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1. Introduction

In [8] and [9] the construction of a solution of the Toda lattice

ȧn = bn − bn−1

ḃn = bn(an+1 − an)

}
, n ∈ N , (1)

from another given solution was studied. Both solutions of (1) were linked to
each other by a Backlünd transformation, also called Miura transformation,
given by

bn = γ2nγ2n+1 , an = γ2n−1 + γ2n + C

b̃n = γ2n+1γ2n+2 , ãn = γ2n + γ2n+1 + C

}

where {γn} is a solution of the Volterra lattice

γ̇n = γn (γn+1 − γn−1) . (2)
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Here and in the following, the dot means differentiation with respect to
t ∈ R. However, we suppress the explicit t-dependence for brevity.

In [2], the first and the second authors generalized the analysis given in [9]
to the kind of Toda and Volterra lattice studied in [1]. As a particular case,
the results obtained in [2] extend the corresponding of [9] to the case of Toda
lattices where an(t) and bn(t) are complex functions of t ∈ R. Now, our goal
is to extend the results of [2] and [9] to the complex full Kostant-Toda lattice,
which is given by
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, n ∈ N . (3)

In the sequel, for each n ∈ N we assume that a
(i)
n , i = 1, 2, . . . , p , in (3)

are continuous functions with complex values defined in the open interval In

such that
N⋂

n=1

In 6= ∅ , for all N ∈ N . (4)

It is easy to check that these equations can be formally written in a Lax pair
form J̇ = [J, J−], where [M, N ] = MN − NM is the commutator of the op-
erators M and N , and J, J− are the operators whose matrical representation
is given, respectively, by the banded matrices

J =




a
(1)
1 1

a
(2)
1 a

(1)
2 1

...
... . . . . . .

a
(p)
1 a

(p−1)
2 · · · a

(1)
p 1

. . . . . . . . . . . .




, J− =




0

a
(2)
1 0
...

... . . .

a
(p)
1 a

(p−1)
2 · · · 0
. . . . . . . . .




,

(5)
and where J− is the lower triangular part of J .
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In this paper we don’t distinguish between each operator and its matrical
representation. Moreover, we underline the formal sense of the Lax pair
expression. In fact, it could be that there is no open interval where all the
entries of J are defined.

Definition 1. We say that J is a solution of (3) if its entries verify (3)-(4).

An important tool in the study of these systems is the sequence of poly-
nomials Pn(z) = Pn(t, z) associated with the matrix J , i.e., the polynomials
defined by the following recurrence relation, given for n = 0, 1, . . . by

p−1∑

i=1

a
(p−i+1)
n−p+i+1Pn−p+i(z) + (a

(1)
n+1 − z)Pn(z) + Pn+1(z) = 0

P0(z) = 1 , P−1(z) = · · · = P−p+1(z) = 0 .





(6)

We will use the following well-known fact,

Pn(z) = det (zIn − Jn) , n ∈ N . (7)

Here and in the sequel we denote by An the finite matrix formed with the
first n rows and n columns of each infinite matrix A.

For each p ∈ N, the system

γ̇n = γn

(
p−1∑

i=1

γn+i −

p−1∑

i=1

γn−i

)
, n ∈ N , (8)

called discrete Korteweg-de Vries equations, is an extension of the Volterra
lattices (2) studied in [8] and [9] (see also [6]). As in (3)-(4), for each n ∈ N

we assume that the functions of (8) continuous and defined in an open set On

such that
N⋂

n=1

On 6= ∅ , for all N ∈ N . (9)

The system (8) can be rewritten in Lax pair form, Γ̇ = [Γ, Γp
−] , where Γ is

given by

Γ =




0 1
... . . . . . .
0 · · · 0 1

γ1 0 · · · 0 . . .
. . . . . . . . .




,
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being γ1 in the p-th row, and Γp
− is the lower triangular part of Γp.

In a different context, and considering Γ as a bounded matrix, this lattice
was analyzed for the case p = 3 in [3].

Definition 2. We say that Γ is a solution of (8) if the sequence {γn} ver-
ify (8)-(9).

