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ABSTRACT. We introduce the class of split regular BiHom-Lie algebras as the natural
extension of the one of split Hom-Lie algebras and so of split Lie algebras. We show that
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∑
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Ij with U

a linear subspace of a fixed maximal abelian subalgebra H and any Ij a well described
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1. INTRODUCTION AND FIRST DEFINITIONS

A BiHom-algebra is an algebra in such a way that the identities defining the structure
are twisted by two homomorphisms φ, ψ. This class of algebras was introduced from a
categorical approach in [5] as an extension of the class of Hom-algebras. The origin of
Hom-structures can be found in the physics literature around 1900, appearing in the study
of quasi-deformations of Lie algebras of vector fields, in particular q-deformations of Witt
and Virasoro algebras, [6]. Since then, many authors have been interested in the study of
Hom-algebras but we refer to [7, 8], and the references therein, for a good review of the
matter. The reference [5] is also fundamental for getting the basic notions, motivations and
results on BiHom-algebras.

In the present paper we introduce the class of split regular BiHom-Lie algebras L as
the natural extension of the one of split Hom-Lie algebras and so of split Lie algebras, and
study its structure. In §2 we develop connections of roots techniques in the framework of
BiHom-algebras, which becomes the main tool in our study. In §3 we apply all of these
techniques to show that L is of the form L = U +

∑
Ij with U a linear subspace of a

fixed maximal abelian subalgebra H and any Ij a well described ideal of L, satisfying
[Ij , Ik] = 0 if j 6= k. Finally, in §4, and under certain conditions, the simplicity of L is
characterized and it is shown that L is the direct sum of the family of its simple ideals.

Definition 1.1. A BiHom-Lie algebra over a field K is a 4-tuple (L, [ ·, · ], φ, ψ), where L
is a K-linear space, [ ·, · ] : L×L→ L a bilinear map and φ, ψ : L→ L linear mappings
satisfying the following identities:

1. φ ◦ ψ = ψ ◦ φ,
2. [ψ(x), φ(y)] = −[ψ(y), φ(x)], (BiHom-skew-symmetry)
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3. [ψ2(x), [ψ(y), φ(z)]]+[ψ2(y), [ψ(z), φ(x)]]+[ψ2(z), [ψ(x), φ(y)]] = 0, (BiHom-
Jacobi identity),

for any x, y, z ∈ L. When φ, ψ furthermore are algebra automorphisms it is said that L is
a regular BiHom-Lie algebra.

Lie algebras are examples of BiHom-Lie algebras by taking φ = ψ = Id. Hom-Lie
algebras are also examples of BiHom-Lie algebras by considering ψ = φ.

Example 1.1. Let (L, [·, ·]) be a Lie algebra and φ, ψ : L → L two automorphisms. If
we endow the underlying liner space L with a new product [·, ·]′ : L × L → L defined by
[x, y]′ := [φ(x), ψ(y)] for any x, y ∈ L, we have that (L, [·, ·]′, φ, ψ) becomes a regular
BiHom-Lie algebra.

Throughout this paper L will denote a regular BiHom-Lie algebra. A subalgebra A of
L is a linear subspace such that [A,A] ⊂ A and φ(A) = ψ(A) = A. A subalgebra I of
L is called an ideal if [I,L] ⊂ I , (and so necessarily [L, I] ⊂ I). A regular BiHom-Lie
algebra L is called simple if [L,L] 6= 0 and its only ideals are {0} and L.

Finally, we would like to note that L is considered of arbitrary dimension and over an
arbitrary base field K and that we will denote by N the set of all non-negative integers and
by Z the set of all integers.

Let us introduce the class of split algebras in the framework of regular BiHom-Lie
algebras L. First, we recall that a Lie algebra (L, [·, ·]), over a base field K, is called split
respect to a maximal abelian subalgebra H of L, if L can be written as the direct sum

L = H ⊕ (
⊕
α∈Γ

Lα)

where
Lα := {vα ∈ L : [h, vα] = α(h)vα for any h ∈ H}

being any α : H −→ K, α ∈ Γ, a non-zero linear functional on H such that Lα 6= 0.

Let us return to a regular BiHom-Lie algebra L. Denote by H a maximal abelian, (in
the sense [H,H] = 0), subalgebra of L. For a linear functional

α : H −→ K,

we define the root space of L (respect to H) associated to α as the subspace

Lα := {vα ∈ L : [h, φ(vα)] = α(h)φψ(vα) for any h ∈ H}.

The elements α : H −→ K satisfying Lα 6= 0 are called roots of L with respect to H
and we denote Λ := {α ∈ (H)∗ \ {0} : Lα 6= 0}.

Definition 1.2. We say that L is a split regular BiHom-Lie algebra, with respect to H , if

L = H ⊕ (
⊕
α∈Λ

Lα).

We also say that Λ is the roots system of L.

As examples of split regular BiHom-Lie algebras we have the split Hom-Lie algebras
and the split Lie algebras. Hence, the present paper extends the results in [1] and in [2].
Let us see another example.
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Example 1.2. Let (L = H ⊕ (
⊕
α∈Γ

Lα), [·, ·]) be a split Lie algebra and φ, ψ : L →

L two automorphisms such that φ(H) = ψ(H) = H . By Example 1.1, we know that
(L, [·, ·]′, φ, ψ), where [x, y]′ := [φ(x), ψ(y)] for any x, y ∈ L, is a regular BiHom-Lie
algebra. Then it is straightforward to verify that the direct sum

L = H ⊕ (
⊕
α∈Γ

Lαψ−1)

makes of the regular BiHom-Lie algebra (L, [·, ·]′, φ, ψ) a split regular BiHom-Lie algebra,
being the roots system Λ = {αψ−1 : α ∈ Γ}.

