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Abstract. We provide the appropriate unifying framework for the vari-

ous descriptions of the Dedekind completion of the ring CpLq of continu-

ous real functions on a frame L. It is based on suitable Galois connections

and a general result about Galois connections, showing once more the

ubiquity of (Galois) adjunctions between partially ordered sets and their

conceptual simplicity and extent.

Introduction

This paper takes another look at the Dedekind completion of the ring CpLq

of continuous real functions on a frame L. In two previous papers ([7, 3]) we

have presented its construction in three different ways, respectively in terms

of

(1) partial real functions on L,

(2) normal semicontinuous real functions on L, and

(3) Hausdorff continuous partial real functions on L.

To put them in perspective, we give a brief synopsis of each one:

(1) Recall the frame LpIRq of partial real numbers ([7]) defined by genera-

tors pq,—q and p—, qq, q P Q, and relations

(R1) pq,—q “
Ž

pąqpp,—q, for every q P Q,
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(R2) p—, qq “
Ž

păqp—, pq, for every p P Q,

(R3)
Ž

qPQpq,—q “ 1,

(R4)
Ž

qPQp—, qq “ 1,

(R5) p—, qq ^ pp,—q “ 0 whenever q ď p.

The class ICpLq of continuous partial real functions on L is the collection of

all frame homomorphisms LpIRq Ñ L. This is a Dedekind complete lattice

containing CpLq. The Dedekind completion of CpLq inside ICpLq is given by

CpLq_̂ “th P ICpLq | (a) there exist f, g P CpLq such that f ď h ď g

(b) hpp,—q˚ ď hp—, qq and hp—, qq˚ ď hpp,—q for any p ă q in Qu.

(2) Recall the frame LpRq of real numbers defined by imposing the following

further relation to LpIRq:

(R6) pp,—q _ p—, qq “ 1 whenever p ă q.

Let SpLq denote the frame of sublocales of L. The ring FpLq of general real

functions on L ([2]) is the collection of all frame homomorphisms LpRq Ñ
SpLq. Of importance here is a special class of lower semicontinuous real func-

tions, called normal [5], which are characterized by the properties f˝ P FpLq

and f´˝ “ f, (where f˝ and f´ denote the lower and upper regularizations

of f , respectively). The completion of CpLq is isomorphic with the lattice

NLSCcbpLq “ tf P FpLq | f is normal lower semicontinuous and

there exist g, h P CpLq such that g ď f ď hu.

(3) Recall the ring IFpLq of general partial real functions on L (i.e. the

collection of all frame homomorphisms LpIRq Ñ SpLq) and its subclasses

IFcbpLq and IFlbpLq of, respectively, continuously bounded and locally bounded

members. An element f in the former is characterized by the property h1 ď

f ď h2 for some h1, h2 P CpLq, whilst in the latter is characterized by the

property
Ž

rPQ fpr,—q “ 1 “
Ž

rPQ fp—, rq. An f P IFlbpLq is Hausdorff

continuous if f P ICpLq, i.e., fpp,—q and fp—, qq are closed sublocales for

every p, q P Q, f˝´ “ f´ and f´˝ “ f˝. Denoting by HpLq the collection of

all Hausdorff continuous partial real functions on L, the completion of CpLq

is isomorphic with

HcbpLq “ HpLq X IFcbpLq.

The purpose of this paper is to present a unified view of the three repre-

sentations above in a single general diagram of (Galois) adjunctions, based

on a suitable collection of scales in L. We construct three adequate Galois

connections between this collection and each one of the three representing
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lattices above. Then, the fact that they all describe the Dedekind completion

of CpLq will follow from an easy general fact about Galois connections.

As a general reference for frames and locales we suggest [8]. We refer to

[1] for specific facts about the frame of reals and the corresponding ring of

continuous real-valued functions on a frame L, and to [2] for the ring FpLq

of general real functions on L. For the details about the three constructions

mentioned above, the reader should please consult our previous [7] (for the

first) and [3] (for the other two). The notation used in the present paper

without explanation is that of those preceding papers.