For the sake of simplicity, in this work, we only consider a four banded ma-
trix J corresponding to p = 3 in (3)-(5), but the method can be extended to
higher order banded matrices J , as we explain in Section 4. In our particular
case (3) becomes the following system,

ȧn = bn − bn−1

ḃn = bn(an+1 − an) + cn − cn−1

ċn = cn(an+2 − an)



 , n ∈ N , (10)

where we assume cn 6= 0 for each n ∈ N. Now, the recurrence relation (6) is
for n = 0, 1, . . ., given by

cn−1Pn−2(z) + bnPn−1(z) + (an+1 − z)Pn(z) + Pn+1(z) = 0
P0(z) = 1 , P−1(z) = P−2(z) = 0

}
(11)

and the matrices J, J− are, respectively,

J =




a1 1
b1 a2 1

c1 b2 a3
. . .

. . . . . . . . .


 , J− =




0
b1 0
c1 b2 0

. . . . . . . . .


 . (12)

We deal with solutions J of (10), i.e., matrices J as in (12) with entries
an , bn , cn , defined in In for each n ∈ N , verifying (10) and such that (4)
holds for each N ∈ N (see Definition 1). Consequently, for each of these
solutions, the polynomial Pn in (11) is defined in

⋂n
j=1 Ij .

We have the matrix

Γ =




0 1
0 0 1

γ1 0 0 . . .
. . . . . . . . .


 (13)

and (8) becomes

γ̇n = γn (γn+1 + γn+2 − γn−1 − γn−2) , n ∈ N . (14)
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Next we have our main result, where we obtain one solution of (14) and
two new solutions of (10) from a given solution of (10). This theorem extends
the corresponding results of [8, Th. 1] and [9, Section 2].

Theorem 1. Let J be a solution of (10) and let C ∈ C be such that det(Jn−
CIn) 6= 0 , for all n ∈ N . Then there exist two solutions J (1) , J (2) of (10)
given by

J (i) =




a
(i)
1 1

b
(i)
1 a

(i)
2 1

c
(i)
1 b

(i)
2 a

(i)
3

. . .
. . . . . . . . .


 , i = 1, 2 , (15)

and there exists a solution Γ of (14) given by (13) such that the following
relations are verified for each n ∈ N.

an = γ3n−4 + γ3n−3 + γ3n−2 + C
bn = γ3n−3γ3n−1 + γ3n−2γ3n−1 + γ3n−2γ3n

cn = γ3n−2γ3nγ3n+2



 (16)

a
(1)
n = γ3n−3 + γ3n−2 + γ3n−1 + C

b
(1)
n = γ3n−2γ3n + γ3n−1γ3n + γ3n−1γ3n+1

c
(1)
n = γ3n−1γ3n+1γ3n+3





(17)

a
(2)
n = γ3n−2 + γ3n−1 + γ3n + C

b
(2)
n = γ3n−1γ3n+1 + γ3nγ3n+1 + γ3nγ3n+2

c
(2)
n = γ3nγ3n+2γ3n+4





, (18)

where we assume γm = 0 for m ≤ 0.
Moreover, for t0 ∈ R verifying the following conditions (19)-(20) we have that
{γn} is the unique sequence verifying (16) such that (17) and (18) define two
solutions of (10):

(1) If b1 6= 0 then

γ2 6=
−b1

C − a1
(19)
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(2) For each n = 2, 3, . . . such that δn := cn−1Pn−2(C) + bnPn−1(C) 6= 0 ,
we have

P1(C)γ2 6= −b1 +
c1P0(C)P2(C)

− δ2 +
. . .

+
cn−2Pn−3(C)Pn−1(C)

−δn−1 +
cn−1Pn−2(C)Pn(C)

−δn

. (20)

We underline that (19)-(20) are referred to t = t0.

As a consequence of Theorem 1, in the next result we determine the relation
between the solutions of (10) and the solutions of (14).

Theorem 2. Let J , Γ be as in (12)-(13) verifying (16) and let C ∈ C be
such that det(Jn − CIn) 6= 0 , ∀n ∈ N. Then Γ is a solution of (14) if, and
only if, J is a solution of (10) and γ2(t) is the solution of the following initial
value problem,

ẏ(t) = y(t)(a2 − a1 − y(t))
y(t0) = γ2(t0)

}
,

with γ2(t0) verifying (19)-(20).