From now on L = H ⊕ (
⊕
α∈Λ

Lα) denotes a split regular BiHom-Lie algebra. Also,

and for an easier notation, the mappings φ|H , ψ|H , φ|−1
H , ψ|−1

H : H → H will be denoted
by φ, ψ, φ−1, ψ−1 respectively.

Lemma 1.1. For any α ∈ Λ ∪ {0} the following assertions hold.
1. φ(Lα) = Lαφ−1 and ψ(Lα) = Lαψ−1 .
2. φ−1(Lα) = Lαφ and ψ−1(Lα) = Lαψ.

Proof. 1. For any h ∈ H and vα ∈ Lα, since

(1) [h, φ(vα)] = α(h)φψ(vα)

we have that by writing h′ = φ(h) then

[h′, φ2(vα)] = φ([h, φ(vα)]) = α(h)φ2ψ(vα) = αφ−1(h′)φ2ψ(vα) =

= αφ−1(h′)φψ(φ(vα)).

That is, φ(vα) ∈ Lαφ−1 and so

(2) φ(Lα) ⊂ Lαφ−1 .

Now, let us show
Lαφ−1 ⊂ φ(Lα).

Indeed, for any h ∈ H and vα ∈ Lα, Equation (1) shows [φ−1(h), vα] = α(h)ψ(vα).
From here we get [φ(h), vα] = αφ2(h)ψ(vα) and conclude

(3) φ−1(Lα) ⊂ Lαφ.

Hence, since for any x ∈ Lαφ−1 we can write x = φ(φ−1(x)) and by Equation (3) we
have φ−1(x) ∈ Lα, we conclude Lαφ−1 ⊂ φ(Lα). This fact together with Equation (2)
show φ(Lα) = Lαφ−1 .

To verify

(4) ψ(Lα) ⊂ Lαψ−1 ,

observe that Equation (1) gives us [ψ(h), ψφ(vα)] = α(h)ψφψ(vα) and so [ψ(h), φψ(vα)] =
αψ−1(ψ(h))φψ(ψ(vα)). Since Equation (1) and the identity ψ−1φ = φψ−1 also give us

(5) ψ−1(Lα) ⊂ Lαψ,

we conclude as above that ψ(Lα) = Lαψ−1 .

2. The fact φ−1(Lα) ⊂ Lαφ is Equation (3), while the fact Lαφ ⊂ φ−1(Lα) is conse-
quence of writing any element x ∈ Lαφ of the form x = φ−1(φ(x)) and apply Equation
(2). We can argue similarly with Equations (5) and (4) to get ψ−1(Lα) = Lαψ. �

Lemma 1.2. For any α, β ∈ Λ ∪ {0} we have [Lα,Lβ ] ⊂ Lαφ−1+βψ−1 .
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Proof. For each h ∈ H, vα ∈ Lα and vβ ∈ Lβ we can write

[h, φ([vα, vβ ])] = [ψ2ψ−2(h), φ([vα, vβ ])].

So, by denoting h′ = ψ−2(h), we can apply BiHom-Jacobi identity and BiHom-skew-
symmetry to get

[ψ2(h′), φ([vα, vβ ])] = [ψ2(h′), [ψψ−1φ(vα), φ(vβ)]] =

− [ψφ(vα), [ψ(vβ), φ(h′)]]− [ψ2(vβ), [ψ(h′), φψ−1φ(vα)]] =

[ψφ(vα), [ψ(h′), φ(vβ)]]− [ψ2(vβ), [φφ−1ψ(h′), φψ−1φ(vα)]] =

[ψφ(vα), [ψ(h′), φ(vβ)]]− [ψ(ψ(vβ)), φ([φ−1ψ(h′), ψ−1φ(vα)])] =

[ψφ(vα), [ψ(h′), φ(vβ)]] + [[ψ2φ−1(h′), φ(vα)], φψ(vβ)] =

βψ(h′)[ψφ(vα), φψ(vβ)] + αψ2φ−1(h′)[φψ(vα)], φψ(vβ)] =

(βψ + αψ2φ−1)(h′)[ψφ(vα), φψ(vβ)] =

(βψ + αψ2φ−1)(h′)[φψ(vα), φψ(vβ)] =

(βψ + αψ2φ−1)(h′)φψ([vα, vβ ]).

Taking now into account h′ = ψ−2(h) we have shown

[h, φ([vα, vβ ])] = (βψ−1 + αφ−1)(h)φψ([vα, vβ ]).

From here [Lα,Lβ ] ⊂ Lαφ−1+βψ−1 . �

Lemma 1.3. The following assertions hold.
1. If α ∈ Λ then αφ−z1ψ−z2 ∈ Λ for any z1, z2 ∈ Z.
2. L0 = H .

Proof. 1. Consequence of Lemma 1.1-1,2.
2. The fact H ⊂ L0 is a direct consequence of the character of abelian subalgebra of

H . Let us now show L0 ⊂ H . For any 0 6= x ∈ L0 we can express x = h ⊕ (
m⊕
i=1

vαi)

with h ∈ H , any vαi ∈ Lαi and with αi 6= αj when i 6= j. Since for any h′ ∈ H we

have [h′, x] = 0, then Lemma 1.1 allows us to get 0 = [h′, x] = [h′, h+
m⊕
i=1

φφ−1(vαi)] =

m⊕
i=1

αiφ(h′)ψ(vαi) = 0. From here, Lemma 1.1 together with the fact αi 6= 0 give us that

any vαi = 0. Hence x = h ∈ H . �

Maybe the main topic in the theory of Hom-algebras consists in studying if a known
result for a class of, non-deformed, algebra still holds true for the corresponding class of
Hom-algebras. Following this line, the present paper shows how the structure theorems
getting in [2] and in [1] for split Lie algebras and split regular Hom-Lie algebras respec-
tively, also hold for the class of split regular BiHom-Lie algebras. We would like to know
that all of the constructions carried out along this paper strongly involve both of the struc-
ture mappings φ and ψ, which makes the proofs different from the non-bi-deformed cases.