1. Dedekind completions and Galois connections

Recall (see, e.g., [8, Appendix I.5]) that two monotone maps

X

f
++ Y

g

kk

between posets X and Y are Galois adjoint (or are in a Galois connection) if

@x P X,@y P Y, fpxq ď y ðñ x ď gpyq.

In this situation, f is said to be a left adjoint of g (and g is a right adjoint

of f), denoted briefly as f % g. Equivalently, monotone f : X Ñ Y and

g : Y Ñ X are adjoint if and only if

@x P X,@y P Y, fpgpyqq ď y and x ď gpfpxqq.

Left Galois adjoints preserve all suprema that exist in X, and the right

ones preserve infima. If X and Y are complete lattices, then a monotone

map f : X Ñ Y is a left (resp. right) adjoint if and only if it preserves all

suprema (resp. infima).

We follow [9, Section 1.3] for the terminology on completions of a poset.

We recall from there that a completion of P is a pair pC,ϕq where C is a

complete lattice and ϕ : P Ñ C is a join- and meet-dense embedding (that is,

each element of C is a join of elements from ϕrP s, and dually each element

of C is a meet of elements from ϕrP s).

A poset P “ pP,ďq is Dedekind (order) complete (or conditionally com-

plete) if every non-void subset A of P which is bounded from above has a

supremum in P (and then, in particular, every non-void subset B of P which

is bounded from below will have an infimum in P ). Of course, being com-

plete is equivalent to being Dedekind complete plus the existence of top and

bottom elements. A Dedekind completion (or conditional completion) of P
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is a join- and meet-dense embedding ϕ : P Ñ DpP q in a Dedekind complete

poset DpP q.

Finally, a poset X is self-dual if there exists a dual-order isomorphism, i.e.

an antitone and bijective ϕ : X Ñ X with antitone inverse.

Theorem 1.1. Let X be a self-dual poset, Y a Dedekind complete lattice and

X

f
++

K Y
g

kk

a Galois connection such that1 g ˝ f “ 1X . Then X is Dedekind complete.

Moreover, if ϕ : P Ñ Y is a Dedekind completion of a poset P , then the

inclusion ι : pg ˝ ϕqrP s Ñ X is a Dedekind completion of the poset pg ˝ ϕqrP s

whenever pg ˝ ϕqrP s is also self-dual as a subposet of X by the restriction of

the dual-order isomorphism of X.

Proof. Let ∅ ‰ S Ď X be bounded from below by some x P X. Since f is

order-preserving, one has that f rSs is bounded from below by fpxq. As Y

is Dedekind complete, the meet
Ź

f rSs does exist in Y . Then gp
Ź

f rSsq “
Ź

pg˝fqrSs “
Ź

S. Hence, X is closed under non-void bounded infima. Since

X is self-dual, we may conclude that it is also closed under bounded suprema

and therefore, that it is Dedekind complete.

In order to check that the inclusion ι : pg ˝ ϕqrP s Ñ X is a Dedekind

completion of pg ˝ ϕqrP s, consider an arbitrary x P X. Since ϕ : P Ñ Y is a

Dedekind completion of P we have fpxq “
Ź

tϕppq | p P P and fpxq ď ϕppqu.

Consequently,

x “ gpfpxqq “
Ź

tgpϕppqq | p P P and fpxq ď ϕppqu

“
Ź

tgpϕppqq | p P P and x ď gpϕppqqu.

Hence pg ˝ϕqrP s is meet-dense in X. By self-duality, it is also join-dense. �

2. Scales

In what follows L will always denote a frame.

There is a useful way of specifying continuous real functions on L with the

help of the so-called scales. This is explained in detail in [4] or [6]. Here we

just recall that a scale in L is a map σ : QÑ L such that

(1) σpqq ă σppq whenever p ă q, and

(2)
Ž

qPQ
σpqq “ 1 “

Ž

qPQ
σpqq˚.

1Galois connections f % g such that g is a left inverse of f are sometimes named Galois

injections.
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For each scale σ the formulas

fσpr,—q “
Ž

qąr
σpqq and fσp—, sq “

Ž

qăs
σpqq˚ for all r, s P Q (1.1)

determine a continuous real function fσ : LpRq Ñ L. Conversely, each con-

tinuous real function f : LpRq Ñ L yields a scale σf : QÑ L defined by

σf pqq “ fpq,—q for all q P Q (1.2)

and, by formulas (1.1), the scale σf induces the original f .

