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ABSTRACT. Let(T, (-,-,-)) be a triple system of arbitrary dimension, over an arbitrary
base fieldF and in which any identity on the triple product is not supmbs basisB =
{ei}ier Of T'is called multiplicative if for anyi, j, k € I we have thate;, e;, ej,) € Fe,
for somer € I. We show that ifl" admits a multiplicative basis then it decomposes as
the orthogonal direct sufli = € J;, of well-described ideals admitting each one a mul-

k
tiplicative basis. Also the minimality of" is characterized in terms of the multiplicative
basis and it is shown that, under a mild condition, the abineedsum is by means of the
family of its minimal ideals.

Keywords Multiplicative basis, triple system, non-associativipler system, infinite
dimensional triple system, structure theory.
2010 MSC15A03, 17A40, 17A60.

1. INTRODUCTION AND PREVIOUS DEFINITIONS

Throughout this paper” will denote an arbitrary triple system in the sense thateher
are not restrictions on the dimension’Bfor on the base field, and that any identity on
the triple product (associativity, alternativity, Lie,rdan, etc.) is not supposed. That1s,
is just a linear space ovérendowed with a trilinear map

TxTxT—T

(z,y,2) = (2,9, 2)
called thetriple productof T'.

Definition 1.1. A basisB = {e;};c; of T is said to benultiplicativeif for any i, j, k € T
we have eithefe;, e;,ex) = 00r0 # (e;, e, e;) € Fe, for some (uniquey € I.

Remark 1.1. The definition of multiplicative basis given in Definition1lis a little bit
more general than the usual one considered in the literédurthe case of algebras ([4,
6, 7, 8, 21]). In fact, in these references, a b#sis {¢;};c; of an algebraA is called
multiplicative if for anyi, j € I we have eithee;e; = 0 0r0 # e;e; = e, for somek € I.

To construct examples of triple systems admitting multigtive bases we just have to
fix an arbitrary (non-empty) set of indexéand two arbitrary mappings: I x I x I — I
andg : I x I x I — F. Then theF-linear spacd” with basisB = {e¢;};c; and product
among the element of the basis given(ey, e;, ex) = 3(i, j, k)ea(i,j,kx) bECOMES a triple
system admitting8 as a multiplicative basis.

Given an algebral, with product denoted by juxtaposition, we can endow theeulye
ing linear space ofl with a structure of triple systeffiy by defining the triple product as
(x,y,2) = (zy)z. We say thafl4 is the triple systenassociatedo A. We have that ifA
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admits a multiplicative algebra basis (in our extendedagnhat is, a basi8 = {¢; }icr
such that for any, j € I we have eithee;e; = 0 or 0 # e;e; € Fe,., for somer € I,
thenT 4 becomes a triple systems admittiB@gs a multiplicative basis. From here, since it
is usual in the literature to describe an algebra by exhipii multiplicative table among
the elements of a fixed basis, we can find many classical exeoptriple systems admit-
ting multiplicative bases in the categories of associdtijge systems, alternative triple
systems, Lie triple systems, Jordan triple systems, Leibyiple systems and so on. For
instance, in the category of associative triple systemsave that the classes of triple sys-
tems associated to full matrix algebras, to group-algehoaguiver algebras (wheh is
algebraically closed) or to finite-dimensional assoc@atilgebras of finite representation
type, ([3, 4, 5, 6, 19, 21, 23]), are examples of (associptiy@e systems admitting multi-
plicative basis. In the category of Lie triple systems we tedkie as examples of triple sys-
tems admitting multiplicative basis the ones associatezktoisimple finite-dimensional
Lie algebras (over algebraically closed fields of charéstier0), to semisimple separa-
ble L*-algebras [24], to semisimple locally finite split Lie algab [25], to Heisenberg
algebras [22], to twisted Heisenberg algebras [1] or to fi¢ Isie algebras studied in [9,
§3].