2. CONNECTIONS OF ROOTS TECHNIQUES

As in the previous section, L denotes a split regular BiHom-Lie algebra and

L = L0 ⊕ (
⊕
α∈Λ

Lα)
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the corresponding root spaces decomposition. Given a linear functional α : H → K, we
denote by −α : H → K the element in H∗ defined by (−α)(h) := −α(h) for all h ∈ H .
We also denote by

−Λ := {−α : α ∈ Λ} and ± Λ := Λ∪̇(−Λ).

Definition 2.1. Let α, β ∈ Λ. We will say that α is connected to β if
• Either β = εαφz1ψz2 for some z1, z2 ∈ Z and ε ∈ {1,−1}, or
• Either there exists {α1, α2, ..., αk} ⊂ ±Λ, with k ≥ 2, such that

1. α1 ∈ {αφ−nψ−r : n, r ∈ N}.
2. α1φ

−1 + α2ψ
−1 ∈ ±Λ,

α1φ
−2 + α2φ

−1ψ−1 + α3ψ
−1 ∈ ±Λ,

α1φ
−3 + α2φ

−2ψ−1 + α3φ
−1ψ−1 + α4ψ

−1 ∈ ±Λ,
· · · · · · · · ·
α1φ

−i+α2φ
−i+1ψ−1 +α3φ

−i+2ψ−1 + · · ·+αiφ−1ψ−1 +αi+1ψ
−1 ∈ ±Λ,

· · · · · · · · ·
α1φ

−k+2+α2φ
−k+3ψ−1+α3φ

−k+4ψ−1+· · ·+αk−2φ
−1ψ−1+αk−1ψ

−1 ∈
±Λ.

3. α1φ
−k+1 + α2φ

−k+2ψ−1 + α3φ
−k+3ψ−1 + · · · + αiφ

−k+iψ−1 + · · · +
αk−1φ

−1ψ−1 + αkψ
−1 ∈ {±βφ−mψ−s : m, s ∈ N}.

We will also say that {α1, ..., αk} is a connection from α to β.

Observe that for any α ∈ Λ, we have that αφz1ψz2 is connected to αφz3ψz4 for any
z1, z2, z3, z4 ∈ Z, and also to −αφz3ψz4 in case −α ∈ Λ.

Lemma 2.1. The relation ∼ in Λ, defined by α ∼ β if and only if α is connected to β, is
symmetric.

Proof. Suppose α ∼ β. In case β = εαφz1ψz2 with z1, z2 ∈ Z and ε ∈ {1,−1}we clearly
have β ∼ α. So, let us consider a connection

(6) {α1, α2, ..., αk} ⊂ ±Λ,

k ≥ 2, from α to β. Observe that condition 3. in Definition 2.1 allows us to distinguish
two possibilities. In the first one

(7) α1φ
−k+1 + α2φ

−k+2ψ−1 + · · ·+ αiφ
−k+iψ−1 + · · ·+ αkψ

−1 = βφ−mψ−s,

while in the second one

(8) α1φ
−k+1 + α2φ

−k+2ψ−1 + · · ·+ αiφ
−k+iψ−1 + · · ·+ αkψ

−1 = −βφ−mψ−s

for some m, s ∈ N.
Suppose we have the first above possibility (7). Lemma 1.3-1 shows that the set

{βφ−mψ−s,−αkφ−1,−αk−1φ
−3,−αk−2φ

−5, ...,−αk−iφ−2i−1, ...,−α2φ
−2k+3} ⊂ ±Λ.

We are going to show that this set is a connection from β to α. It is clear that satisfies
condition 1. of Definition 2.1, so let us check that also satisfies condition 2. We have

(βφ−mψ−s)φ−1 − (αkφ
−1)ψ−1 = (βφ−mψ−s − αkψ−1)φ−1 =

(α1φ
−k+1 + α2φ

−k+2ψ−1 + · · ·+ αk−1φ
−1ψ−1)φ−1,

last equality being consequence of Equation (7), and so

(βφ−mψ−s)φ−1 − (αkφ
−1)ψ−1 = (α1φ

−k+2 + α2φ
−k+3ψ−1 + · · ·+ αk−1ψ

−1)φ−2.
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Taking into account

α1φ
−k+2 + α2φ

−k+3ψ−1 + · · ·+ αk−1ψ
−1 ∈ ±Λ

by condition 2. of Definition 2.1 applied to the connection (6), Lemma 1.3-1 allows us to
assert (βφ−nψ−s)φ−1 − (αkφ

−1)ψ−1 ∈ ±Λ.
For any 1 ≤ i ≤ k − 2 we also have that,

(βφ−mψ−s)φ−i−(αkφ
−1)φ−i+1ψ−1−(αk−1φ

−3)φ−i+2ψ−1−· · ·−(αk−(i−1)φ
−2i+1)ψ−1 =

(βφ−mψ−s − αkψ−1 − αk−1φ
−1ψ−1 − · · · − αk−(i−1)φ

−i+1ψ−1)φ−i =

(α1φ
−k+1 + α2φ

−k+2ψ−1 + · · ·+ αk−iφ
−iψ−1)φ−i,

last equality being consequence of Equation (7). From here,

(βφ−mψ−s)φ−i−(αkφ
−1)φ−i+1ψ−1−(αk−1φ

−3)φ−i+2ψ−1−· · ·−(αk−(i−1)φ
−2i+1)ψ−1 =

(α1φ
−k+i+1 + α2φ

−k+i+2ψ−1 + · · ·+ αk−iψ
−1)φ−2i.