We will denote by ScpLq the set of all scales on L. This set is partially

ordered by

σ ď γ ” σpqq ď γpqq for every q P Q.

(Note that σ ď γ implies fσ ď fγ and, conversely, f ď g implies σf ď γf ).

We shall also need the following weaker version of a scale: a generalized

scale in L is just an antitone map σ : QÑ L such that

Ž

qPQ
σpqq “ 1 “

Ž

qPQ
σpqq˚.

We will denote by GScpLq the set of all generalized scales in L. Note that a

scale σ is always antitone and, consequently, ScpLq Ď GScpLq. Of course, the

partial order in ScpLq can be naturally extended to GScpLq.

Given a generalized scale σ, there is also the generalized scale σ˚˚ defined

by σ˚˚pqq “ σpqq˚˚ for all q P Q. Evidently, the correspondence σ ÞÑ σ˚˚

establishes an order-preserving map in GScpLq. Moreover, if σ is a scale, then

σ˚˚ and σ induce the same continuous real function via formulas (1.1).

We say that a generalized scale σ is regular if all its images σpqq are regular

elements of L, that is, σpqq “ σpqq˚˚. In other words, σ is regular if and only

if σ “ σ˚˚. We will denote by RegGScpLq and RegScpLq the sets of regular

generalized scales and regular scales, respectively.

Remarks 2.1. (1) There is a dual-order isomorphism

´p¨q : RegGScpLq Ñ RegGScpLq

defined by

p´σqpqq “ σp´qq˚ for all q P Q.

Its restriction to RegScpLq yields a dual-order isomorphism between RegScpLq

and RegScpLq, that is, RegScpLq is a self-dual poset.

(2) It is also worth mentioning that for any generalized scale σ,

σ˚˚ “ mintγ P RegGScpLq | σ ď γu.
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3. Scales and Dedekind completions

Proposition 3.1. The poset GScpLq is Dedekind complete. Specifically, we

have:

(1) Given any non-void tσiuiPI Ď GScpLq and σ P GScpLq such that σi ď σ

for all i P I, the supremum of tσiuiPI in GScpLq is given by

´GScpLqiPI
Ž

σi

¯

pqq “
Ž

iPI

σipqq for every q P Q.

(2) Given any non-void tσiuiPI Ď GScpLq and σ P GScpLq such that σ ď σi

for all i P I, the infimum of tσiuiPI in GScpLq is given by

´GScpLqiPI
Ź

σi

¯

pqq “
Ź

iPI

σipqq for every q P Q.

Proof. (1) First note that the map σ_ : QÑ L, given by σ_pqq “
Ž

iPI σipqq

for every q P Q, is obviously antitone and that

Ž

qPQ
σ_pqq “

Ž

qPQ

Ž

iPI

σipqq “
Ž

iPI

Ž

qPQ
σipqq “ 1

and
Ž

qPQ
σ_pqq

˚ “
Ž

qPQ

´

Ž

iPI

σipqq
¯˚

ě
Ž

qPQ
σpqq˚ “ 1.

Therefore, σ_ is a generalized scale on L. In order to check that σ_ is actually

the supremum of tσiuiPI in GScpLq, let σ1 P GScpLq be such that σi ď σ1 for

every i P I. Then σ_pqq “
Ž

iPI σipqq ď σ1pqq for all q P Q.

(2) Analogously, one has that the map σ^ : Q Ñ L, given by σ^pqq “
Ź

iPI σipqq for every q P Q, is also antitone and that

Ž

qPQ
σ^pqq “

Ž

qPQ

Ź

iPI

σipqq ě
Ž

qPQ
σpqq “ 1.

Fixing an i0 P I, we get also

Ž

qPQ
σ^pqq

˚ “
Ž

qPQ

´

Ź

iPI

σipqq
¯˚

ě
Ž

qPQ
σi0pqq

˚ “ 1.

