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Abstract

We deduce difference equations in the matrix form for Laguerre-Hahn orthogonal
polynomials on systems of non-uniform lattices, the so-called compatibility con-
ditions, involving the transfer matrices. As a consequence, we obtain closed form
expressions for the recurrence relation coefficients of the Laguerre-Hahn polynomials
of class zero.
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1 Motivation

Systems of non-uniform lattices and the corresponding divided difference ope-
rators have been studied from many points of view (see [1,2,6,13,15] and ref-
erences therein). In general terms, the difference calculus on non-uniform lat-
tices generalizes the calculus on lattices of lower complexity, such as the linear
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and q−uniform lattices. More detailed information on the hierarchy of lat-
tices/operators can be found, e.g., in [11,16] and [19, Sections 2,3]. In this
paper we consider a general divided-difference operator [11, Eq. (1.1)] having
the basic property of leaving a polynomial of degree n − 1 when applied to
a polynomial of degree n. Under some specifications, [11, Eq. (1.1)] is related
to the Askey-Wilson operator [1, Section 5]. Our purpose is the analysis of
the so-called Laguerre-Hahn class of orthogonal polynomials on systems of
non-uniform lattices, that is, families of orthogonal polynomials for which the
formal Stieltjes function satisfies a Riccati difference equation with polynomial
coefficients.

For the best of our knowledge, Laguerre-Hahn orthogonal polynomials on sys-
tems of non-uniform lattices were firstly studied by A. Magnus in [11]. More
recent literature includes [3,4]. The Laguerre-Hahn class contains the well-
known classical and semi-classical orthogonal polynomials [7,16,19], as well
as some of their rational spectral transformations [20, Section 5]. Our goal is
to derive properties of orthogonal polynomials and their recurrence relation
coefficients from the knowledge of the polynomial coefficients involved in the
Riccati difference equation. Such a topic has been extensively studied in the
literature, for several types of difference operators and families of orthogonal
polynomials. For instance, a similar program was undertaken in [5], within the
setting of continuous derivative, for the very classical Jacobi polynomials, and
in [19], within the class of semi-classical orthogonal polynomials on systems
of non-uniform lattices.

The main results of the present paper are given in Sections 3 and 4, where
we deduce difference equations in the matrix form for the orthogonal polyno-
mials (see Theorem 1), and the so-called compatibility conditions involving
the transfer matrices (see Corollary 1). Under some constraints on the de-
grees of the polynomial coefficients of the Riccati equation, we obtain closed
form expressions for the recurrence relation coefficients of the Laguerre-Hahn
polynomials (see Theorem 2).

The remainder of the paper is organized as follows. In Section 2 we give the
definitions and state the basic results to be used in the forthcoming sections:
we follow the formalism and geometric interpretation from [11,13], and give
some properties of the divided-difference operators, the related non-uniform
lattices, and the corresponding Laguerre-Hahn families of orthogonal poly-
nomials. In Section 3 we deduce the difference equations for the orthogonal
polynomials as well as the compatibility conditions for the transfer matrices.
In Section 4 we deduce the formulae for the recurrence relation coefficients
of the orthogonal polynomials. Specializations to the Askey-Wilson operator,
together with illustrative examples, are given in Sub-section 4.2.
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2 Preliminary results

2.1 The operator D, the related non-uniform lattice, and fundamental quan-
tities

We consider the divided difference operator D given in [11, Eq.(1.1)], with
the property that D leaves a polynomial of degree n − 1 when applied to a
polynomial of degree n. The operator D, defined on the space of arbitrary
functions, is given by

(Df)(x) =
f(y2(x))− f(y1(x))

y2(x)− y1(x)
, (1)

where y1 and y2 are functions that satisfy

y1(x) + y2(x) = polynomial of degree 1 , (2)

(y1(x))2 + y1(x)y2(x) + (y2(x))2 = polynomial of degree 2 , (3)

the later condition being equivalent to y1(x)y2(x) = polynomial of degree less
or equal than 2. Conditions (2)–(3) define y1 and y2 as the two y-roots of a
quadratic equation

ây2 + 2b̂xy + ĉx2 + 2d̂y + 2êx+ f̂ = 0 , â 6= 0 . (4)

Identities involving y1 and y2, following from the fact that y1, y2 are the y-roots
of (4):

y1(x) + y2(x) = −2(b̂x+ d̂)/â , (5)

y1(x)y2(x) = (ĉx2 + 2êx+ f̂)/â , (6)

(y2(x)− y1(x))2 = 4
(
(b̂2 − âĉ)x2 + 2(b̂d̂− âê)x+ d̂2 − âf̂

)
/â2 , (7)

y1(x) = p(x)−
√
r(x) , y2(x) = p(x) +

√
r(x) , (8)

with p, r polynomials given by

p(x) = − b̂x+ d̂

â
, r(x) =

λ

â2

(
x+

b̂d̂− âê
λ

)2

+
τ

âλ
if λ 6= 0 , (9)

where λ = b̂2 − âĉ, τ =
(
(b̂2 − âĉ)(d̂2 − âf̂)− (b̂d̂− âê)2

)
/â.