Consider now the associative triple systért), .., () where the triple product is given
by (A, B,C) := (AB")C, (denoting byB? the transpose aB). Then(M,, s, (F), (-,+,))
admits the standard bas& = {E;; : 1 < i < n,1 < j < m} of M,xn(F) as a
multiplicative basis. Following the terminology of [20hé class of Jordan or Lie triple
systems formed for those triple systems caliggson triples(by their applications in the
theory of meson fields), are also examples of triple systemmsting a multiplicative basis.
We recall that this family of triple systems are construcasdfollows. Take the linear
subspaceM C M, 11)x(n41)(F) linearly generated by the matricés := E;, 1 —
Ent14, 9 = 1,2,...,n, and define the nonzero triple products among the elements of
the basis a§G;, G;, G} := —6;;Gir — 0;G; in the Jordan case, 0iG;, G;], Gy =
0riGj — 0r;G; inthe Lie case. In the same reference [20], we can find theyarhdordan
and Lie triple systems defined as the linear subspAtes M, 1)xn+1)(F) linearly
generated by the matrices; := E; 11, Y; := E,41,; and where the nonzero triple
products among the elements of the basis are defined by

11X, Y5, X} =06 X + 05 Xk, {Vi, X, Yi} i= 05k Yi + 05: Y5
in the Jordan case, or
(X5, Y], Xi] i= 0 X + 605 Xw, [[Vi, X, Ya] == 0 Yi + 0;:Ya

in the Lie case. These are examples of Lie and Jordan trigteisys with a multiplicative
basis.

We also have as examples of Lie triple systems with mul@pile basis the ones intro-
ducedin[10, 11, 12, 15]. Finally, we observe that can alsbéxamples of 3-Lie algebras
and Leibniz triple systems admitting a multiplicative tsasi [16] and [2, Example 2.1,
Example 2.2, Example 2.3] respectively.

A subtripleS of a triple systenT is a linear subspace such t{&t S, S) C S. Alinear
subspacé of T'is called aridealif (Z,T,7T) + (T, Z,T)+ (T, T,Z) C Z. We also recall
that two nonzero ideals, 7 of T" are callecbrthogonalif the condition

(TZ,7)+ L. 17,.9)+(Z.J,T)+(I,J,1) + (J, T, 1) + (J,Z,T) = 0
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holds. A direct sumgp Z; of non-zero ideals of is calledorthogonal direct sunif for
=
anyj, k € J with j # k we have thaf; andZ,, are orthogonal ideals.

The present paper is devoted to the study of arbitrary tepitems admitting a mul-
tiplicative basis, by focussing on its structure. The paparganized as follows. 162,
we develop connections techniques in the set of indéxafsthe multiplicative basis, so
as to get a powerful tool for the study of this class of tripfstems. By making use of
these techniques we show that any triple sysfeadmitting a multiplicative basis is the
orthogonal direct surii’ = @ Z;. with anyZ;, a well described ideal df' admitting also a

k

multiplicative basis. Ir§3 the minimality of7" is characterized in terms of the multiplica-
tive basis and itis shown that, in case the basisnsultiplicative, the above decomposition
of T"is actually by means of the family of its minimal ideals.

2. CONNECTIONS IN THE INDEXES SET DECOMPOSITIONS

In what followsB = {e; };c; denotes a multiplicative basis of a triple syst&mP (1)
the power set of and.S3 the group of all permutations of three elements.

For eachi € I, a new variablé ¢ I is introduced and we denote By:= {i : i € I}
the set consisting of all these new symbols. We will alsoenfit:= {i : i € U} for any
U € P(I),and(i) := i foranyi € I.

For any any € S5 we introduce the next mappings which recover, in a senswicer
multiplicative relations among the elementsif

ag: I x T xIT—PI)andb, : I x T x 1 — P(I)

defined by

0 if (e € €iyy) =0
S de 7o) — A (1) “o(2) o (3)
aa(21122723) { {]} if 0 # <eiv(1)aeig(2)’eiv(3)> S Fej

bo (i, 39, 73) = {j1 € I : ays(j1,J2,53) = i}
We also introduce the map
p:Ix (ITUI) x(IUT)— P)
given by

