with gk < gk, and a
s commutative diagram
k 91
_— >
RN
C
v e
SRR
N
RIGHT S, S(h>7 S(k) for S = ¢So¢ ¢
CANCELLATION So —'—
hi
_ —_—
UPPER Si, Si (1 €1) for S, — ai/i\bbl
CANCELLATION S ! a¢ S W’
—_—

with (b;)ier collectively epic

By a deduction of a square S from a collection H of squares is, as usual, meant a
sequence of squares obtained by the application of the above rules where S is the last
square and the assumptions are (a) members of H, (b) axiom instances or (c¢) squares
already deduced.

4.4. PROPOSITION. (Soundness of the Kan-Injectivity Logic) Let X have weigheted col-
imits. Every square deduced from a class of squares is a Kan-injectivity consequence of
that class.

PROOF. For the soundness of AXIOM see Example 4.2. Therefore, all we need to prove is
that for every deduction rule in Definition 4.3 the deduced square S is a Kan-injectivity
consequence of the assumptions of that rule. To do so we take an object X Kan-injective
with respect to each of the assumptions and verify that X is Kan-injective with respect
to S. By doing so we actually give a formula for the Kan extensions needed.
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We leave out the verification that also morphisms u : X — X’ Kan-injective with
respect to all assumptions are Kan-injective with respect to S. Indeed, due to the formula
presented for objects this verification is in each case trivial.

(1) COMPOSITION. (a) Horizontal composition:

A1*h>B1L>C1

)

A2T>BQT>C3

fIk
fi /(f/k)//f’

X
Let X be Kan-injective with respect to both of the above squares. We prove for all

f Ay — X the formula
FIK'R) = (f/R) /K.

(Clearly,
[(f/R) KKk = .
Given g with f < gk’k, we conclude f/k < gk’, hence (f/k)/k" < g. Analogously,

F/(h) = (F/h)/K  forall f: A, —=X.

The formula [fa] /(K'h) = [f/(K'k)] - ¢ easily follows.
(b) For a vertical composition:

A h' B
ai Sl b1
A B
a2 SQ ba

A

- B
X« /f/h
X
we prove that (fasaq)/h"” = (f/h)byb; easily from (fag)/h = (f/h)be and [(faz)aq] /A" =
h1

[(faz)/WT - by

(2) PusHouT. (a) Suppose X is Kan-injective w.r.t. | | . Let r = 1 and f :
ha
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A; — X be given:

For the square formed by f and (f@)/h; we have a unique factorization, let us call it
f/hi. This is justified by the lower triangle above together with the implication

f < ghy implies f/h, < g

which we verify easily. The above pushout is conical so to prove f/h; < g we only
need a verification when precomposed by hq (this is our assumption) and by b. To prove
(f/h1)b < gb, that is, (fa@)h; < gb, we just observe that our assumption implies fa < gbh,
due to l_)hl = Ela.

The required rule (f/hy)/b = (fa)/h; is the right-hand triangle above.

(b) The proof for r = 2 is completely analogous.

I V=

(3) WIDE PUSHOUT. Let X be Kan-injective w.r.t. each of the squares || |bi. Given

b;

>

a morphism f: A—X
A-Ll-p B

J

fl
X
we know that f/h and f/(b;h) exist and fulfil

(f/(bih))b; = f/h.
Consequently, for the given wide pushout P there exists a unique morphism
f:P—=X with fb; = f/(bh) for i€l

We prove

~

f/(kh) = .
Firstly
fkh = fbbih = [f/(bih)] bih = f.
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Next if f < gkh, we prove f < g. It suffices to observe that for all ¢ we have fhbi < gb;,
and use that our wide pushout is conical. Indeed, we have

foi = f/(bih) < gb;

or, equivalently, ~
J < gbibih

by assumption.
The desired formula

(f/(kh)) - b = f/(bjh)

now follows from fb; = f/(b;h).
(4) COINSERTER. We are given a diagram

k 4)5}2 c
A——B C——D
g1

with g1k < gok and ¢ = coins(g1, g2), and a commutative diagram

S
{1

';GHQ:Q

Observe that k' = h'hhy. If X is Kan-injective with respect to S, Sy and S, we prove
Kan-injectivity with respect to the following square:

R A, h B, i C
R A, "~ B, Ui C—<~D

Kan-injectivity with respect to S yields

f=f/(Whho) with fh' = f/(hho) (26)

We prove below that R R

Jfar < fgo (27)
which means that f factorizes through ¢ = coins(gi, go). This concludes the proof: the
factorization

f:C—=X with f = fe
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is the desired f/(ch'hhg). Indeed,
fch'hhy = f(W hho) = f

and given ¢ with f < tch’hhg, then f = f/(Whhg) < te. Thus fe < tc which implies
f < t. The desired equality