There are four primary classes of divided difference operators (1) and related
lattices. Such a classification is done according to the two parameters λ and
τ defined above, assuming âĉ 6= 0:
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(i) λ = τ = 0 - the linear lattice, related to the forward difference operator
[17, Chapter 2, Section 12].
(ii) λ 6= 0, τ = 0 - the q-linear lattice, related to the q-difference operator [8].
(iii) λ = 0, τ 6= 0 - the quadratic lattice, related to the Wilson operator [1].
(iv) λτ 6= 0 - the q-quadratic lattice, related to the Askey-Wilson operator [1].

In the present paper we will consider the general case λτ 6= 0, and we shall
operate with the divided difference operator D given in its general form (1),
with y1, y2 given in (8), defined in terms of the polynomials p and r in (9).
Throughout the paper we shall use the notation ∆y = y2 − y1. From (8), it
follows that

∆y = 2
√
r . (10)

By defining the operators E1 and E2 (see [11]), acting on arbitrary functions
f as

(E1f)(x) = f(y1(x)) , (E2f)(x) = f(y2(x)) ,

then the formula (1) is given by

(Df)(x) =
(E2f)(x)− (E1f)(x)

(E2x)(x)− (E1x)(x)
.

The companion operator of D is defined as (see [11])

(Mf)(x) =
(E1f)(x) + (E2f)(x)

2
. (11)

Some useful identities involving D and M are listed below (see [11]):

D(gf) = DgMf + MgDf , (12)

M(gf) = MgMf +
∆2
y

4
DgDf , (13)

D(1/f) =
−Df

E1f E2f
, (14)

M(1/f) =
Mf

E1f E2f
. (15)

Eq. (12) has the equivalent forms

D(gf) = Dg E1f + Df E2g , D(gf) = Dg E2f + Df E1g . (16)

Note that Mf is a polynomial whenever f is a polynomial. Furthermore, if
deg(f) = n, then deg(Mf) = n [4, Lemma 1]. Indeed, let us emphasize that,
throughout the text, unless stated in contrary, by a polynomial we mean a
polynomial in the variable x.
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Finally, we recall that for the q−quadratic class of lattices there is a parametric
representation of the conic (4), x = x(s), y = y(s), such that [13, pp. 254–255]

x(s) = xc + ξ
√
â (qs + q−s) , y(s) = yc + ξ

√
ĉ (qs−1/2 + q−s+1/2) , (17)

xc = (âê− b̂d̂)/λ , yc = (ĉd̂− b̂ê)/λ , ξ2 = f̃/(4λ) , f̃ = f̂ − ây2
c −2b̂xcyc− ĉx2

c ,

and q defined through

q + q−1 =
4b̂2

âĉ
− 2 . (18)

In this case we have y1(x(s)) = y(s), y2(x(s)) = y(s+1). Thus, in the account
of (8),

p(x(s))−
√
r(x(s)) = y(s) , p(x(s)) +

√
r(x(s)) = y(s+ 1) , (19)

and (1) is given as

Df(x(s)) =
f(y(s+ 1))− f(y(s))

y(s+ 1)− y(s)
.

If â = ĉ, d̂ = ê = 0, then f̃ = f̂ , and we get

x(s) = ξ
√
â(qs + q−s) , y(s) = ξ

√
â(qs−1/2 + q−s+1/2) , (20)

hence,
y1(x) = x(s− 1/2) , y2(x) = x(s+ 1/2) , (21)

thus (1) is given as

Df(x(s)) =
f(x(s+ 1/2))− f(x(s− 1/2))

x(s+ 1/2)− x(s− 1/2)
. (22)

The fundamental quantities to be used in the main results of the paper depend
on the lattice, namely, on the polynomials p, r as well as on the parameter q
defined above. Let us note that, in the account of (19), it follows that

y(s+ 1) + y(s) = 2p(x(s)) , (y(s+ 1)− y(s))2 = 4r(x(s)) .

By writing
p(x) = p1x+ p0 , r(x) = r2x

2 + r1x+ r0 ,

the coefficients p1, p0, r2, r1, r0 may be obtained through the linear systems

2x(0) 2

2x(1) 2


p1

p0

 =

y(0) + y(1)

y(2) + y(1)

 ,


(x(0))2 x(0) 1

(x(1))2 x(1) 1

(x(2))2 x(2) 1




r2

r1

r0

 =


(y(1)− y(0)))2 /4

(y(2)− y(1))2 /4

(y(3)− y(2))2 /4

 .
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2.2 Laguerre-Hahn orthogonal polynomials on non-uniform lattices

We shall consider formal orthogonal polynomials related to a (formal) Stieltjes
function defined by

S(x) =
+∞∑
n=0

unx
−n−1 (23)

where (un)n≥0, the sequence of moments, is such that det
[
ui+j

]n
i,j=0
6= 0, n ≥

0, and, without loss of generality, u0 = 1. Throughout the paper we consider
each Pn monic, and we will denote the sequence of monic orthogonal polyno-
mials {Pn}n≥0 by SMOP.