o u(l,1,T)=p(I,I,I)=10.
° ,u(il,ig,ig) = U ag(il,ig,i3) in caseiq, io, i3 € I.
oc€S3
o 1(i,j2,3) = |J boli,jo,Js) incasei € T andy,, j; € T,
oeSs
Remark 2.1. Observe thafu(i, i2,i3) = u(is1),i0(2), io(3)) fOr anyo € Sz and any
i17i21i3 € I, and thatﬂ(iaj2733) = :u(i153732) for anyi el and52733 € T
Lemma 2.1. Leti,j € I andz,y € I U I be. Theni € pu(j,z,y) if and only if
Jj € pli, T, 7).
Proof. Taking into account(I,1,1) = u(I,1,1) = () we just have two cases to consider.
Leti € u(j,z,y) be and suppose,y € I. Then there exists € S; such that =
as(j,z,y) and soj € b,(i,Z,7) C u(i,T,7) as wished. In case,y € I, then there is
o € S3 such that € b,(j, z,y) and consequently = a, (i, 7,y) C u(i,Z, 7). O
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Finally, we also define the mapping
¢:PI)x (I UI)x (IUT)— P()
as

o(J, 5. k) = | pii,j, k)
icJ
foranyJ € P(I) andj,k € T U 1.

Lemma 2.2. LetJ € P(I) andjk € I U I be. Theni € ¢(J,j,k) if and only if
o({i}, 5, k)N #0.

Proof. We havei € ¢(J, j, k) if and only if there exists € J such that € p(z,j, k).
By Lemma 2.1, this is equivalent o€ (i, j, k) C ¢({i}, 7, k) and so also equivalent to
€ o({i},J,R)NJ #0. O

Definition 2.1. Leti andj be distinct elements ih. We say that is connectedo j if there
exists a subsefiy, is,i3,...,i2,+1} C I U I for somen > 1, such that the following
conditions hold:

€
Js

1.4 =1

2. p({i1},i2,13) #0,
d(d({i1}, i2,13),14,15) # 0,

¢(¢( o o({in}i,03) ), dan—2,d2n—1) # 0.
3. j S Qb((b( .. ¢({i1},i2,i3) A )7i2n7i2n+1).

The subse{iy, i, i3, . ..,i2,41} IS called aconnectiorfrom i to j and we acceptto be
connected to itself.

Our next goal is to show that the connection relation is anvadgnce relation. Previ-
ously we show the next result.

Lemma 2.3. Let {i1,1i9,13,...,i2,41} b€ @ connection froni to j, wheren > 1 and
i,j € I withi # j. Thenthe sefj, iz 11,%2n,- - -, 43,72} IS a connection fronj to i.

Proof. Let us prove it by induction on.

Forn = 1 we have thai; = i andj € ¢({i},42,i3). Hencej € u(i,i2,i3) and by
Lemma 2.1 € u(j,i2,i3) C ¢({j},42,13) = ¢({j}, i3,i2). From here{j, iz, iz} is a
connection frony to .

Let us suppose that the assertion holds for any connectitm2&i+ 1 elements and
let us show it also holds for any connectifi, is, . . ., i2k+1, t2k+2, t2k+3} With 2k + 3
elements.

If we denotell := ¢(H(. .. ¢({i1},42,13) ... ), 2k, i2k+1) then we have that

J € o(U,ianq2, i2ky3)-

From here, Lemma 2.2 allows us to assg(if;}, iaki2,i2k13) N U # () and so we can
takeh € U such that

(2) h € ¢({5}, iok+2, i2kt3)-
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Sinceh € U we have thafi, 02, - -, U2k, iok+1} IS @ connection from to h and so, by
induction hypothesis, the séb, iz 11,2k, - - -, 43,12} iS @ connection fronk to i. This
fact together with Equation (1) give us that
i € O(A(... d(A({5}, tan+3, i2kt2), iokr1s d2k) - - - ), i3, G2)-
Hence{j, iok+3, 92642, - - - » i3, 72 } iS @ connection fromj to i and the proof is complete.
O

Proposition 2.1. The relation~ in I, defined by ~ j if and only ifi is connected tg, is
an equivalence relation.