[f/(ch'hho)] - ¢ = [/ (R hho)

in other words o
f=fe=f/(Whh)
is the definition of f )

In order to prove (27) first recall that X is Kan-injective with respect to Sy and S,
hence, f/hy and (f/hg)/h exist. From this we easily deduce

f/(hho) = (f/ho)/h
and then (26) yields

= (f/ho) /. (28)
By Kan-injectivity with respect to .S this implies
fou=fi'b=((f/ho)/M] - b =[(f/ho) - a] /k. (29)

Next recall that COINSERTER also assumes g1k < gok, thus fglk < fg2/<;, and then, using
(29), we obtain (27).
(5) RIGHT CANCELLATION. Let X be Kan-injective with respect to the squares

Ao pr ko B-"-C
s=o o sms ond

Given a morphism f: A— X, put

f/n = 1f/(hh)] - h

Then (f/h') - ' = f is clear. And if f < gh/, then, recalling Kan-injectivity with respect
to S(h), we get g = (g/h)h, hence

f < (g/h)(hl)
which implies
f/(hR)) < g/h

and yields
[f/(WR)]-h<g
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as desired. Analogously, (fa)/k' = [(fa)/(kk')] - k and this yields
(f/h)-b=(fa)/K

as required.

(6) UPPER CANCELLATION. Let X be Kan-injective w.r.t. the squares S; and com-
posites of S; with S (i € I). Given a morphism f as follows

| s
A k B
s
A - B’
\ f/h
X

we have f/h satisfying
(f/h)bb; = (faa;)/h; (i € I).
The desired equality
(fa)/k = (f/h)-b

follows, since (b;) is collectively epic, from

[(fa)/k]-b; = (faa;)/h; by Kan-injectivity with respect to S
= (f/h)(bb;) by Kan-injectivity with respect to the composite.

This concludes the proof of soundness. [

4.5. LEMMA. The following deduction rules are consequences of the Kan-injectivity Logic:

S-RULE i J« forr=1o0r2

and

TRANSFER
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PROOF. S-RULE is a special case of pusHOUT: S(h,) is a pushout square. TRANSFER
follows by applying RIGHT CANCELLATION as follows:

COEQUALIZER for ¢ = coeq(by, by)

PRrROOF. Form coinserters
ki = coins(by,be) and ks = coins(bs, by).

Then we apply COINSERTER to the following diagrams

k b;
s |
A-l.p——2n (i=12)
S(] h § h

where Sj follows by TRANSFER and S by S-RULE, and we deduce the squares below from
the above assumptions:

A-—r.p A-r.p
[ and -
A K A Ko

The coequalizer c¢ is clearly a pushout of ky and ks:

B

VN
K| K
RSV
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By applying WIDE PUSHOUT with s = h we derive

4.7. REMARK. Let X; (i < A\) be an a-chain with connecting maps x;;. We can construct
its colimit using wide pushouts as follows:
First form a wide pushout of all z;

Xo > X; (30)

\IN lpi (1 < )

P

For all pairs i < i' < « form the following coequalizer

Pi e
X, P2 Cy (31)
Py Ty

Finally, the wide pushout of all these coequalizers is formed

P Oy (32)

Then K is the colimit of the given diagram with the following colimit cocone:
X, 2sP2-K (i<a).

Indeed, since g merges the parallel pair in (31), all gp; form a cocone.

Let y; : X; —Y (i < a) be another cocone. Then the unique y : P —Y with
y; = yp; (i < ) clearly merges the parallel pair of (31). Hence, y factorizes through each
ciiv. Consequently, y = 7g for a unique y : K — Y. This is the desired factorization:

vi = ypi = y(gp;) fori < a.

The uniqueness of this factorization is easy to verify.
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4.8. LEMMA. (Transfinite Composition) Let (X;)ica be an a-chain with connecting mor-
phisms X; --» X, and a colimit k; : X; — K (i < «). The following deduction rule
follows, for every j < a, from the Kan-Injectivity Logic.

XO - > X]
| .
| G=k=a
X() **>X}C
TRANSFINITE XO **>Xj
COMPOSITION
|
XO ?‘ K

PROOF. We can assume k; = gp; for all i, see the above remark. By applying WIDE
PUSHOUT to the premisses of our rule we get, for every ¢+ < «, the deduction of the square

XO - — > Xz
X @
Xo—= P

This makes it possible to apply COEQUALIZER to (30) to derive
X, 2~ P
Xo P Ciur

for all ¢ <4’ < a. Next apply WIDE PUSHOUT to (34) with h = py to derive

Po Ciil
Xog—=P — Cn’/

o

Xo =P —> K

For i = ¢ = j we can put ¢j; = id in (31), thus g = ¢;; in (32). Hence we have derived
the following square

Xo = p
lg
Xo o= P—~ K
Vertical COMPOSITION with (33) (for ¢ = j) yields the desired square:
Xo- - =X,
thgm

XQHK

h=gpo
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5. Proof of Completeness

Throughout this section H is a set of squares in a locally ranked order-enriched category
X. We prove that the Kan-Injectivity Logic is complete.
First a preliminary result. Recall the reflection chain from Section 3.