Monic orthogonal polynomials satisfy a three-term recurrence relation [18]

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, ... , (24)

with P−1(x) = 0, P0(x) = 1, and γn 6= 0, n ≥ 1, γ0 = 1.

The sequence {P (1)
n }n≥0, also referred to as the sequence of associated poly-

nomials of the first kind, satisfies the three-term recurrence relation

P (1)
n (x) = (x− βn)P

(1)
n−1(x)− γnP (1)

n−2(x) , n = 1, 2, ... (25)

with P
(1)
−1 (x) = 0, P

(1)
0 (x) = 1.

In the framework of Hermite-Padé Approximation (see [12]), the polynomi-

als Pn are the diagonal Padé denominators of (23), and the P
(1)
n−1’s are the

numerator polynomial, thus, also determined through

S(x)− P (1)
n−1(x)/Pn(x) = O(x−2n−1) , x→∞ .

Definition 1 ([11]) A SMOP {Pn}n≥0 related to a Stieltjes function, S, is
said to be Laguerre-Hahn if S satisfies a Riccati equation

A(x)DS(x) = B(x)E1S(x)E2S(x) + C(x)MS(x) +D(x) , (26)

where A(x), B(x), C(x), D(x) are polynomials in x, A 6= 0.
If B ≡ 0, then {Pn}n≥0 is said to be semi-classical.

Note that [11]

deg(A) ≤ m+ 2 , deg(B) ≤ m, deg(C) ≤ m+ 1 , deg(D) ≤ m, (27)

where m is some nonnegative integer. When B ≡ 0 and m = 0 we get the
so-called classical polynomials [7,15,16].
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In the sequel we will use the following matrices:

Pn =

Pn+1 P (1)
n

Pn P
(1)
n−1

 , n ≥ 0 . (28)

In the account of (24) and (25), Pn satisfy the difference equation

Pn = AnPn−1 , An =

x− βn −γn
1 0

 , n ≥ 1 , (29)

with initial condition P0 =

x− β0 1

1 0

. The matrix An is called the transfer

matrix.

3 Difference equations and compatibility conditions

Laguerre-Hahn polynomials related to Stieltjes functions such that (26) holds
satisfy the difference equations, for all n ≥ 0, [4, Th. 1]

ADPn+1 = (ln + ∆yπn)E1Pn+1 − C/2E2Pn+1 −BE2P
(1)
n + ΘnE1Pn ,

ADP (1)
n = (ln + ∆yπn)E1P

(1)
n + C/2E2P

(1)
n +DE2Pn+1 + ΘnE1P

(1)
n−1 ,

(30)
as well as [4, Th. 2]

An+1DPn+1 = (ln − C/2)MPn+1 −BMP (1)
n + ΘnMPn , (31)

An+1DP (1)
n = (ln + C/2)MP (1)

n +DMPn+1 + ΘnMP
(1)
n−1 (32)

with

An+1 = A+
∆2
y

2
πn , (33)

and ln, πn,Θn polynomials such that

deg(Θn) ≤ max{deg(A)− 2, deg(B)− 2, deg(C)− 1} ,
deg(ln) ≤ max{deg(A)− 1, deg(B)− 1, deg(C)} ,

deg(πn) ≤ max{deg(B)− 2, deg(C)− 1} ,

satisfying the conditions
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π−1 = 0, π0 = −D/2, (34)

Θ−1 = D, Θ0 = A−
∆2
y

4
D − (l0 − C/2)M(x− β0) +B, (35)

l−1 = C/2, l0 = −M(x− β0)D − C/2 . (36)

Remark 1 Eqs. (30) are equivalent to
ADPn+1 = (ln −∆yπn)E2Pn+1 − C/2E1Pn+1 −BE1P

(1)
n + ΘnE2Pn ,

ADP (1)
n = (ln −∆yπn)E2P

(1)
n + C/2E1P

(1)
n +DE1Pn+1 + ΘnE2P

(1)
n−1 ,

(37)
for all n ≥ 0.

Taking into account the notations above, we obtain the result that follows.

Theorem 1 Let S be a Stieltjes function satisfying (26), and let {Pn}n≥0, be
the corresponding sequence given by (28). The following relations hold, for all
n ≥ 0:

ADPn = B1,n E1Pn − E2Pn C , (38)

ADPn = B2,n E2Pn − E1Pn C , (39)

with the matrices Bj,n, j = 1, 2, and C given by

Bj,n =

ln + (−1)j+1∆yπn Θn

−Θn−1

γn
ln−1 + (−1)j+1∆yπn−1 + Θn−1

γn
Ej(x− βn)

 ,

C=

C/2 −D
B −C/2

 ,
where the ln and Θn’s are the polynomials in (30).

PROOF. Let us deduce (38). Taking the relations (30) with n− 1, we have

ADPn = (ln−1 +∆yπn−1)E1Pn−C/2E2Pn−BE2P
(1)
n−1 +Θn−1E1Pn−1 , n ≥ 1 .