Proof. The reflexive and symmetric character-efare given by Definition 2.1 an Lemma
2.3 respectively. To check the transitivity charactergobs that if we consider a couple of
connectiongiy, . .., iam+1} @and{ji, ..., jent1} fromi to j and fromj to k respectively,
then the sefiy, ..., %2m+1, 42, - -, Jont1} IS @ CcONNection fromito k. O

By the above Proposition we can introduce the quotient set
I/ ~:={[i] :i e I},

becoming] the set of elements ihwhich are connected to

For any[i] € I/ ~ we define the linear subspace

| = PFe,
Jj€li]

Lemma 2.4. If (Ty;, T, Ty;1) + (T, Ty, Tiy)) + (T1;, T, Tpyp) # 0 for someli], [j] € I/ ~,
then(i] = []aﬂd<T[zJaT T[J>+< Tig. Tin) + {Ty. T. TH> C Ty

Proof. Since(Ty;), T, T;)) + (T, Ty, Tij) + (T, T, Thay) # 0, there exists: € [i], w € 7]
andv € I such that
0 # (e, €y, ew) € Fey Or 0 # (ey, e, ew) € Fep 0r0 £ (e, ey, e4) € Fey

for somel € I.

In any case, we have thate u(u,v,w). Hencel € ¢({u},v,w) and{u,v,w} is a
connection fromu to [. From here, the transitivity of gives usi ~ [ and we can deduce

(T, T Tygp) + (T, Ty, Thyp) + (T, T Th) © T

We also have that € u(w,v,u), sol € p({w},v,u) and{w,v,u} is a connection

fromw to [. Then we have that ~ [ and concludéi] = [;]. O

Definition 2.2. Let T' be a triple system with multiplicative basls. It is said that a
subtripleS of T"admits a multiplicative basi8s inheritedfrom B if Bg is a multiplicative
basis ofS satisfyingBs C B.

Proposition 2.2. For any[i] € I/ ~, the linear subspacé; is an ideal ofl” admitting a
multiplicative basis inherited from the one’Bf

Proof. SinceT" = @ Fe; we clearly havel’ = & 1T}; and so we can write
el ljlel/~

<T[z] ) Tv T> + <T7 T[i]v T> + <Ta Tv T[z]> =

(T, T, @ Ty + (T T, @ Ty +( @ Ty, T.Ti) € T,
blel/~ blel/~ el )/~
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being last inclusion consequence of Lemma 2.4. That isgnis actually an ideal of .
Finally, observe that the s¢t; : j € [i]} is a multiplicative basis of; inherited from the
basisB = {ey, : k € I} of T. O

Theorem 2.1. LetT be a triple system admitting a multiplicative ba%s ThenT is the
orthogonal direct sum of the the ideals

T= P T

eI/~
admitting eachl};) a multiplicative basis inherited frors.

Proof. As in Proposition 2.2, the fadt = @Fei givesusl' = @ Tj;. Now, Propo-
iel lijel/~
sition 2.2 and Lemma 2.4 complete the proof. O

3. THE MINIMAL COMPONENTS

In this section our target is to characterize the minimadityhe ideals which give rise
to the decomposition df’ in Theorem 2.1, in terms of connectivity properties in thiecde
indexesl.

Definition 3.1. An arbitrary triple systen¥’ admitting a multiplicative basi#s is called
minimalif its only nonzero ideal admitting a multiplicative basiherited fromB is T'.

Let us introduce the notion @f-multiplicativity in the framework of arbitrary triple sys
tems admitting a multiplicative basis, in a similar way te tines of closed-multiplicativity
for Lie triple systems (see [10, 12, 15]), for split 3-Lie algas (see [16]), or for different
classes of algebras like graded associative algebrasLsjibiniz algebras, split Poisson
algebras, or split Lie color algebras (see [13, 14, 17, 18jHese notions and examples).

Definition 3.2. Itis said that a triple systeffi admits gu-multiplicative basis3 = {e; }ier
if it is multiplicative and giveni, j € I such thatj € u(i, z,y) for somez,y € I U I then
ej € (e;,T,T)+ (T,e;, T) + (T, T,¢e;).

Examples of triple systems admittingmultiplicative bases are those triple systems
associated to (associative) matrix algebras, to semisiffitiite-dimensional Lie algebras
(over algebraically closed fields of characteristic 0),@m&simple separablg*-algebras,
to semisimple locally finite split Lie algebras or to the sphlie algebras considered in
[9, §3]. We also can take as examples of triple systems witultiplicative bases to
the associative triple systerist,, .. (F), n # m, (see§l), to the meson triple systems
described irg1, to the family of Jordan and Lie triple systeth§ (also described if1), to
the Lie triple systems considered in [10, 12, 15], to the 8#lgebras presented in [16] or
to the Leibniz triple systems described in [2, Example 2.1].