An important tool in the proof of Theorem 1 is the concept of L U -factori-
zation for banded matrices (see [7]). Moreover, it is relevant the fact that
some triangular matrices can be factorized using some more simple matrices
as factors. This is showed in the following result, of independent interest.
Despite of this it can be extended to arbitrary values p ∈ N. For the sake
of simplicity we assume p = 3. We underline that this result is verified by
matrices whose entries do not depend, in general, on t ∈ R.

Theorem 3. We consider the following lower triangular matrix with complex
entries,

L =




1
ℓ1,1 1
ℓ2,1 ℓ2,2 1

. . . . . . . . .


 (21)
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such that ℓj+1,j 6= 0 for each j ∈ N. Then there exist two lower triangular
matrices

L(i) =




1
γi+1 1

γi+4 1
. . . . . .


 , i = 1, 2 , (22)

such that
L = L(1)L(2) . (23)

Moreover, for each fixed γ2 ∈ C , with γ2 6= 0 , verifying the following condi-
tions (24)-(25), the factorization (23) is unique:

(1) If ℓ1,1 6= 0 then
γ2 6= ℓ1,1 (24)

(2) For each n = 2, 3, . . . such that ℓn,n 6= 0 we have

γ2 6= ℓ1,1 −
ℓ2,1

ℓ2,2 − . . .
−

ℓn−1,n−2

ℓn−1,n−1 −
ℓn,n−1

ℓn,n

. (25)

That is, if we have (23) and L̃(i) , i = 1, 2 , are two lower triangular matrices

like (22) such that the entries in the first column and second row of L̃(1) and

L(1) are γ2 verifying (24)-(25) and L = L̃(1)L̃(2), then L̃(i) = L(i) , i = 1, 2 .

Section 2 and Section 3 are devoted to prove, respectively, Theorem 1
and Theorem 2. The proof of Theorem 3 and an extension to four banded
matrices of the concept of Darboux transformation are given in Section 4.
Also a matrical interpretation of Theorem 1 and Theorem 2 is given in this
last section.

2. Proof of Theorem 1

Since J is a solution of (10), for each n ∈ N the functions an , bn , cn ,
verifying (4) are defined in In. Let C ∈ C be such that det(Jn − CIn) 6= 0
for all n ∈ N.

As we have explained in the above section, in the sequel we assume that
each polynomial Pn = Pn(t, z) is defined for t ∈ Sm :=

⋂m
j=1 Ij . In particular,
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det(Jn−CIn) 6= 0 means that C is not a zero of Pn(t, z) for each fixed t ∈ Sn

(see (7)).
It is well known that, under these conditions, for each m ∈ N there exist

a lower triangular matrix Lm = Lm(t) and an upper triangular matrix Um =
Um(t), being both matrices of order m, such that

Jm − CIm = LmUm (26)

(see for instance [5, Th. 1, pag. 35]). Moreover, for each fixed m ∈ N

the main section of order m of Lm+1 (respectively, Um+1) is given by Lm

(respectively, Um). In this sense we can write

J − CI = L U , (27)

understanding that (26) is verified for all m ∈ N in some open set Sm. With
our restrictions, L can be assumed a banded matrix like (21) and U is a two
banded matrix,

U =




γ1 1
γ4 1

. . . . . .


 . (28)

Our first purpose is to define the sequence {γn(t)} , n ∈ N . First of all, we
shall define the sequence {γ3n+1(t)} and, consequently, the matrix U .

Another way to write the recurrence relation (11) is

(Jn − zIn)




P0(z)
P1(z)

...
Pn−1(z)


 =




0
...
0

−Pn(z)


 , n ∈ N . (29)

Then, using (26) and (29) for z = C we have

Un




P0(C)
P1(C)

...
Pn−1(C)


 = (Ln)

−1




0
...
0

−Pn(C)


 , n ∈ N , (30)

being (Ln)
−1 a lower triangular matrix whose diagonal entries are equal to 1.