Using the three-term recurrence relation, Pn−1 = (x−βn)
γn

Pn− Pn+1

γn
, in the above

equation, we get

ADPn = −Θn−1

γn
E1Pn+1 +

(
ln−1 + ∆yπn−1 +

Θn−1

γn
E1(x− βn)

)
E1Pn

− C/2E2Pn −BE2P
(1)
n−1 . (40)
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In the same manner we get

ADP (1)
n−1 = −Θn−1

γn
E1P

(1)
n +

(
ln−1 + ∆yπn−1 +

Θn−1

γn
E1(x− βn)

)
E1P

(1)
n−1

+ C/2E2P
(1)
n−1 +DE2Pn . (41)

Now we write (30), (40), and (41), in the matrix form, thus getting (38), which
holds for all n ≥ 1. From the initial conditions (34)–(36) there follows that
(38) also holds for n = 0.

Starting with (37) and proceeding in the same way as above we get (39).

Corollary 1 The following compatibility conditions hold for the transfer ma-
trices An, for all n ≥ 1:

ADAn = B1,n E1An − E2An B1,n−1 , (42)

ADAn = B2,n E2An − E1An B2,n−1 . (43)

PROOF. Let us deduce (42). From (29) we have DPn = D(AnPn−1). Thus,
in the account of (16), we get

DPn = DAn E1Pn−1 + E2AnDPn−1 .

Using the equality above in (38) we get

ADAn E1Pn−1 + E2An (B1,n−1E1Pn−1 − E2Pn−1C) = B1,n E1Pn − E2Pn C .
(44)

The use of (29), Pn = AnPn−1, in the above equation yields, after cancelations,

ADAn E1Pn−1 + E2AnB1,n−1E1Pn−1 = B1,n E1AnE1Pn−1 .

Note that [18] P (1)
n Pn − Pn+1P

(1)
n−1 =

∏n
k=0 γk, n ≥ 0. Thus, det(E1Pn−1) =

−∏n−1
k=0 γk and, consequently, as γn 6= 0, n ≥ 0, E1Pn−1 is invertible. Therefore,

we get

ADAn + E2AnB1,n−1 = B1,n E1An ,
thus obtaining (42).

Eq. (43) is deduced in a similar way.

As a consequence of the compatibility conditions (42)–(43), we obtain the
following relations for the polynomials πn, ln,Θn.
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Corollary 2 The polynomials πn, ln,Θn satisfy, for all n ≥ 0, the following
relations:

πn+1 + πn = − Θn

2γn+1

−
n∑
k=0

Θk−1

γk
, (45)

ln+1 + ln + M(x− βn+1)
Θn

γn+1

= 0 , (46)

−A+ M(x− βn+1)(ln+1 − ln)−
∆2
y

2
(πn+1 + πn) + Θn+1 =

γn+1

γn
Θn−1 , (47)

ln+1 + ln = 2M(x− βn+1)(πn+1 − πn) , (48)

together with the initial conditions (34)–(36).

PROOF. The equation (42) has two non-trivial entries, on positions (1, 1), (1, 2).
Respectively, for all n ≥ 1, we have

A = (ln + ∆y πn)E1(x− βn) + Θn − (ln−1 + ∆y πn−1)E2(x− βn)− γn
Θn−2

γn−1

,(49)

0 = −(ln + ∆y πn)γn − E2(x− βn)Θn−1 + γn (ln−2 + ∆y πn−2

+
Θn−2

γn−1

E1(x− βn−1)

)
. (50)

Recall that ∆y = E2x−E1x. Thus, after some computations, from (49) we get

A = M(x− βn)(ln − ln−1) + Θn − γn
Θn−2

γn−1

−
∆2
y

2
(πn + πn−1)

+ ∆y

(
−1

2
(ln + ln−1) + M(x− βn)(πn − πn−1)

)
. (51)

As the left-hand side of (51) is a polynomial, the following equations must
hold, for all n ≥ 1:

M(x− βn)(ln − ln−1) + Θn − γn
Θn−2

γn−1

−
∆2
y

2
(πn + πn−1) = A , (52)

−1

2
(ln + ln−1) + M(x− βn)(πn − πn−1) = 0 . (53)

Hence, we get (47) and (48) for all n ≥ 0.

Eqs. (45) and (46) are obtained from Eq. (50), using similar computations as
above.
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Remark 2 Eqs. (45)–(47) also appear in [4]. There, they were deduced in a
different way than above.

Remark 3 From (46) and (48) it follows that

πn+1 − πn = − Θn

2γn+1

, (54)

which, when summed with (45), yields

πn+1 = −1

2

n+1∑
k=0

Θk−1

γk
, n ≥ 0 . (55)

Note that, in the account of (33), Eq. (47) can be written in the equivalent
form

A− An+2 − An+1 + M(x− βn+1)(ln+1 − ln) + Θn+1 =
γn+1

γn
Θn−1 . (56)

Eqs. (45)–(48) and (55)–(56) will play a fundamental role in the sequel.