Moreover, for any σ1 P GScpLq such that σ1 ď σi for all i P I, we have

σ^pqq “
Ź

iPI σipqq ě σ1pqq for all q P Q. �

Next result is an immediate consequence of the preceding proposition and

Remark 2.1 (2).

Corollary 3.2. The poset RegGScpLq is Dedekind complete. Specifically,

given any non-void tσiuiPI Ď RegGScpLq and any σ P RegGScpLq such that
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σi ď σ for all i P I, the supremum of tσiuiPI in RegGScpLq is given by

ˆ

GScpLq
Ž

iPI

σi

˙˚˚

.

Proposition 3.3. Let L be a completely regular frame and let σ P GScpLq be

such that tγ P ScpLq | γ ď σu ‰ ∅. Then

σ “
GScpLq
Ž

tγ P ScpLq | γ ď σu.

Proof. Let Γ “ tγ P ScpLq | γ ď σu ‰ ∅. Since GScpLq is Dedekind complete,

the supremum of Γ in GScpLq does exist. We only need to prove that

GScpLq
Ž

Γ ě σ.

(since the reverse inequality is obvious).

For this purpose, let us fix a q P Q and an a P L such that a ăă σpqq. This

means that there exists a family tcr P L | r P Q X r0, 1su such that a ď c0,

c1 ď σpqq and cr ă cs whenever r ă s. Furthermore, consider a dual-order

isomorphism2

ψq : QX p´8, qs Ñ QX r0, 1q.

Then, for each γ P Γ define the mapping γq,a : QÑ L by

γq,aprq “

$

&

%

γprq if r ą q

γprq _ cψqprq if r ď q.

Each γq,a is clearly antitone and
Ž

rPQ γq,aprq ě
Ž

rPQ γprq “ 1. Further,

note that γq,aprq ď σprq for all r P Q and, consequently,
Ž

rPQ γq,aprq
˚ ě

Ž

rPQ σprq
˚ “ 1. Therefore γq,a is a generalized scale such that γq,a ď σ.

Finally, for any r ă s in Q, one has γpsq ă γprq and cψqpsq ă cψqprq, since

ψqpsq ă ψqprq. Thus γq,apsq ă γq,aprq. Consequently, γq,a is a scale and we

conclude that γq,a P Γ.

In conclusion, by the complete regularity of L, we have

´GScpLq
Ž

Γ
¯

pqq ě
Ž

aăăσpqq

γq,apqq “
Ž

aăăσpqq

γpqq _ c0 ě
Ž

aăăσpqq

a “ σpqq. �

Now, let us define a regular generalized scale σ to be continuously bounded

whenever there exist γ, δ P RegScpLq such that γ ď σ ď δ. We will de-

note by RegGSccbpLq the collection of all continuously bounded and regular

generalized scales.

2One may take, for instance, the map given by ψqprq “
pr´qq2

pr´qq2`1
.
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Corollary 3.4. For any completely regular frame L, the poset RegScpLq is

join- and meet-dense in RegGSccbpLq.

Proof. The fact that RegScpLq is join-dense in RegGScpLqcb follows imme-

diately from Proposition 3.3 and Remark 2.1 (2). Then, by Remark 2.1 (1),

RegScpLq is also meet-dense in RegGScpLqcb. �

Corollary 3.5. For any completely regular frame L, the inclusion

ι : RegScpLq Ñ RegGSccbpLq

is a Dedekind completion of RegScpLq.

4. Galois connections and the unified picture

We need first to recall some basic facts about the structure of the sublocale

lattice SpLq.
A sublocale S of a frame L is a subset S Ď L satisfying

(S1) for every A Ď S,
Ź

A is in S, and

(S2) for every s P S and every x P L, xÑ s is in S.

The lattice of all sublocales constitutes a co-frame (i.e., the dual of a frame)

with the order given by inclusion, meet coinciding with the intersection and

the join given by
Ž

Si “ t
Ź

M |M Ď
Ť

Siu; the top is L and the bottom is

the set t1u. We make this co-frame into a frame SpLq just by considering the

dual ordering: S1 ď S2 iff S2 Ď S1. Thus, t1u is the top and L is the bottom

in SpLq that we simply denote by 1 and 0, respectively.