Comparing the entries corresponding to the last row in both sides of (30) we
arrive to γ3n−2Pn−1(C)+ Pn(C) = 0, which is verified for any n ∈ N. This is,

γ3n+1 = −
Pn+1(C)

Pn(C)
, n ≥ 0 , (31)
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where (31) determines the matrix U gives in (28).
With the aim to determine L we fix n ∈ {−1, 0, 1, . . .} and we obtain the

row n + 2 in both sides of (27) (see (21)). Then

an+2 − C = ℓn+1,n+1 + γ3n+4 (32)

bn+1 = ℓn+1,n + ℓn+1,n+1γ3n+1 (33)

cn = ℓn+1,nγ3n−2 (34)

where we assume γm = bm = cm = ℓm+1,m = ℓm,m = 0 for m ≤ 0. Since (34)
and (31) we obtain

ℓn+1,n = −
cnPn−1(C)

Pn(C)
, n ∈ N . (35)

Moreover, from (32) and again (31),

ℓn,n = an+1 − C +
Pn+1(C)

Pn(C)
, n ∈ N . (36)

On the other hand, we consider the next initial value problem,

ẋ(t) = (a1(t) − a2(t))x(t) + 1
x(t0) = x0

}
. (37)

The unique solution of (37) is

x(t) = e
−
∫

t

t0
(a2−a1)ds

[∫ t

t0

e
∫

s

t0
(a2−a1)dξ

ds + x0

]
,

and it is easy to check that y = 1/x is a solution of

ẏ(t) = y(t)(a2 − a1 − y(t)) . (38)

Due the continuity of x(t), if x0 6= 0 then there exists some interval I , t0 ∈ I ,
such that x(t) 6= 0 for all t ∈ I . Therefore we can obtain the solution of (38)
in I with the initial condition y(t0) = 1/x(t0).

If we take γ2 := y, from (38) we arrive to (14) for n = 2. In this way, we
have defined

γ2 =
1

x
=

e
∫

t

t0
(a2−a1)ds

∫ t

t0
e
∫

s

t0
(a2−a1)dξ

ds + x(t0)

with an appropriate value of x(t0) 6= 0.
In the sequel we assume γ2(t0) = 1/x0 verifying the conditions (24)-(25)

of Theorem 3 for the matrix L(t0). Obviously, this is possible because there
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is only a countable set of complex numbers on the right hand side of (25).
Then, from this theorem we obtain

L(t0) = L(1)(t0)L
(2)(t0) ,

being L(i)(t0) , i = 1, 2 , as in (22). Due to this factorization we can ex-
press the entries of L(t0) in terms of the sequences {γ3n+2(t0)} , {γ3n+3(t0)} .
This is,

γ3n+2(t0)γ3n(t0) = ℓn+1,n(t0)
γ3n−1(t0) + γ3n(t0) = ℓn,n(t0)

}
, n = 1, 2, . . . .

Let N ∈ N be fixed. Since the continuity of the solutions of (10) given by J
we know that there exists an open set, which we again denote SN , such that
SN ⊆ I and (24)-(25) hold for t ∈ SN and n = 1, 2, . . . , N , being t0 ∈ SN .
Then we assume that the entries an, bn, cn of J , and also the polynomials,
are defined in SN for n ≤ N . We shall obtain the new solutions of (10)
and (14) in SN for n ≤ N .

We have defined {γ3n+1(t)} in (31). Moreover we know the existence of
L(i)(t) , t ∈ SN , i = 1, 2 , as in Theorem 3. This define the sequence γn(t) for
n = 1, 2, . . . , 3N + 2 verifying

γ3n+2γ3n = −
cnPn−1(C)

Pn(C)
, n = 1, 2, . . . N , (39)

γ3n−1 + γ3n = −
cn−1Pn−2(C) + bnPn−1(C)

Pn(C)
, n = 1, 2, . . . N. (40)

for t ∈ SN (see (35) and (36)). Moreover, an immediate consequence of (31)
and (39) is γn(t) 6= 0 , n = 1, 2, . . . , 3N + 2 in this open set SN .

We shall prove that these functions γ1, . . . , γ3N+2 are solutions of (14) for
t ∈ IN . Taking n = 1 in (40),

γ2 + γ3 = −
b1

P1(C)

and taking n = 0 , n = 1 , respectively in (31) we see

γ1 = −P1(C) , γ4 = a2 − C + b1/P1(C) . (41)

Then

γ4 = a2 − a1 − (C − a1) − γ2 − γ3 .

Therefore γ3 +γ4−γ1 = a2−a1−γ2 and we arrive to (14) for n = 2. For n =
1, (14) is directly checked taking derivatives in (41) because ȧ1 = b1 (see (10)).
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Now, taking derivatives in γ3 = ℓ1,1 − γ2 and taking into account (14) for
n = 2 and ℓ1,1 = γ3 (γ4 + γ5 − γ1) we arrive to (14) for n = 3. That is, (14)
holds for n = 1, 2, 3.