4 Laguerre-Hahn orthogonal polynomials from compatibility con-
ditions

4.1 Laguerre-Hahn orthogonal polynomials of class m = 0 in (27)

We consider the Laguerre-Hahn families of the so-called class zero, that is,
m = 0 in (27). Hence, we consider SMOP’s {Pn}n≥0 whose Stietjes function
satisfies A(x)DS(x) = B(x)E1S(x)E2S(x) + C(x)MS(x) +D(x) with

deg(A) ≤ 2 , deg(B) = 0 , deg(C) ≤ 1 , deg(D) = 0 . (57)

Recall the difference equations (31)–(32),

An+1DPn+1 = (ln − C/2)MPn+1 −BMP (1)
n + ΘnMPn ,

An+1DP (1)
n = (ln + C/2)MP (1)

n +DMPn+1 + ΘnMP
(1)
n−1 .

As we are taking m = 0 in (27), then deg(ln) = 1, deg(πn) = deg(Θn) = 0.

We will use the following notations:

A(x) = a2x
2 + a1x+ a0 , B = b0 , C(x) = c1x+ c0 , D(x) = d0 ,

ln(x) = `n,1x+ `n,0 , πn(x) = πn , Θn(x) = Θn , πn,Θn constants ,
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and

An(x) = an,2x
2 + an,1x+ an,0 . (58)

In the account of (1), (11), (23) and according to the previous notations, we
have

d0 = −(a2 + c1p1)/(p2
1 − r2) . (59)

In the next lemma we show that some quantities, to be used in the sequel,
depend only on the lattice as well as on the coefficients of the Riccati equation.
Recall that p1 and r2 are the leading coefficients of p(x), r(x), respectively,
defined in (9), and q is defined through (18).

Lemma 1 Under the previous notations, the quantities `n,1, Θn/γn+1 and πn
are given, for all n ≥ 0, by

`n+1,1 =

(
qn+1 − q−(n+1)

q−1 − q

)(
`0,1 + p1

Θ0

γ1

)
+

(
qn − q−n

q−1 − q

)
`0,1 , (60)

Θn+1

γn+2

=

(
q−(n+1) − qn+1

q−1 − q

)(
(1 + q)(1 + q−1)

p1

`0,1 +
Θ0

γ1

)

+

(
q−(n+2) − qn+2

q−1 − q

)
Θ0

γ1

, (61)

πn+1 =−d0

2
− Θ0

2γ1

− 1

2(q−1 − q)

(
q−1 1− q−n

1− q−1
− q1− qn

1− q

)(
(1 + q)(1 + q−1)

p1

`0,1 +
Θ0

γ1

)

− 1

2(q−1 − q)

(
q−2 1− q−n

1− q−1
− q2 1− qn

1− q

)
Θ0

γ1

, (62)

with

`0,1 = −p1d0 −
c1

2
,

Θ0

γ1

=
−a2 + c1p1 + 2d0(r2 + p2

1)

p2
1 − r2

, π0 = −d0

2
. (63)

PROOF. Recall Eqs. (46) and (56),

ln+1 + ln + M(x− βn+1)
Θn

γn+1

= 0 ,

A− An+2 − An+1 + M(x− βn+1)(ln+1 − ln) + Θn+1 =
γn+1

γn
Θn−1 ,

as well as (54), πn+1 − πn = − Θn

2γn+1

. Recall that, in the account of (5), (8)

and (9), we have

M(x− βn+1) = p(x)− βn+1 . (64)
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Collecting the coefficients of x in (46) we have

`n+1,1 = −`n,1 − p1
Θn

γn+1

. (65)

Let us now obtain Θn+1/γn+2 as a linear combination of `n,1 and Θn/γn+1.
Starting with the definition of An in (33) we have an+1,2−an,2 = 2r2(πn−πn−1),
thus, in the account of (54),

an+1,2 = an,2 − r2Θn−1/γn . (66)

Collecting the coefficients of x2 in (56) we get

a2 − an+2,2 − an+1,2 + p1(`n+1,1 − `n,1) = 0 . (67)

Taking into account (66), we get

a2 − 2an+1,2 + r2
Θn

γn+1

+ p1(`n+1,1 − `n,1) = 0 ,

thus, in the account of (65), it follows that

an+1,2 =

(
r2 − p2

1

2

)
Θn

γn+1

− p1`n,1 +
a2

2
. (68)

From (66) and (68) we get

an,2 =

(
r2 − p2

1

2

)
Θn

γn+1

+ r2
Θn−1

γn
− p1`n,1 +

a2

2
. (69)

Now, from (68) and (69) we get(
r2 − p2

1

2

)
Θn−1

γn
− p1`n−1,1 =

(
r2 − p2

1

2

)
Θn

γn+1

+ r2
Θn−1

γn
− p1`n,1 .