5.1. LEMMA. For all ordinals m < 1 the squares

XO --=X,
|
| (35)
¥
Xo- - =X,
can be deduced from JH.
PRrROOF. We proceed by transfinite induction in .
Initial step. Use AXIOM on the split square
Xo=—= Xy
Xo=—=Xo
Limit step. This follows from TRANSFINITE COMPOSITION, see Lemma 4.8.
For m =i, S(Xo --+ X;) is obtained by S-RULE (Lemma 4.5).
Isolated step i — ¢ + 1 (i even). Given a square
A, M B,
| s )
Ay T2> By
in H and a morphism f: A, — X; (r =1 or 2), we have the following deduction:
S
PUSHOUT
hr
fl if (36)
hy
TRANSFER
(Lemma 4.5)
X, —X;
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WIDE PUSHOUT

R
XiHQf
I (37
Xi— > i+1
TRANSFER
(Lemma 4.5)

Xi——=X,
I

H | (38)

y
Xi——>Xi

By induction hypothesis, (35) are given. Our task is to verify, for every m < i+ 1, the
corresponding square. Horizontal COMPOSITION of (38) with (35) for m = i deduces

Xo- - =X,

|
|
Al

Xo——>Xin1

and vertical COMPOSITION of (38) with (35), m < i, yields the desired square

Xo- - = Xy (39)
|
'
Y
Xo X;
|
'
Y
Xo——>Xin

For m =i+ 1, we deduce the square S(Xy --» X;+1) by (39) via S-RULE (Lemma 4.5).
Isolated step i 4+ 1 +— i + 2 (i even). We first observe that the square (9) of Definition
3.1 is deduced from H by COMPOSITION applied to (36) and (37):

A, B, (40)

Xi?@f fhr

For every coinserter (12) we can thus apply COINSERTER to k = h, and the following
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A, B,

f s Jrm

Xj- == Xjq1 - == Xipr =2 Cp g
A A A
Sy 1§ |
| | |

Xo Xo Xo

35

Indeed, the assumptions are S, by (40), Sy, which is (35) for m = j and i = j + 1, and
S, which is (35) with m = j + 1 and 7 + 1 in the place of i. Consequently, we deduce the

square

Xo==>Xip1 5> Cjy

For every coinserter (14), first observe that the square

A s B

l g lb

S: A24>BZ

ho
T

Xi—-->=Xin

(41)

is deduced from S’ and (40) by COMPOSITION. We apply COINSERTER to k = hy and the

following diagram

h1

Al Bl Xi+1

|5
Xi——=Xinn=—X;11 ol Cryg
A A A

Sy 1§ \

I I \
Xo Xo Xo

where the second and last assumptions of COINSERTER are just instances of (35) which

are deduced from H by induction hypothesis. Thus we again deduce the square (41).
Apply WIDE PUSHOUT to (15) with h = Xy --»

Cf.g
Xo==>Xipn ——=Cjy

\Lt‘f’g

Xo-—=Xip1——>=Xip

ir1 to deduce all the squares

(42)
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A vertical COMPOSITION with (41) deduces

Xo= =~ Xina
|

|
Al

Xo——>Xipo

which vertically composed with (39) yields

XQ - — > Xm
|
: for all m <47+ 1.
v
Xo——>Xito
The remaining case m = ¢ + 2 is then deduced by S-RULE. n

5.2. THEOREM. (Kan-Injectivity Logic is Complete and Sound) A square is a Kan-
injectivity consequence of a set of squares iff it can be deduced from that set.

PRrROOF. For soundness see Proposition 4.4. Let J be a set of squares and let the following
square
A, " B

e

A2T2>Bz

be a Kan-injectivity consequence of H. We find a deduction of S from H.

Let R : X — LInj(H) denote the reflector, RX = X} and Ru = uy (see Proposition
3.9).