For any a P L, the sets cpaq “ Òa and opaq “ taÑ b | b P Lu are the closed

and open sublocales of L, respectively. They are complements of each other

in SpLq. Furthermore, the map a ÞÑ cpaq is a frame embedding L ãÑ SpLq
providing an isomorphism c between L and the subframe cL of SpLq consisting

of all closed sublocales. Since the pseudocomplement a˚ of each a P L satisfies

the identity a^ a˚ “ 0, then opaq ě cpa˚q for any a P L.

On the other hand, denoting by oL the subframe of SpLq generated by

all opaq, the correspondence a ÞÑ opaq establishes a dual-order embedding

LÑ oL.

Since we work in the dual lattice SpLq of the sublocale lattice, the closure

(resp. interior) of a sublocale S in SpLq is the largest closed sublocale con-

tained in S, that is, S “
Ž

tcpaq | cpaq ď Su (resp. the smallest open sublocale

containing S, that is, S˝ “
Ź

topaq | S ď opaqu). Hence, we should not forget

that S ď S ď S˝. We also recall that cpaq˝ “ opa˚q and opaq “ cpa˚q (see [8,

III.6 and III.8]).
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Now, let us define three mappings

RegGSccbpLq

g1

��

g2

��

g3

��
CpLq_̂ NLSCcbpLq HcbpLq

as follows:

For each σ P RegGSccbpLq,

‚ g1pσq : LpIRq Ñ L is defined on generators by

g1pσqpp,—q “
Ž

rąp
σprq and g1pσqp—, qq “

Ž

săq
σpsq˚;

‚ g2pσq : LpRq Ñ SpLq is defined on generators by

g2pσqpp,—q “
Ž

rąp
cpσprqq and g2pσqp—, qq “

Ž

săq
opσpsqq;

‚ g3pσq : LpIRq Ñ SpLq is defined on generators by

g3pσqpp,—q “
Ž

rąp
cpσprqq and g3pσqp—, qq “

Ž

săq
cpσpsq˚q.

In order to confirm that g1, g2 and g3 are well- defined, we need to check

that g1pσq P CpLq_̂, g2pσq P NLSCcbpLq and g3pσq P HcbpLq:

(g1): First, g1pσq is a frame homomorphism, that is, it turns relations

(R1)–(R5) into identities in L: The cases (R1) and (R2) are obvious by the

definition of g1pσq and the cases (R3) and (R4) follow from the fact that σ is

a generalized scale. In order to check (R5), let q ď p in Q. We have

g1pσqp—, qq ^ g1pσqpp,—q “
Ž

săq
σpsq˚ ^

Ž

rąp
σprq ď σpqq˚ ^ σpqq “ 0.

Hence, g1pσq is a continuous partial real function on L.

Finally, we need to show that g1pσq is indeed in CpLq_̂. Of course, g1

is order-preserving and it maps regular scales into continuous real func-

tions. Consequently, as σ is continuously bounded, g1pσq is also continuously

bounded. Furthermore, given p ă q in Q, let t P Q such that p ă t ă q. Then

g1pσqpp,—q
˚ “

´

Ž

rąp
σprq

¯˚

“
Ź

rąp
σprq˚ ď σptq˚ ď

Ž

săq
σpsq˚ “ g1pσqp—, qq.

Dually,

g1pσqp—, qq
˚ “

´

Ž

săq
σpsq˚

¯˚

“
Ź

săq
σpsq˚˚ “

Ź

săq
σpsq

ď σptq ď
Ž

rąp
σprq “ g1pσqpp,—q.
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(g2): Now, we need to check that g2pσq turns relations (R1)–(R6) into

identities in SpLq. As for g1, (R1), (R2) and (R3) are obvious and (R5) may

be proved in a similar way. Regarding (R4), we have

Ž

qPQ
g2pσqp—, qq “

Ž

qPQ

Ž

săq
opσpsqq “

Ž

sPQ
opσpsqq ě

Ž

sPQ
cpσpsq˚q

“ c
´

Ž

sPQ
σpsq˚

¯

“ 1.