The next auxiliary result is an immediate consequence of [4, Theorem 1].
It will be used to prove that Γ(t) is a solution of (14).

Lemma 1. If J(t) is a solution of (10) then we have for all n = 0, 1, . . .,

Ṗn = −cn−1Pn−2 − bnPn−1 .

In fact, in a little more general way, it is easy to prove by induction the
following result.

Lemma 2. If J(t) is a solution of (3) then we have for all n = 0, 1, . . .,

Ṗn = −a
(p)
n−p+2Pn−p+1 − · · · − a

(3)
n−1Pn−2 − a(2)

n Pn−1 .

Since (31), (40), for n ≤ N and Lemma 1 we have

γ̇3n+1 =
d

dt

(
−

Pn+1(C)

Pn(C)

)

=
Pn+1(C)

Pn(C)

Ṗn+1(C)Pn(C) − Pn+1(C)Ṗn(C)

Pn(C)Pn+1(C)

= −
Pn+1(C)

Pn(C)

(
−

cnPn−1(C) + bn+1Pn(C)

Pn+1(C)
+

cn−1Pn−2(C) + bnPn−1(C)

Pn(C)

)

= γ3n+1 (γ3n+2 + γ3n+3 − γ3n − γ3n−1) , n ≤ N , t ∈ IN .

Then (14) is verified for the subsequence {γ3n+1} of {γn} .
Now we proceed by induction, assuming proved (14) for n = 1, 2, . . . , 3k ,

k < N . From (39)-(40), for n ≤ N , and (32)-(36), for n ∈ N, we arrive to
the expression of an and bn in (16) for n ≤ N + 1, as well as the expression
of cn for n ≤ N . Then

γ3k+2 =
ck

γ3k−2γ3k

.

Taking derivatives and taking into account (10) for n = k and (14) for n =
3k − 2, 3k, we arrive to (14) for n = 3k + 2. Now, using the expression of
ak+2 in (16), and taking into account that k + 2 ≤ N + 1,

γ3k+3 = ak+2 − γ3k+2 − γ3k+4 − C .
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Taking derivatives in the above expression, using (10) for n = k +2 and (14)
for n = 3k + 2, 3k + 4 = 3(k + 1) + 1, and also the expression of bn , n =
k + 1, k + 2 , in (16), we arrive to (14) for n = 3k + 3, as we wanted to show.

For each fixed N ∈ N we have defined γn in SN for n = 1, 2, . . . , 3N + 2.
Then we have defined the solution Γ of (14).

Remark . We underline that the existence of a solution Γ(t) of (14) verify-
ing (16) is independent on the solutions J (i)(t) , i = 1, 2 , of (10). We obtain
Γ(t) by constructing the sequence {γn} with additional conditions for γ2. We
will use this fact in the proof of Theorem 2.

Now, we define the matrices J (i), i = 1, 2 , as in (15), where the sequences

{a
(i)
n , b

(i)
n } , n ∈ N , i = 1, 2 , are given in (17)-(18). It is easy to see, after

some direct computations, that these sequences verify (10), i.e., are solutions
of the full Kostant-Toda lattice.

Finally, we show the uniqueness of the sequence {γn} in the given condi-
tions.

Assume that {γ̃n} is another sequence verifying (16) such that (19)-(20)
hold in t = t0. Taking n = 1 in (16) we see γ̃1 = γ1 = a1. Moreover, from (16)
and (11),

γ̃3n−5γ̃3n−3γ̃3n−1Pn−2(C) + (γ̃3n−3γ̃3n−1 + γ̃3n−2γ̃3n−1 + γ̃3n−2γ̃3n) Pn−1(C)

+ (γ̃3n−1 + γ̃3n + γ̃3n+1) Pn(C) + Pn+1(C) = 0 .

We can reorder the above expression as

γ̃3n−3γ̃3n−1 (γ̃3n−5Pn−2(C) + Pn−1(C))+

(γ̃3n−1 + γ̃3n) (γ̃3n−2Pn−1(C) + Pn(C)) + (γ̃3n+1Pn(C) + Pn+1(C)) = 0 . (42)

Taking α−2 = 0 , α−1 = 1 and αn = γ̃3n+1Pn(C) + Pn+1(C) , n = 0, 1, . . . , we
can write (42) as

γ̃3n−3γ̃3n−1αn−2 + (γ̃3n−1 + γ̃3n) αn−1 + αn = 0 , n = 0, 1, . . .
α−2 = 0 , α−1 = 1

}
.