Theorem 3.1. LetT be an arbitrary triple system admitting/amultiplicative basisB =
{e:}icr. Then is minimal if and only if the indexes skhas all of its elements connected.

Proof. Suppose€l” is minimal. By Theorem 2.1T" = Tj;) for some[i] € I/ ~. Hence
[i] = I and so any couple of elementsirare connected.
Conversely, consider a nonzero idgadf 7" admitting a basis inherited fro. Then,
for a certain) # I C I, we can writeJ = @ Fe;. Fix someiq € I3 being then
Jel;
2) 0#e, €T



ARBITRARY TRIPLE SYSTEMS ADMITTING A MULTIPLICATIVE BASIS 7

Let us show by induction on that if {i1, ..., 42,41} IS @ connection froniy to some
j € I, thenforanyk € ¢(o(--- o({i1},i2,13) ... ), 20, 42n+1) We have thad # e € 7.

Indeed, in case = 1, we getk € ¢({i1},i2,i3) with i1 = ig. Hencek € u(io, i2,13),
S0, taking into account thatis an ideal ofl", by py-multiplicativity of 28 and the Equation
(2) we obtaire;, € 7.

Suppose now the assertion holds for each connegtion .., jan41} from iy to any
r € I, and consider any connectidty, . . ., 92541, i2n+2, t2n+3} fromig to somej € 1.
We know that for each: € U, whereU := ¢(é(- - ¢({i1},i2,i3) -+ - ), i2n, t2n+1), the
element

3) 0+#e, €.
Taking into account that the fakte ¢(o(- - - d({i1},42,13) ... ), i2nt2, i2n+3) iMmplies

k€ ¢(U,iony2,i2n+3),

we have thak € p(x, iopyo,i2n+3) for somex € U. From here, the--multiplicativity
of B and Equation (3) allow us to get € J as desired.

Now, since given any € I we know thati, is connected tg, we can assert by the
above observation thile; C J. We have shown

T =(PFe; C3
jer
and saJy =T. O

Theorem 3.2. LetT be a triple system admitting @multiplicative basisB. ThenT is
the orthogonal direct sum of the family of its minimal ideals

T =P,
k

each one admitting a-multiplicative basis inherited fror®.

Proof. By Theorem 2.1 we have thdt = @ T}, is the orthogonal direct sum of the
eI/~

idealsTy;), admitting eacl};; a multiplicative basi€s|; = {e; : j € [i]} inherited from

B.

We wish to apply Theorem 3.1 to affy;) so we are going to verify that the basig;; is
ap-multiplicative basis and thad has all of its element]-connected (connected through
connections contained {i U [7]).

We clearly have thal};; admits to5;) as au-multiplicative basis as consequence of
having a basis inherited fro@ and the factTy;), 7', T;)) + (T, Tja), Ty;)) + (T, Ty, Thyp) =
0 when[i] # [4].

Finally, consider any connection froimo j

(4) {ir,i2, ... i2nt1}-
Let us observe that any € ¢({i},i2,i3) satisfiesk € [i] through the connection
{i,42,13}. Then we have two possibilities:
o If ig,i3 € I, we also have, see Remark 2.1, that ¢({i2},4,i3) andk €
¢({is},i,i2). From here, the setlis, i,i3} and{is,,i2} are connections from
io to k and fromis to k respectively. Hence, i3 € [i].
e If iy, i3 € I, by Lemma 2.1 we havee ¢({k},i2,i3). By arguing as above we
getis, i3 € [i] and Soiy, i3 € [i].
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By iterating this process we obtain that all of the elementthe connection (4) are con-

tained in[i] U [i]. Thatis,[i] has all of its elementg]-connected. From the above, we can
apply Theorem 3.1 to arifj; so as to concludép; is minimal.