Taking now into account that, by condition 2. of Definition 2.1 applied to (6),

α1φ
−k+i+1 + α2φ

−k+i+2ψ−1 + · · ·+ αk−iψ
−1 ∈ ±Λ,

we get as consequence of Lemma 1.3-1 that

(βφ−mψ−s)φ−i − (αkφ
−1)φ−i+1ψ−1 − (αk−1φ

−3)φ−i+2ψ−1 − · · ·

· · · − (αk−(i−1)φ
−2i+1)ψ−1 ∈ ±Λ.

Consequently, our set satisfies condition 2. of Definition 2.1. Let us prove that this set also
satisfies condition 3. of this definition. We have as above that

(βφ−mψ−s)φ−k+1−(αkφ
−1)φ−k+2ψ−1−(αk−1φ

−3)φ−k+3ψ−1−· · ·−(α2φ
−2k+3)ψ−1 =

(βφ−mψ−s − αkψ−1 − αk−1φ
−1ψ−1 − · · · − α2φ

−k+2ψ−1)φ−k+1 =

(α1φ
−k+1)φ−k+1.

Condition 1. of Definition 2.1 applied to the connection (6) gives us now that α1 =
αφ−nψ−r for some n, r ∈ N and so

(βφ−mψ−s)φ−k+1−(αkφ
−1)φ−k+2ψ−1−(αk−1φ

−3)φ−k+3ψ−1−· · ·−(α2φ
−2k+3)ψ−1 =

αφ−(2k−2+n)ψ−r ∈ {αφ−hψ−r : h, r ∈ N}.
We have showed that our set is actually a connection from β to α.

Suppose now we are in the second possibility given by Equation (8). Then we can prove
as in the above first possibility, given by Equation (7), that

{βφ−mψ−s, αkφ−1, αk−1φ
−3, αk−2φ

−5, ..., αk−iφ
−2i−1, ..., α2φ

−2k+3}
is a connection from β to α. We conclude β ∼ α and so the relation ∼ is symmetric. �

Lemma 2.2. Let {α1, ..., αk}, k ≥ 2, be a connection from α to β with α1 = αφ−nψ−r,
n, r ∈ N. Then for any ε ∈ {1,−1} and m, s ∈ N with m ≥ n and s ≥ r, there exists a
connection {ᾱ1, ..., ᾱk} from α to β such that ᾱ1 = αφ−mψ−s.

Proof. By Lemma 1.3-1,2 we have {α1φ
n−mψr−s, ..., αkφ

n−mψr−s} ⊂ ±Λ. Define
ᾱi := αiφ

n−mψr−s, i = 1, ..., k, then Lemma 1.3-1 allows us to verify that {ᾱ1, ..., ᾱk}
is a connection from α to β which clearly satisfies

ᾱ1 = α1φ
n−mψr−s = (αφ−nψ−r)φn−mψr−s = αφ−mψ−s.

�
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Lemma 2.3. Let {α1, ..., αk}, k ≥ 2, be a connection from α to β with

α1φ
−k+1+α2φ

−k+2ψ−1+α3φ
−k+3ψ−1+· · ·+αiφ−k+iψ−1+· · ·+αkψ−1 = εβφ−mψ−s,

being m, s ∈ N and ε ∈ {1,−1}. Then for any q, p ∈ N such that q ≥ m, p ≥ s, there
exists a connection {ᾱ1, ..., ᾱk} from α to β such that

ᾱ1φ
−k+1+ᾱ2φ

−k+2ψ−1+ᾱ3φ
−k+3ψ−1+· · ·+ᾱiφ−k+iψ−1+· · ·+ᾱkψ−1 = εβφ−qψ−p.

Proof. Lemma 1.3-1 allows us to assert that {α1φ
m−qψs−p, ..., αkφ

m−qψs−p} ⊂ ±Λ.
Define now ᾱi := αiφ

m−qψs−p, i = 1, ..., k. Then as in the previous item, Lemma 1.3-1
gives us that {ᾱ1, ..., ᾱk} is a connection from α to β. Finally

ᾱ1φ
−k+1 + ᾱ2φ

−k+2ψ−1 + ᾱ3φ
−k+3ψ−1 + · · ·+ ᾱkψ

−1 =

= α1φ
m−qψs−pφ−k+1 + α2φ

m−qψs−pφ−k+2ψ−1 + · · ·+ αkφ
m−qψs−pψ−1

= (α1φ
−k+1 + α2φ

−k+2ψ−1 + · · ·+ αkψ
−1)φm−qψs−p

= (εβφ−mψ−s)φm−qψs−p

= εβφ−qψ−p.

�

Lemma 2.4. The relation ∼ in Λ, defined by α ∼ β if and only if α is connected to β, is
transitive.