Because the unique solution of the above recurrence relation is αn = 0 , n =
0, 1, . . . , from the definition given for αn we arrive to

γ̃3n+1 = −
Pn+1(C)

Pn(C)
= γ3n+1 , n = 0, 1, . . . . (43)
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Using (43) and (16),

γ̃3n−1 + γ̃3n = an+1 +
Pn+1(C)

Pn(C)
− C ,

and so (see (11)),

γ̃3n−1 + γ̃3n = −
cn−1Pn−2(C) + bnPn−1(C)

Pn(C)
, n = 1, 2, . . . .

Now, if we take cn in (16) expressed in terms of {γ̃n} using again (43) we
arrive to

γ̃3n+2γ̃3n = −
cnPn−1(C)

Pn(C)
.

That is, the sequence {γ̃n} also verifies (39)-(40) in some neighborhood
of t0.

Moreover, if we assume that, using {γ̃n}, we can define in (17) a new
solution of (10), then

a
(1)
1 = γ̃1 + γ̃2 , a1 = γ̃1 ,

and therefore γ̃2 = a
(1)
1 −a1 . Taking derivatives in this expression, and taking

into account (16)-(17), we arrive to

˙̃γ2 = γ̃2(a2 − a1 − γ̃2) .

That is, γ̃2 is a solution of (38). Then, with the initial condition γ̃2(t0) =
γ2(t0), from the uniqueness of the solution of (37) we deduce γ̃2 = γ2 for some

interval ]t0 − δ̃, t0 + δ̃[ . We are assuming (19)-(20) for γ̃2 in t = t0, which
is equivalent, in our case, to (24)-(25). In the above construction of {γn}
we also assumed (24)-(25) for γ2 in t = t0 and, under these conditions, we
have obtained the unique possible solution {γn} of (14) verifying (16) such
that (17)-(18) define two new solutions of (10). Then we deduce that {γ̃n}
and {γn} are the same solution of (14). �

3. Proof of Theorem 2

Firstly, in the required conditions assume that Γ(t) is a solution of (14).
Taking derivatives in (16) we see that J(t) is a solution of (10). Moreover,
the condition γ̇2 = γ2(a2 − a1 − γ2) is given in (14) when n = 2.

Reciprocally, assume that J(t) is a solution of (10) such that γ̇2 = γ2(a2 −
a1 − γ2) and γ2(t0) verifies (19)-(20). From Theorem 1 we know that there
exists a solution {γ̃n} of (14) such that (16)-(18) hold. Then, being {γn} the
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sequence of entries of Γ(t), for proving that Γ(t) is a solution of (14) it is
enough to show that {γ̃n} = {γn}. But this is deduced from the uniqueness
of {γ̃n} when we take γ̃2(t0) = γ2(t0). �

We underline that, in the proof of Theorem 1, the uniqueness of {γn} does
not depend on (17) and (18), being a consequence of (16) and the conditions
assumed for γ2.

4. Proof of Theorem 3: Matrical interpretation of The-

orem 1

We will find two sequences {γ3n−1} , {γ3n} , n ∈ N , defining the matrices
L(1) and L(2) as in (22), such that (23) holds. That is, comparing both hand
sides in (23),

ℓj,j = γ3j−1 + γ3j

ℓj+1,j = γ3jγ3j+2

}
, j = 1, 2, . . . . (44)

Let γ2 6= 0 , γ2 ∈ C , be verifying (24)-(25). For j = 1 in (44) we want

ℓ1,1 = γ2 + γ3

ℓ2,1 = γ3γ5

}
. (45)

Hence, we can define γ3 = ℓ1,1 − γ2. Obviously, if ℓ1,1 = 0 then we have
γ3 = −γ2 6= 0, but if ℓ1,1 6= 0 then from (24) we also arrive to γ3 6= 0.
Therefore, we can also define γ5 = ℓ2,1/γ3 , being γ5 6= 0, and (45) is verified.