Itis clear that the decompositidh = @ T}; satisfies the assertions of the theorem.

lilel/~
O

REFERENCES

[1] Abdesselam, B.: The twisted Heisenberg algebya, (H(4)). J. Math. Phys. 38, no. 12, (1997), 6045—
6060.
[2] Albeverio, S., Ayupov, S.A., Omirov, B.A. and Turdibad®.M.: Cartan subalgebras of Leibnizalgebras.
Comm. Algebra. 37 (2009), 2080-2096.
[3] Balogh, Z.: Further results on a filtered multiplicatibasis of group algebras. Math. Commun. 12(2),
(2007), 229-238.
[4] Bautista, R., Gabriel, P., Roiter, A.V. and Salmeron, Representation-finite algebras and multiplicative
basis. Invent. math. 81 (1985), 217-285.
[5] Bovdi, V.: On a filtered multiplicative basis of group algras. Arch. Math. (Basel) 74(2) (2000), 81-88.
[6] Bovdi, V.: On a filtered multiplicative bases of group algas. 1. Algebr. Represent. Theory 6 (2003), no.
3, 353-368.
[7] Bovdi, V., Grishkov, A. and Siciliano, S.: Filtered miglicative bases of restricted enveloping algebras.
Algebr. Represent. Theory 14 (2011), no. 4, 601-608.
[8] Bovdi, V., Grishkov, A. and Siciliano, S.: On filtered ntiplicative bases of some associative algebras.
Algebr. Represent. Theory. DOI 10.1007/s10468-014-9A94-
[9] Calderdn, A.J.: On split Lie algebras with a symmetootr system. Proc. Indian Acad. Sci. (Math. Sci.)
118 (2008), no. 3, 351-356.
[10] Calderon A.J.: On simple split Lie triple systems. BigRepresent. Theor. 12, (2009), 401-415.
[11] Calderon A.J.: Integrable roots in split Lie triplessgms. Acta Mathematica Sinica 25, (2009), 1759-74.
[12] Calderon A.J.: On split Lie triple systems. Proc. b Acad. Sci. (Math. Sci.) 119(2), (2009), 165-177.
[13] Calderon, A.J.: On graded associative algebras. Regh. Phys. 69 (2012), no. 1, 75-86.
[14] Calderon, A.J.: On the structure of split non-comntiveaPoisson algebras. Linear and multilinear algebra.
60(7), (2012), 775-785.
[15] Calderon, A.J. and Forero, M.: On split Lie triple sysis 1. Proc. Indian Acad. Sci. (Math. Sci.) 120(2),
(2010), 185-198.
[16] Calderon, A.J. and Forero, M.: Split 3-Lie algebrasviath. Phys. 52, (2011), 123503, 16 pp.
[17] Calderon, A.J. and Sanchez, J.M.: Split Leibniz bigs. Linear Algebra Appl. 436(6), (2012), 1648-1660.
[18] Calderon, A.J. and Sanchez, J.M.: On the structuspliffLie color algebras. Linear Algebra Appl. 436(2),
(2012), 307-315.
[19] de la Mora, C. and Wojciechowski, P.J.: Multiplicatitbases in matrix algebras. Linear Algebra Appl. 419
(2006), no. 2-3, 287-298.
[20] Jacobson, N.: Lie and Jordan triple system. Amer. JhMat, no. 1, (1949), 149-170.
[21] Kupisch, H. and Waschbusch, J.: On multiplicative basiquasi-Frobenius algebras. Math. Z. 186, (1984),
401-405.
[22] Ren, B., Ji Meng, D.: Some two steps nilpotent Lie algshr Linear Algebra Appl. 338, (2001), 77-98.
[23] Roiter A.V., Sergeichuk, V.V.: Existence of a multigditive basis for finitely spaced module over an aggre-
gate. Ukr. Math. J. 46(5), (1995), 604—617.
[24] Schue, J.R.: Hilbert space methods in the theory of Igetaras. Trans. Amer. Math. Soc. 95 (1960), 69-80.
[25] Stumme, N.: The structure of locally finite split Lie alyras. J. Algebra. 220 (1999), 664—693.

E-mail addressaj esus. cal der on@ica. es
E-mail addressj avi . navarr oi z@ica. es
E-mail addresst xenma. sanchez@ica. es

DEPARTMENT OFMATHEMATICS, FACULTY OF SCIENCES, UNIVERSITY OF CADIZ, CAMPUS DEPUERTO
REAL, 11510, RRERTOREAL, CADIZ, SPAIN.