Proof. Suppose α ∼ β and β ∼ γ.
If β = εαφz1ψz2 for some z1, z2 ∈ Z, ε ∈ {1,−1} and γ = ε′βφz3ψz4 for some

z3, z4 ∈ Z, it is clear that α ∼ γ.
Suppose β = εαφz1ψz2 for some z1, z2 ∈ Z, ε ∈ {1,−1} and β is connected to γ

through a connection {τ1, ..., τp}, p ≥ 2, being τ1 = βφ−nψ−r, n, r ∈ N. By choosing
m, s ∈ N such that m ≥ n, s ≥ r and z1 − m ≤ 0 and z2 − s ≤ 0, Lemma 2.2
allows us to assert that β is connected to γ through a connection {τ̄1, τ̄2, ..., τ̄k} such that
τ̄1 = βφ−mψ−s. From here, {ετ̄1, ετ̄2, ..., ετ̄k} is a connection form α to γ.

Finally, let us write {α1, ..., αk}, k ≥ 2, for a connection from α to β, which satisfies

(9) α1φ
−k+1 + α2φ

−k+2ψ−1 + · · ·+ αkψ
−1 = εβφ−mψ−s,

for some m, s ∈ N, ε ∈ {1,−1}; and write {τ1, ..., τp} for a connection from β to γ, being
then

(10) τ1 = βφ−qψ−p

for some n, q ∈ N. Note that Lemmas 2.2 and 2.3 allows us to suppose m = q and s = p.
From here, taking into account Equations (9), and (10); and the fact m = q and s = p,

we can easily verify that {α1, ..., αk, τ2, ..., τp} is a connection from α to γ if ε = 1; and
that {α1, ..., αk,−τ2, ...,−τp} it is if ε = −1. �

Corollary 2.1. The relation ∼ in Λ, defined by α ∼ β if and only if α is connected to β, is
an equivalence relation.

Proof. Since clearly the relation ∼ is reflexive, the result follows of Lemmas 2.1 and 2.4.
�
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3. DECOMPOSITIONS AS SUM OF IDEALS

By Corollary 2.1 the connection relation is an equivalence relation in Λ. From here, we
can consider the quotient set

Λ/ ∼= {[α] : α ∈ Λ},
becoming [α] the set of nonzero roots L which are connected to α.

Our next goal in this section is to associate an (adequate) ideal I[α] to any [α].
Fix α ∈ Λ, we start by defining the set I0,[α] ⊂ L0 as follows:

I0,[α] := spanK{[Lβ ,Lγ ] : β, γ ∈ [α] ∪ {0}} ∩ L0.

By applying Lemma 1.1-2 and 1.2 we get

I0,[α] := spanK{[Lβψ−1 ,L−βφ−1 ] : β ∈ [α]}.

Next, we define
V[α] :=

⊕
β∈[α]

Lβ .

Finally, we denote by I[α] the direct sum of the two subspaces above, that is,

I[α] := I0,[α] ⊕ V[α].

Proposition 3.1. For any [α] ∈ Λ/ ∼, the following assertions hold.
1. [I[α], I[α]] ⊂ I[α].
2. φ(I[α]) = I[α] and ψ(I[α]) = I[α].

Proof. 1. Since I0,[α] ⊂ L0 = H , then [I0,[α], I0,[α]] = 0 and we have

(11) [I0,[α] ⊕ V[α], I0,[α] ⊕ V[α]] ⊂ [I0,[α], V[α]] + [V[α], I0,[α]] + [V[α], V[α]].

Let us consider the first summand in Equation (11). Given β ∈ [α] we have [I0,[α],Lβ ] ⊂
Lβψ−1 , being βψ−1 ∈ [α] by Lemma 1.3-1. Hence [I0,[α],Lβ ] ⊂ V[α]. In a similar way
we get [Lβ , I0,[α]] ⊂ V[α]. Consider now the third summand in Equation (11). Given
β, γ ∈ [α] such that [Lβ ,Lγ ] 6= 0, then [Lβ ,Lγ ] ⊂ Lβφ−1+γψ−1 . If βφ−1 + γψ−1 = 0
we have [Lβ ,L−γ ] ⊂ L0 and so [Lβ ,L−γ ] ⊂ I0,[α]. Suppose then βφ−1 + γψ−1 ∈
Λ. We have that {β, γ} is a connection from β to βφ−1 + γψ−1. The transitivity of ∼
gives now that βφ−1 + γψ−1 ∈ [α] and so [Lβ ,Lγ ] ⊂ Lβφ−1+γψ−1 ⊂ V[α]. Hence
[
⊕
β∈[α]

Lβ ,
⊕
β∈[α]

Lβ ] ⊂ I0,[α] ⊕ V[α]. That is,

(12) [V[α], V[α]] ⊂ I[α].

From Equations (11) and (12) we get [I[α], I[α]] = [I0,[α] ⊕ V[α], I0,[α] ⊕ V[α]] ⊂ I[α].
2. The facts φ(I[α]) = I[α] and ψ(I[α]) = I[α] are direct consequences of Lemma

1.1-1. �

Proposition 3.2. For any [α] 6= [γ] we have [I[α], I[γ]] = 0.

Proof. We have
[I0,[α] ⊕ V[α], I0,[γ] ⊕ V[γ]] ⊂

(13) [I0,[α]V[γ]] + [V[α], I0,[γ]] + [V[α], V[γ]].

Consider the above third summand [V[α], V[γ]] and suppose there exist α1 ∈ [α] and γ1 ∈
[γ] such that [Lα1

,Lγ1 ] 6= 0. As necessarily α1φ
−1 6= −γ1ψ

−1, then α1φ
−1 + γ1ψ

−1 ∈
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Λ. So {α1, γ1,−α1φ
−1} is a connection between α1 and γ1. By the transitivity of the

connection relation we have α ∈ [γ], a contradiction. Hence [Lα1
,Lγ1 ] = 0 and so

(14) [V[α], V[γ]] = 0.