Let us write the above equation for n + 1 and use (65). We get, after basic
computations,

Θn+1

γn+2

=
−4p1

r2 − p2
1

`n,1 +

(
1− 2(r2 + p2

1)

r2 − p2
1

)
Θn

γn+1

. (70)

Now let us write Eqs. (65) and (70) in the matrix form,

 `n+1,1

Θn+1/γn+2

 = X

 `n,1

Θn/γn+1

 , X =

 −1 −p1

−4p1

r2 − p2
1

1− 2(r2 + p2
1)

r2 − p2
1

 . (71)

Iteration in (71) yields, for all n ≥ 0,

13



`n+1,1 =
(
X n+1

)
(1,1)

`0,1 +
(
X n+1

)
(1,2)

Θ0/γ1 , (72)

Θn+1/γn+2 =
(
X n+1

)
(2,1)

`0,1 +
(
X n+1

)
(2,2)

Θ0/γ1 , (73)

where (X n+1)(i,j) denotes the element on position (i, j) of the matrix X n+1.

The set of eigenvalues of X is given by σ(X ) = {λ1, λ2}, where λ1 + λ2 =

−2(r2 + p2
1)

r2 − p2
1

. In the notation of (18), λ1 + λ2 = q + q−1. As det(X ) = 1, we

have λ1λ2 = 1, thus {λ1, λ2} = {q, q−1}. Hence, we can assume, without loss
of generality, that λ1 = q, λ2 = q−1. After determining the eigenvalues of X
we get X = VDV−1, with V ,D given as

V =


−p1

1 + q

−p1

1 + q−1

1 1

 , D =

q 0

0 q−1

 . (74)

Note that X n+1 = VDn+1V−1. Thus, after simplifications, from (72)–(74) we
get (60)–(61). To get (62) we use (61) combined with (55) and the initial
conditions (34).

Finally, to get `0,1 and π0 we use (36) and (34), respectively. The quantity
Θ0/γ1 follows from equating the coefficients of x2 in Eq. (32) with n = 1 and
using (46) with n = 0.

The equations given in Lemma 1 will now be used to determine the three-term
recurrence relation coefficients of the Laguerre-Hahn polynomials.

Theorem 2 Let {Pn}n≥0 be the SMOP related to the Stieltjes function S
satisfying A(x)DS(x) = B(x)E1S(x)E2S(x) + C(x)MS(x) + D(x) under the
degrees (57). Let the recurrence relation (24) hold,

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x) , n = 0, 1, 2, . . . ,

with βn 6= 0 , n = 0, 1, 2, . . . , γn 6= 0, n = 1, 2, . . . .
The following identities take place, for all n ≥ 0:

βn+2 = snβn+1 + tn , (75)

γn+2 =

γ1µ0D +
n∑
k=0

µk (A(xk+1) + 2r(xk+1)λk)

µnµn+1

, (76)

where xk+1 = (βk+1 − p0)/p1, and
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sn =
ηn + p1µn

p1µn+1 − ηn+1

, (77)

tn =
(p1r1 − p0r2)(ηn+1 + ηn) + p0p1r2(µn+1 − µn) + 2r2a1 − 2r1a2

r2(p1µn+1 − ηn+1)
, (78)

λn = πn+1 + πn , (79)

with, for all n ≥ 1,

ηn =

(
qn+1 − q−(n+1)

q−1 − q

)(
`0,1 + p1

Θ0

γ1

)
−
(
qn − q−n

q−1 − q

)
p1

Θ0

γ1

−
(
qn−1 − q−(n−1)

q−1 − q

)
`0,1 ,

µn =

(
q−n − qn

q−1 − q

)(
(1 + q)(1 + q−1)

p1

`0,1 +
Θ0

γ1

)
+

(
q−(n+1) − qn+1

q−1 − q

)
Θ0

γ1

.

and
η0 = −2`0,1 − p1Θ0/γ1 , µ0 = Θ0/γ1 .

The quantities πn, `0,1 and Θ0/γ1 are given in Lemma 1. As a consequence of
(75),

βn+2 =
n∏
k=0

sk

β1 +
n∑
k=0

 k∏
j=0

sj

−1

tk

 , n ≥ 0 . (80)

The parameter β0 is determined through

β0 =
a1 + p1c0 + p0c1 + 2p0p1d0 − r1d0

c1 + 2p1d0

, (81)

and β1, γ1 are given by

β1 =
(2p0p1 − r1)Θ0/γ1 + a1 − p1c0 − p0c1 − 2d0(2p0p1 + r1 − p1β0)

2p1Θ0/γ1 − c1 − 2p1d0

, (82)

γ1 =
(a0 + b0 + p0c0 + p2

0d0 − r0d0 − c0β0 − 2p0d0β0 + d0β
2
0) (p2

1 − r2)

−a2 + c1p1 + 2d0(r2 + p2
1)

.(83)

PROOF. Let us deduce the equation for the βn’s.

By collecting the coefficient of the x2 and x terms in (47) we obtain, respec-
tively,

−a2 + p1(`n+1,1 − `n,1)− 2r2(πn+1 + πn) = 0 ,

−a1 + p1(`n+1,0 − `n,0) + (p0 − βn+1)(`n+1,1 − `n,1)− 2r1(πn+1 + πn) = 0 .