Finally, in order to check (R6), let p ă q in Q and consider t P Q such that

p ă t ă q. Then

g2pσqpp,—q _ g2pσqp—, qq “
Ž

rąp
cpσprqq _

Ž

săq
opσpsqq ě cpσptqq _ opσptqq “ 1.

It remains to show that g2pσq belongs to NLSCcbpLq. Since g2pσq is clearly

lower semicontinuous (by definition) and continuously bounded, it suffices to

prove that g2pσq
´˝ ď g2pσq. Recall from [3, Lemma 4.8] that

g2pσq
´˝pp,—q “

Ž

rąp
g2pσqpr,—q˝ and g2pσq

´˝p—, qq “
Ž

săq

`

g2pσqp—, sq
˘˝

for each p, q P Q. Therefore,

g2pσq
´˝pp,—q “

Ž

rąp

´

Ž

sąr
cpσpsqq

¯˝

ď
Ž

rąp
cpσprqq˝ “

Ž

rąp
cpσprq˚˚q

“
Ž

rąp
cpσprqq “ g2pσqpp,—q

for every p P Q, from which it follows that g2pσq
´˝ ď g2pσq.

(g3): The fact that each g3pσq is a frame homomorphism follows immedi-

ately from the case of g1, by the isomorphism between L and cL. Finally,

g3pσq P HcbpLq. Indeed, it obviously belongs to ICpLq. It remains to check

that g´˝3 “ g˝3 and g˝´3 “ g´3 but this can be done in a way similar to the

previous case so we omit the details.

Proposition 4.1. Each mapping g1, g2 and g3 is the right Galois map in a

Galois adjoint pair that satisfy the conditions of Theorem 1.1. Moreover, for

any completely regular frame L and the completion

ι : RegScpLq Ñ RegGSccbpLq

given by Corollary 3.5,

pgi ˝ ιqrRegScpLqs “ CpLq pi “ 1, 2, 3q.
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Proof. (f1): Let f1 : CpLq_̂ Ñ RegGSccbpLq be defined by f1phqpqq “ hpq,—q˚˚

for each h P CpLq_̂ and q P Q. Obviously, f1 is order-preserving and

g1 ˝ f1 “ 1CpLq_̂ . On the other hand, for each σ P RegGSccbpLq we have

f1pg1pσqqpqq “ g1pσqpq,—q
˚˚ “

´

Ž

pąq
σppq

¯˚˚

ď σpqq˚˚ “ σpqq

for all q P Q, that is, f1 ˝ g1 ď 1RegGSccbpLq. Hence f1 % g1.

Moreover, pg1 ˝ ιqrRegScpLqs “ g1rRegScpLqs which is precisely CpLq. In-

deed, the inclusion g1rRegScpLqs Ď CpLq follows from (1.1); for the reverse

inclusion, given an f P CpLq, take the σf of (1.2) and then the corresponding

regular scale σf
˚˚, which also induces the given f .

(f2): This case can be proved in a similar way by taking f2 : NLSCcbpLq Ñ

RegGSccbpLq defined by f2phqpqq “ hq
˚˚ for every h P NLSCcbpLq and q P

Q, where each hq is given by the identity hpq,—q “ cphqq. The identity

g2pRegScpLqq “ CpLq follows as in the previous case.

(f3): This can be also proved similarly by taking, as in the preceding case,

f3 : HcbpLq Ñ RegGSccbpLq defined by f2phqpqq “ hq
˚˚ for every h P HcbpLq

and q P Q, where each hq is given by the identity hpq,—q “ cphqq. The identity

g3pRegScpLqq “ CpLq may be checked similarly as in the first case. �

In summary, we have the following diagram

RegGSccbpLq

g1

xx

% %
% g2

��

g3

��
CpLq_̂

f1

88

NLSCcbpLq

f2

KK

HcbpLq

f3

__

where each pair of Galois adjoint maps satisfies the conditions of Theorem 1.1

whenever L is completely regular. Hence, Theorem 1.1 yields the following:

Corollary 4.2. Let L be a completely regular frame. Each one of the lattices

CpLq_̂, NLSCcbpLq and HcbpLq is (isomorphic to) the Dedekind completion

of CpLq.