Consider now the first summand [I0,[α], V[γ]] in Equation (13). Let us take α1 ∈ [α] and
γ1 ∈ [γ] and show that

γ1([Lα1ψ−1 ,L−α1φ−1 ]) = 0.

Indeed, by BiHom-Jacobi identity we have

[ψ2(Lγ1), [ψ(Lα1
), φ(L−α1

)]] + [ψ2(Lα1
), [ψ(L−α1

), φ(Lγ1)]]+

[ψ2(L−α1
), [ψ(Lγ1), φ(Lα1

)]] = 0.

Now by Equation (14) we get

[ψ2(Lγ1), [ψ(Lα1), φ(L−α1)]] = 0

and so

0 = [ψ2(Lγ1), [ψ(Lα1
), φ(L−α1

)]] = [ψ2(Lγ1), φφ−1([ψ(Lα1
), φ(L−α1

)])] =

[ψφ−1([ψ(Lα1
), φ(L−α1

)]), φψ(Lγ1)].

Since ψφ−1([ψ(Lα1
), φ(L−α1

)]) ⊂ L0 = H and ψ(Lγ1) ⊂ Lγ1ψ−1 we obtain

γ1φ
−1([ψ(Lα1

), φ(L−α1
)])φψ2(Lγ1) = 0.

From here

(15) γ1φ
−1([Lα1ψ−1 ,L−α1φ−1 ]) = γ1φ

−1([ψ(Lα1), φ(L−α1)]) = 0

for any α1 ∈ [α].
Since

φ([Lα1ψ−1 ,L−α1φ−1 ]) ⊂ [Lα1ψ−1φ−1 ,L−α1φ−2 ]),

we get
[Lα1ψ−1 ,L−α1φ−1 ] ⊂

φ−1([Lα1ψ−1φ−1 ,L−α1φ−2 ]) = φ−1([Lα1φ−1ψ−1 ,L−α1φ−2 ]).

Taking now into account that Equation (15) and the fact α1φ
−1 ∈ [α] give us

γ1φ
−1([Lα1φ−1ψ−1 ,L−α1φ−2 ]) = 0

we conclude

γ1([Lα1ψ−1 ,L−α1φ−1 ]) = 0.

From here [[Lα1ψ−1 ,L−α1φ−1 ],Lγ1 ] ⊂ γ1([Lα1ψ−1 ,L−α1φ−1 ])φψ(Lγ1) = 0. We have
showed [I0,[α], V[γ]] = 0. In a similar way we get [V[α], I0,[γ]] = 0 and we conclude,
together with Equations (13) and (14), that [I[α], I[γ]] = 0. �

Theorem 3.1. The following assertions hold.
1. For any [α] ∈ Λ/ ∼, the linear space

I[α] = I0,[α] ⊕ V[α]

of L associated to [α] is an ideal of L.
2. If L is simple, then there exists a connection from α to β for any α, β ∈ Λ; and
H =

∑
α∈Λ

[Lαψ−1 ,L−αφ−1 ].
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Proof. 1. Since [I[α], H] ⊂ I[α] we have by Proposition 3.1 and Proposition 3.2 that

[I[α],L] = [I[α], H ⊕ (
⊕
β∈[α]

Lβ)⊕ (
⊕
γ /∈[α]

Lγ)] ⊂ I[α].

In a similar way we get [L, I[α]] ⊂ I[α] and, finally, as we also have by Proposition 3.1 that
φ(I[α]) = ψ(I[α]) = I[α] we conclude I[α] is an ideal of L.

2. The simplicity of L implies I[α] = L. From here, it is clear that [α] = Λ and
H =

∑
α∈Λ

[Lαψ−1 ,L−αφ−1 ]. �

Theorem 3.2. We have
L = U +

∑
[α]∈Λ/∼

I[α],

where U is a linear complement in H of
∑
α∈Λ

[Lαψ−1 ,L−αφ−1 ] and any I[α] is one of the

ideals of L described in Theorem 3.1-1. Furthermore [I[α], I[γ]] = 0 when [α] 6= [γ].

Proof. We have I[α] is well defined and, by Theorem 3.1-1, an ideal of L, being clear that

L = H ⊕ (
⊕
α∈Λ

Lα) = U +
∑

[α]∈Λ/∼

I[α].

Finally, Proposition 3.2 gives us [I[α], I[γ]] = 0 if [α] 6= [γ]. �

Let us denote by Z(L) := {v ∈ L : [v,L] + [L, v] = 0} the center of L.

Corollary 3.1. If Z(L) = 0 and H =
∑
α∈Λ

[Lαψ−1 ,L−αφ−1 ]. Then L is the direct sum of

the ideals given in Theorem 3.1,

L =
⊕

[α]∈Λ/∼

I[α].

Furthermore [I[α], I[γ]] = 0 when [α] 6= [γ].

Proof. Since H =
∑
α∈Λ

[Lαψ−1 ,L−αφ−1 ] we get L =
∑

[α]∈Λ/∼
I[α]. Finally, to verify the

direct character of the sum, take some v ∈ I[α] ∩ (
∑

[β]∈Λ/∼,[β]6=[α]

I[β]). Since v ∈ I[α], the

fact [I[α], I[β]] = 0 when [α] 6= [β] gives us

[v,
∑

[β]∈Λ/∼,[β] 6=[α]

I[β]] + [
∑

[β]∈Λ/∼,[β] 6=[α]

I[β], v] = 0.