By eliminating the πn+1 +πn term between the two above equations we obtain

a1r2−a2r1 +(`n+1,1−`n,1)(p1r1−r2(p0−βn+1))−p1r2(`n+1,0−`n,0) = 0 . (84)
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Using the coefficient of the x0 term of (46),

`n+1,0 = −`n,0 − (p0 − βn+1)
Θn

γn+1

, (85)

in (84) we obtain
`n,0 = fnβn+1 + gn , (86)

where

fn =
p1µn − ηn

2p1

, gn =
a2r1 − a1r2 − (p1r1 − r2p0)ηn − p0p1r2µn

2p1r2

,

µn = Θn/γn+1, ηn = `n+1,1 − `n,1 .

Now, substituting (86) into (85) we obtain

βn+2 = snβn+1 + tn ,

where

sn =
µn − fn
fn+1

, tn = −gn+1 + gn + p0µn
fn+1

.

Thus, we get (75) with sn, tn given by (77)–(78).

Equation (80) follows from the general form for solutions of recurrences of
type zn+1 = xnzn + yn, n ≥ 0 (see, e.g., [14, Lemma 3.3]).

Let us now deduce the equation for the γn’s.

Evaluating the identity (47) at xn+1 = (βn+1 − p0)/p1 we get, taking into
account (64),

− A(xn+1)− 2r(xn+1)λn + γn+2µn+1 = γn+1µn−1 , λn = πn+1 + πn . (87)

Multiplying (87) by µn we get

Tn+1 = Tn + µn (A(xn+1) + 2r(xn+1)λn) , Tn = γn+1µn−1µn , n ≥ 0 .

Iteration yields

Tn+1 = T0 +
n∑
k=0

µk (A(xk+1) + 2r(xk+1)λk) .

Thus, we get (76), where we used µ−1 = D (see (35)).

To obtain (81), we use the coefficients of x from (35) with the initial conditions
(36). The coefficient of x0 in (35) gives us Θ0. This, combined with the Θ0/γ1

from (63) yields (83). Equation (82) follows from equating the coefficient of x
in (32) with n = 1.
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4.2 Specializations: the Askey-Wilson divided-difference calculus

Let us define the base q = e2iη and consider the projection map from the unit
circle {z = eiθ, θ ∈ [−π, π[} onto [−1, 1] by x = 1

2
(z + z−1). Consider the

symmetrised and canonical form of the lattice defined through (4),

â = ĉ , arbitrary and non-zero, b̂ = −â cos(η) , d̂ = ê = 0 , f̂ = −â sin2(η) ,
(88)

and θ = 2sη. Then we get (20) given by

x(s) =
1

2
(qs + q−s) (89)

and we obtain, from (22), the Askey-Wilson operator (see [9, Eq. (12.1.12)],
[19, Sec. 2])

Df(x) =
f(1

2
(q1/2z + q−1/2z−1))− f(1

2
(q−1/2z + q1/2z−1))

1
2
(q1/2 − q−1/2)(z − z−1)

.

Using (8) and (21) combined with (89) or by plugging the data (88) into the
definition of p(x), r(x) in (9) we get

p(x) =
1

2
(q1/2 + q−1/2)x , r(x) =

1

4
(q1/2 − q−1/2)2(x2 − 1) , (90)

hence, in the previous notations,

p1 =
1

2
(q1/2 + q−1/2), p0 = 0, r2 =

1

4
(q1/2 − q−1/2)2, r1 = 0, r0 = −r2 .

The quantities sn, tn in Theorem 2 simplify as

sn =−q (−(q + 1) (q2n − q) `0,1 − p1q (q2n − 1) Θ0/γ1)

(q + 1) (q2n+3 − 1) `0,1 + p1 (q2n+4 − 1) Θ0/γ1

, (91)

tn =
a1(q − q−1)

(qn+1 − q−n−1)`0,1 + (qn+2 − q−n−2)(`0,1 + p1Θ0/γ1)
. (92)

4.2.1 The Askey-Wilson polynomials

The Askey-Wilson polynomials, henceforth denoted by Pn, are orthogonal with
respect to the weight [1] (see also [10])

w(x; {α1, α2, α3, α4}) =
h(x, 1)h(x,−1)h(x, q1/2)h(x,−q1/2)√
1− x2 h(x, α1)h(x, α2)h(x, α3)h(x, α4)

,
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where

h(x, α) =
+∞∏
k=0

(1− 2αxqk + α2q2k) , x = cos(θ) .

Let us denote by σj the j-th elementary symmetric polynomial of α1, . . . , α4,
that is,

σ1 = α1 + α2 + α3 + α4 , σ2 = α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4

σ3 = α1α2α3 + α1α2α4 + α2α3α4 , σ4 = α1α2α3α4 .