Remark 4.3. Obviously, Proposition 6.1 from [2] provides another possible

representation of the completion (with the additional feature that avoids ei-

ther sublocales and partial reals). Indeed, recall the frame LupRq of upper re-

als, that is, the subframe of LpRq given just by generators pp,—q and relations
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(R1) and (R3). In view of [2, Prop. 6.1], there is an isomorphism between

the lattice LSCpLq of lower semicontinuous functions in L and the lattice of

all frame homomorphisms h : LupRq Ñ L such that
Ž

rPQ ophpr,—qq “ 1. The

restriction of this isomorphism to NLSCcbpLq takes values in the set consist-

ing of all continuously bounded frame homomorphisms LupRq Ñ L such that

hpp,—q ě hpr,—q˚˚ for all p ă r (that we shall denote by nlsccbpLq).

The Galois connection between RegGSccbpLq and nlsccbpLq is easily defined:

‚ g4pσq : LupRq Ñ L is the frame homomorphism defined on generators by

g4pσqpp,—q “
Ž

rąp
σprq.

‚ f4 : nlsccbpLq Ñ RegGSccbpLq is defined by f4phqpqq “ hpq,—q˚˚ for each

h P nlsccbpLq and q P Q.

RegGSccbpLq
%

g1

vv

%%
g2

��

g3

��

%

g4

##

CpLq_̂

f1

66

» NLSCcbpLq

f2

AA

» HcbpLq

f3

SS

» nlsccbpLq

f4

bb

Figure 1. The unified picture.

5. A closing remark

We conclude the paper with a new simpler proof of [7, Proposition 3.1],

that is inspired by Proposition 3.3 and does not require the use of the lattice

ordered ring structure of CpLq.

Proposition 5.1. Let L be a completely regular frame and let h P ICpLq be

such that

(1) tf P CpLq | f ď hu ‰ ∅, and

(2) hpp,—q˚ ď hp—, qq whenever p ă q.

Then h “
ICpLq
Ž

tf P CpLq | f ď hu.

Proof. Let F “ tf P CpLq | f ď hu. By (1), F ‰ ∅. Since ICpLq is Dedekind

complete, the supremum f_ “
ŽICpLqF exists. We shall prove that f_ “ h.

For this purpose, fix a q P Q and an a P L such that a ăă hpq,—q. Then,

by the complete regularity of L, there exists a family tcr P L | r P QX r0, 1su
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such that a ď c0, c1 ď hpq,—q and cr ă cs whenever r ă s. Furthermore, let

ψq : Q X p´8, qs Ñ Q X r0, 1q be a dual-order isomorphism. Then, for each

f P F define the mapping σq,a : QÑ L by

σq,aprq “

$

&

%

fpr,—q if r ą q

fpr,—q _ cψqprq if r ď q.

Notice that
Ž

rPQ σq,aprq ě
Ž

rPQ fpr,—q “ 1. Moreover

Ž

rPQ
σq,aprq

˚ ě
Ž

rPQ
hpr,—q˚ ě

Ž

rPQ
hp—, rq “ 1,

since σq,aprq ď hpr,—q for all r P Q. Note further that fps,—q ă fpr,—q and

cψqpsq ă cψqprq for every r ă s in Q. Consequently, σq,apsq ă σq,aprq for every

r ă s and thus σq,a is a scale that determines a continuous real function fq,a

via formulas (1.1). It is easy to check that fq,a P F and consequently that

f_ ě fq,a. Hence, by the complete regularity of L, we have

f_pq,—q ě
Ž

aăăhpq,—q

fq,apq,—q ě
Ž

aăăhpq,—q

a “ hpq,—q

for each q P Q. Furthermore, using (2) it follows that hp—, qq ě hpp,—q˚ ě

f_pp,—q
˚ ě f_p—, pq for every p ă q in Q. Then, finally,

f_p—, qq “
Ž

păq
f_p—, pq ď hp—, qq.

for every q P Q. �
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