In a similar way, since v ∈
∑

[β]∈Λ/∼,[β]6=[α]

I[β] we get [v, I[α]] + [I[α], v] = 0. That is,

v ∈ Z(L) and so v = 0. �

4. THE SIMPLE COMPONENTS

In this section we are interested in studying under which conditions L decomposes as
the direct sum of the family of its simple ideals, obtaining so a second Wedderburn-type
theorem for a class of BiHom-Lie algebras. We recall that a roots system Λ of a split
regular BiHom-Lie algebra L is called symmetric if it satisfies that α ∈ Λ implies−α ∈ Λ.
From now on we will suppose Λ is symmetric.

Lemma 4.1. If I is an ideal of L such that I ⊂ H , then I ⊂ Z(L).
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Proof. Consequence of [I,H] + [H, I] ⊂ [H,H] = 0 and [I,
⊕
α∈Λ

Lα] + [
⊕
α∈Λ

Lα, I] ⊂

(
⊕
α∈Λ

Lα) ∩H = 0. �

Lemma 4.2. For any α, β ∈ Λ with α 6= β there exists h0 ∈ H such that α(h0) 6= 0 and
α(h0) 6= β(h0).

Proof. As α 6= β, there exists h ∈ H such that α(h) 6= β(h). If α(h) 6= 0 we have
finished, so let us suppose α(h) = 0 what implies β(h) 6= 0. Since α 6= 0, we can fix some
h′ ∈ H such that α(h′) 6= 0. We can distinguish two cases, in the first one α(h′) 6= β(h′)
and in the second one α(h′) = β(h′). Then we have that by taking h0 := h′ in the first
case and h0 := h+ h′ in the second one we complete the proof. �

Lemma 4.3. If I is an ideal of L and x = h +
n∑
j=1

vαj ∈ I , with h ∈ H, vαj ∈ Lαj and

αj 6= αk if j 6= k. Then any vαj ∈ I .

Proof. If n = 1 we have x = h + vα1
∈ I . By taking h′ ∈ H such that α1(h′) 6= 0 we

get [h′, x] = [h′, φφ−1(h)] + [h′, φφ−1(vα1
)] = α1φ(h′)ψ(vα1

) ∈ I and so ψ(vα1
) ∈ I .

From here ψ−1(ψ(vα1)) = vα1 ∈ I .
Suppose now n > 1 and consider α1 and α2. By Lemma 4.2 there exists h0 ∈ H such

that α1(h0) 6= 0 and α1(h0) 6= α2(h0). Then we have

[h0, x] = [h0, φφ
−1(h)] + [h0, φφ

−1(vα1)] + [h0, φφ
−1(vα2)] + · · ·+ [h0, φφ

−1(vαn)] =

(16) α1φ(h0)ψ(vα1) + α2φ(h0)ψ(vα2) + · · ·+ αnφ(h0)ψ(vαn) ∈ I

and
ψ(x) =

(17) ψ(h) + ψ(vα1) + ψ(vα2) + · · ·+ ψ(vαn) ∈ I.

By multiplying Equation (17) by α2φ(h0) and subtracting Equation (16) we get

α2φ(h0)ψ(h) + (α2φ(h0)− α1φ(h0))ψ(vα1
)+

(α2φ(h0)− α3φ(h0))ψ(vα3) + · · ·+ (α2φ(h0)− αnφ(h0))ψ(vαn) ∈ I.
By denoting h̃ := α2φ(h0)ψ(h) ∈ H and vαiψ−1 := (α2φ(h0) − αiφ(h0))ψ(vαi) ∈
Lαiψ−1 we can write

(18) h̃+ vα1ψ−1 + vα3ψ−1 + · · ·+ vαnψ−1 ∈ I.

Now we can argue as above with Equation (18) to get

˜̃
h+ vα1ψ−2 + vα4ψ−2 + · · ·+ vαnψ−2 ∈ I

for ˜̃
h ∈ H and any vαiψ−2 ∈ Lαiψ−2 . By iterating this process we obtain

h̄+ vα1ψ−n+1 ∈ I

with h̄ ∈ H and vα1ψ−n+1 ∈ Lα1ψ−n+1 . As in the above case n = 1, we get vα1ψ−n+1 ∈ I
and consequently vα1

∈ Kψ−n+1(vα1ψ−n+1) ∈ I.
In a similar way we can prove any vαi ∈ I for i ∈ {2, ..., n} and the proof is complete.

�
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Let us introduce the concepts of root-multiplicativity and maximal length in the frame-
work of split BiHom-Lie algebras, in a similar way to the ones for split Hom-Lie algebras,
split Lie algebras, split triple systems, split Leibniz structures and so on (see [1, 2, 3, 4] for
these notions and examples).

Definition 4.1. We say that a split regular BiHom-Lie algebra L is root-multiplicative if
given α, β ∈ Λ such that αφ−1 + βψ−1 ∈ Λ, then [Lα,Lβ ] 6= 0.

Definition 4.2. It is said that a split regular BiHom-Lie algebra L is of maximal length if
dimLα = 1 for any α ∈ Λ.

Theorem 4.1. Let L be a split regular BiHom-Lie algebra of maximal length and root-
multiplicative. Then L is simple if and only if Z(L) = 0, H =

∑
α∈Λ

[Lαψ−1 ,L−αφ−1 ] and

Λ has all of its elements connected.