(1) We first use the fact that RA; and RA, are Kan-injective with respect to S, thus,
Na,/h1 and na,/he exist, and we prove that they form a square as follows:

nAy /hl

Bl e RAl

| | o

B2 —_— RA2

Nay/h2
Indeed, the morphism Ra is Kan-injective with respect to hy, thus
Ra - (na,/h1) = (Ra-na,)/hn = (na, - a) /I

and, since RA, is Kan-injective with respect to S, we have

(N4, - @)/h1 = (nay/h2) - b.
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(2) The morphism Rhy : RA; — RB is a left adjoint section. (This was proved in
[6] but we include the short proof for he convenience of the reader.) Indeed, since RA;
is Kan-injective with respect to hy (being Kan-injective with respect to S), using the
universal property of 14,, we have n4, /h1 = h} - np,

Al Bl
ﬁjl//
Aq NB,
Rhy
RA, RB;

hi
for a unique A} in LInj(3{). This is the desired morphism with
' Rhy=id and Rh-hi <id.

Indeed, both composites lie in LInj(H), thus, it is sufficient to verify (a) hj- Rhy-na, = na,
- see the above diagram, and (b) Rhy - hf - np, < np,. We use the trivial inequality
(nB, - h1)/h1 < np, and the above diagram to see that (b) holds.

(3) The square

RA, "™ RB,
R(S) = Ral le
RAQ T2> RB2
splits. (This is Lemma 3.4 in [16]; here we present a different proof.) Indeed, we have

h%i : RB; —= RA; in (2) and, analogously, hy : RBy —= RA,. It remains to verify the
following square

RB, —. RA,

o e

RB2 T> RAQ

It lies in LInj(H), thus, it is sufficient to prove that it commutes when precomposed
by B, -
RB,

RA,

7/]Al/hl

NAy /h2

\

\
" bi "
/

RB,

RA,



38 JIRI ADAMEK AND LURDES SOUSA

Indeed, use the square in (1) above.
(4) In part (5) we are going to prove that every naturality square of 7, in particular

na,

Al D RAl

l lRa

A2 TA2> RAQ
can be deduced from H. Due to AXI0M, the square R(S) of part (3) is also deducible,
and their horizontal composite yields

nAq Rhq

Ay RA, RB,

i le

Ao > RA, T RBy

NA

which is the same square as the following composite

By

Al L>Bl HRBl

Lo

A, > By e RB,

Thus, S is deduced via RIGHT CANCELLATION, since the right-hand square is deducible
(being, again, a naturality square of n). This concludes the proof.
(5) To prove that naturality squares of n are deducible from H, we consider the squares

X-->X; (43)
X**>‘X¢

for all ordinals ¢ and prove their deducibility by transfinite induction. By Proposition 3.9
the case i = k is the desired square.
Initial step: the square

X=—=X
X=—X

is split, we can apply AXIOM .
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Limit step: Given a limit ordinal 7, such that (43) is deducible for every m < i in place
of i, compose (43) vertically with (35) to get a deducible (outward) square as follows:

XQ**>Xm
|
'
\
X* - >Xi
5(:— - >5{'i

The upper square is deducible by Lemma 5.1, and all X,, - - > X, are collectively epic,
hence, the desired lower square is deduced by UPPER CANCELLATION .
Isolated step i + i + 1 (i even). We are going to derive the square

Xi——=> i+1

ull \Lui+1

Xi- > Xin
and compose it horizontally with the square assumed by induction hypothesis.

For that take all pairs (S, f) defining the step i — i + 1. Then we apply UPPER
CANCELLATION to the following diagram

Ao
Xi*>Qf

|

Xi- == Xin

UL\L lui+1

Xi-=->=Xin
The upper squares are deduced, see (37), and all gy are collectively epic, thus, we only
need a deduction of the composite square. This is, by the definition of wu;,; in Remark

3.7 the square
Iy
Xj —— Qf

!

wi Quif

(44)

Xi——=Xin
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Now in order to derive (44), recall the pushout

Ay
Xl

sl

from Notation 3.8 and compose it vertically with the square

~ ET ~

Xi—-—>=Xin

The former square can be deduced from (36) via PUSHOUT, for the latter one see (37).

Thus (44) is deducible.

Isolated step i + 1 — i+ 2 (i even). Using (42), we can again apply UPPER CANCEL-

LATION :
C
X=X —2=Cy

lcj}g

X--=-=-==-- = A2
ul lui-‘-z
X-----=- = Ait2

We only need to deduce the composite square.
The following composite

X-==Xip
ul iuwl
X--~ )?iJrl
\
w
15 v
X -=>Xip

is deducible due to Lemma 5.1, and the right-hand vertical morphism is

Cf.g drg 53
Xi+1 Cf Cf’g4> i+2

g

(45)



KZ-MONADIC CATEGORIES AND THEIR LOGIC 41

by (22). Thus we have deduced the following composite

X--=-===-= = A+l
X==>Xip1—5->Cyy
df.g
u C’~g
?f,.a
),Z _______ > ~z+2

The upper square is (41). Moreover, ¢y, is an epimorphism (being a coinserter). Thus
UPPER CANCELLATION yields the deduction of the lower square. This is the desired

composite square (45): indeed, see (23). "
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