We have ADw = CMw, with the polynomials A(x) = a2x
2 +a1x+a0, C(x) =

c1x+ c0, where [19]

a2 = 2(1 + σ4q
−2) , a1 = −(q−1/2σ1 + q−3/2σ3) , a0 = −1 + q−1σ2 − q−2σ4 ,

(93)

c1 = 4
q−2σ4 − 1

q1/2 − q−1/2
, c0 = 2

q−1/2σ1 − q−3/2σ3

q1/2 − q−1/2
. (94)

Thus, ADS = CMS +D (see [19, Prop. 4.1]), with

D = d0 = −(a2 + c1p1) . (95)

The recurrence relation coefficients βn of Pn are determined through (75) or
(80), with the data (91)–(92). The γn are determined trough (76), now given
by

γn+2 =
γ1µ0D +

∑n
k=0 µk (A(βk+1/p1) + 2r(βk+1/p1)λk)

µnµn+1

, (96)

with the quantities µn, λn given in Theorem 2 with initial conditions (cf. (63)),

`0,1 = −p1d0 − c1/2 , Θ0/γ1 = −a2 + c1p1 + d0(q + q−1) .

Here it was used p2
1 − r2 = 1, r2 + p2

1 = 1
2
(q + q−1). Thus, we recover

βn =
[
σ1(q + σ4(q2n − qn − qn−1)) + σ3(1− qn − qn+1 + σ4q

2n−1)
]

× qn−1

2(1− σ4q2n)(1− σ4q2n−2)
, n ≥ 0 , (97)

γn =
1

4

(1− qn)(1− σ4q
n−2)Gn

(1− σ4q2n−3)(1− σ4q2n−2)2(1− σ4q2n−1)
, n ≥ 1 , γ0 = 1 , (98)

where

Gn = (1− α1α2q
n−1)(1− α1α3q

n−1)(1− α1α4q
n−1)

× (1− α2α3q
n−1)(1− α2α4q

n−1)(1− α3α4q
n−1) .
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4.2.2 The associated of Askey-Wilson polynomials

Firstly, let us adopt a new notation. Henceforth we denote the recurrence
relation coefficients of the Askey-Wilson polynomials by γ̃n, β̃n, n ≥ 0, with
the convention γ̃0 = 1.

The Stieltjes function related to the associated of Askey-Wilson polynomials,
{P (1)

n }n≥0, is defined through

γ̃1S
(1)(x) = − 1

S(x)
+ (x− β̃0) , (99)

where S is the Stieltjes function related to the Askey-Wilson polynomials.
Thus, using (12)–(15), we get

A1DS(1) = B1E1S
(1)E2S

(1) + C1MS(1) +D1 , (100)

with (see also [20])

A1 = A− 2r(x)D , B1 = γ̃1D , C1 = −C − 2DM(x− β̃0) ,

D1 =
1

γ̃1

(
A+ CM(x− β̃0) +DE1(x− β̃0)E2(x− β̃0)

)
.

Here, A,C,D are the polynomials in sub-section 4.2.1.

The polynomialsA1, B1, C1, D1 satisfy the bounds (57). Indeed, it only remains
to analyse deg(D1). Substituting d0 and taking into account the coefficient of
x in the second equation of (35), we get deg(D1) = 0.

Thus, the data to be used in Theorem 2, that is, the coefficients of the Riccati
equation, are as follows:

A1(x) = a
(1)
2 x2 + a

(1)
1 x+ a

(1)
0 , B1(x) = b

(1)
0 , C1(x) = c

(1)
1 x+ c

(1)
0 , D1(x) = d

(1)
0 ,

with

a
(1)
2 = a2(1 + 2r2) + 2r2c1p1 , a

(1)
1 = a1 + 2r1(a2 + p1c1) , (101)

a
(1)
0 = a0 + 2r0(a2 + c1p1) , b

(1)
0 = γ̃1d0 , (102)

c
(1)
1 = −c1 − 2d0p1 , c

(1)
0 = −c0 − 2d0(p0 − β̃0) , (103)

d
(1)
0 =

1

γ̃1

(
a0 + c0(p0 − β̃0) + d0(p2

0 − r0 − 2p0β̃0 + β̃2
0)
)
. (104)

Here, the a’s, b’s, c’s and d0 are given above (see (93)–(95)). The recurrence
relation coefficients βn, γn of P (1)

n are determined through (80) with the data
(91)–(92) and (76), now given by

γn+2 =
γ1µ0D1 +

∑n
k=0 µk (A1(βk+1/p1) + 2r(βk+1/p1)λk)

µnµn+1

,
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with the quantities µn, λn given in Theorem 2 with initial conditions (cf. (63)),

`0,1 = −p1d
(1)
0 − c

(1)
1 /2 , Θ0/γ1 = −a(1)

2 + c
(1)
1 p1 + d

(1)
0 (q + q−1) .

Recall that p2
1 − r2 = 1, r2 + p2

1 = 1
2
(q + q−1). Thus, we recover

βn = β̃n+1 , γn = γ̃n+1 , n ≥ 1 . (105)
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