Assume that γ3j , γ3j+2 , j = 1, 2, . . . , m , are not zero and defined as in (44).
Then we define

γ3m+3 = ℓm+1,m+1 − γ3m+2 (46)

and we arrive to the first part of (44) for j = m + 1.
If γ3m+3 6= 0, then we can define

γ3m+5 =
ℓm+2,m+1

γ3m+3
,

and we have γ3m+5 6= 0 . In this way we arrive to the second part of (44) for
j = m+1. Consequently, we would have defined the sequences {γ3n−1} , {γ3n}
such that (44) and (23) are verified. Therefore, it is enough to show γ3m+3 6=
0, in order to finish the proof of Theorem 3. Now, we will show that the
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following expression for γ2, take place

γ2 = ℓ1,1 −
ℓ2,1

ℓ2,2 − . . .
−

ℓj,j−1

ℓj,j − γ3j

, j = 1, 2, . . . , m + 1 , (47)

where we understand γ2 = ℓ1,1−γ3 in the case j = 1. Indeed, (47) is contained
in (44) for j = 1. If we assume that (47) holds true for j ≤ m − 1, because
we are also assuming (44) with j ≤ m, we have

γ3j =
ℓj+1,j

γ3j+2
. (48)

Moreover, since (46) we know that the first part of (44) is also verified in
m + 1. Then

γ3j+2 = ℓj+1,j+1 − γ3j+3 .

From this and (48),

γ3j =
ℓj+1,j

ℓj+1,j+1 − γ3j+3
.

Substituting in (47) we obtain the desired expression for j + 1.
Now, if ℓm+1,m+1 = 0, taking into account (46) we have γ3m+3 6= 0. On the

other hand, if ℓm+1,m+1 6= 0, then comparing (47) for j = m + 1 and (25) for
n = m + 1, we arrive to γ3m+3 6= 0. �

Theorem 3 provides the key to understanding the relation between The-
orem 1 and the Darboux transformation. With the above notation, rela-
tions (16) can be written as

J − CI = L(1)L(2)U .

Moreover (17)-(18) can be rewritten, respectively, as

J (1) − CI = L(2)UL(1) , J (2) − CI = UL(1)L(2) . (49)

In general, we do not have uniqueness for the matrices L(1) and L(2) such that
L = L(1)L(2), but for each γ2(t0) in the conditions of Theorem 3 determines
this factorization. In this way, Theorem 1 provides two new solutions (49)
of (10) given by the circular permutations of L(1), L(2), U . This fact extends
the results of [8] and [9], where the initial solution and the obtained solution
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of (10) are related by the Darboux transformation (see [2]). That is, in the
case of a tridiagonal matrix J we have J − CI = L U , and the new solution
is given by J (1) − CI = UL .

In the following, we extend the concept of Darboux transformation.

Definition 3. Let B = (bi,j) , i, j ∈ N , be a lower Hessenberg banded ma-
trix,

B =




b1,1 1
b2,1 b2,2 1
...

... . . . . . .
bp,1 bp,2 · · · bp,p 1

. . . . . . . . . . . .




,

verifying det(Bn) 6= 0 for any n ∈ N. Let L , U be, respectively two lower
and upper triangular matrices, such that the entries in the diagonal of L are
ℓi,i = 1 and B = L U is the unique L U -factorization of B in these conditions.
Assume L = L(1)L(2) · · ·L(p−1), where for i = 1, . . . , p − 1,

U =




γ1 1
γp+1 1

. . . . . .


 , L(i) =




1
γi+1 1

γp+i+1 1
. . . . . .


 . (50)

We say that any circular permutation of L(1)L(2) · · ·L(p−1)U is a Darboux
transformation of B.

With some more computations and the extension of the method used in
Section 3, Theorem 1 would be proved for arbitraries values of p. In this case
we have p− 1 new solutions J (i)−CI , i = 1, 2, . . . , p− 1 , of (3) given by the
Darboux transformations of

J − CI = L(1)L(2) · · ·L(p−1)U , (51)

this is,

J (i) − CI = L(i+1) · · ·L(p−1)UL(1) · · ·L(i) ,

where U, L(i) , i = 1, 2, . . . , p − 1 , are given in (50) and the sequence {γn}
provides a solution of (8). If we fix the initial conditions γ2(t0), . . . , γp−1(t0)
verifying the adequate restrictions, then {γn} is the unique sequence veri-
fying (51) such that the Darboux transformations of (51) define p − 1 new
solutions of (3).
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