Proof. Suppose L is simple. Since Z(L) is an ideal of L then Z(L) = 0. From here,
Theorem 3.1-2 completes the proof of the first implication. To prove the converse, consider
I a nonzero ideal of L. By Lemma 4.3 we can write I = (I ∩ H) ⊕ (

⊕
α∈Λ

Iα), where

Iα := I ∩ Lα. By the maximal length of L, if we denote by ΛI := {α ∈ Λ : Iα 6= 0},
we can write I = (I ∩H)⊕ (

⊕
α∈ΛI

Lα), being also ΛI 6= ∅ as consequence of Lemma 4.1.

Let us fix some α0 ∈ ΛI being then 0 6= Lα0 ⊂ I. Since φ(I) = I and ψ(I) = I and by
making use of Lemma 1.1-1 we can assert that

(19) if α ∈ ΛI then {αφz1ψz2 : z1, z2 ∈ Z} ⊂ ΛI .

In particular

(20) {Lα0φz1ψz2 : z1, z2 ∈ Z} ⊂ I.
Now, let us take any β ∈ Λ satisfying β /∈ {±α0φ

z1ψz2 : z1, z2 ∈ Z}. Since α0 and β are
connected, we have a connection {α1, ..., αk}, k ≥ 2, from α0 to β satisfying:

α1 = α0φ
−nψ−r for some n, r ∈ N,

α1φ
−1 + α2ψ

−1 ∈ Λ,
α1φ

−2 + α2φ
−1ψ−1 + α3ψ

−1 ∈ Λ,
· · · · · · · · ·
α1φ

−i+1 + α2φ
−i+2 + α3φ

−i+3 + · · ·+ αiψ
−1 ∈ Λ,

· · · · · · · · ·
α1φ

−k+2 + α2φ
−k+3ψ−1 + α3φ

−k+4ψ−1 + · · ·+ αk−2φ
−1ψ−1 + αk−1ψ

−1 ∈ Λ,
α1φ

−k+1 +α2φ
−k+2ψ−1 +α3φ

−k+3ψ−1 + · · ·+αiφ
−k+iψ−1 + · · ·+αk−φ

−1ψ−1+
αkψ

−1 = εβφ−mψ−s for some m, s ∈ N and ε ∈ {1,−1}.
Taking into account α1, α2 ∈ Λ and α1φ

−1 + α2ψ
−1 ∈ Λ, the root-multiplicativity

and maximal length of L allow us to assert 0 6= [Lα1 ,Lα2 ] = Lα1φ−1+α2ψ−1 . Since
0 6= Lα1

⊂ I as consequence of Equation (20) we get

0 6= Lα1φ−1+α2ψ−1 ⊂ I.
A similar argument applied to α1φ

−1 + α2ψ
−1, α3 and

(α1φ
−1 + α2ψ

−1)φ−1 + α3ψ
−1 = α1φ

−2 + α2φ
−1ψ−1 + α3ψ

−1

gives us 0 6= Lα1φ−2+α2φ−1ψ−1+α3ψ−1 ⊂ I. We can follow this process with the connec-
tion {α1, ..., αk} to get

0 6= Lα1φ−k+1+α2φ−k+2ψ−1+···+αkψ−1 ⊂ I
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and then

either Lβφ−mψ−s ⊂ I or L−βφ−mψ−s ⊂ I .
From Equations (19) and (20), we now get

(21)
either {Lαφ−z1ψ−z2 : z1, z2 ∈ Z} ⊂ I or {L−αφ−z1ψ−z2 : z1, z2 ∈ Z} ⊂ I for any α ∈ Λ.

Equation (21) can be reformulated by asserting that given any α ∈ Λ either {αφ−z1ψ−z2 :
z1, z2 ∈ Z} or {−αφ−z1ψ−z2 : z1, z2 ∈ Z} is contained in ΛI . Taking now into account
H =

∑
α∈Λ

[Lαψ−1 ,L−αφ−1 ] we have

(22) H ⊂ I.
If we consider now any α ∈ Λ, since Lα = [H,Lαψ] by the maximal length of L, Equation
(22) gives us Lα ⊂ I and so I = L. That is, L is simple. �

Theorem 4.2. Let L be a split regular BiHom-Lie algebra of maximal length, root multi-
plicative, with Z(L) = 0 and satisfying H =

∑
α∈Λ

[Lαψ−1 ,L−αφ−1 ]. Then

L =
⊕

[α]∈Λ/∼

I[α],

where any I[α] is a simple (split) ideal having its roots system, ΛI[α]
, with all of its elements

ΛI[α]
-connected.

Proof. Taking into account Corollary 3.1 we can write L =
⊕

[α]∈Λ/∼
I[α] as the direct sum

of the family of ideals

I[α] = I0,[α] ⊕ V[α] = (
∑
α∈Λ

[Lαψ−1 ,L−αφ−1 ])⊕
⊕
β∈[α]

Lβ ,

being each I[α] a split regular BiHom-Lie algebra having as roots system ΛI[α]
:= [α]. To

make use of Theorem 4.1 in each I[α], we have to observe that the root-multiplicativity
of L and Proposition 3.2 show that ΛI[α]

has all of its elements ΛI[α]
-connected, that is,

connected through connections contained in ΛI[α]
. We also get that any of the I[α] is root-

multiplicative as consequence of the root-multiplicativity of L. Clearly I[α] is of maximal
length, and finally its center ZI[α]

(I[α]) := {x ∈ I[α] : [x, I[α] = 0]} = 0 as consequence
of [I[α], I[γ]] = 0 if [α] 6= [γ] (see Theorem 3.2) and Z(L) = 0. We can apply Theorem
4.1 to any I[α] so as to conclude I[α] is simple. It is clear that the decomposition L =⊕
[α]∈Λ/∼

I[α] satisfies the assertions of the theorem. �
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