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Abstract

A multiple test procedure for assessing multivariate normality (MVN) is proposed.

The new test combines a finite set of affine invariant test statistics for MVN through

an improved Bonferroni method. The usefulness of such an approach is illustrated

by a multiple test including Mardia’s and BHEP (Baringhaus-Henze-Epps-Pulley)

tests that are among the most recommended procedures for testing MVN. A sim-

ulation study carried out for a wide range of alternative distributions, in order to

analyze the finite sample power behavior of the proposed multiple test procedure,

indicates that the new test demonstrates a good overall performance against other

highly recommended MVN tests.
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1 Introduction

Let X1, . . . , Xn, . . . be a sequence of independent copies of a d-dimensional absolutely

continuous random vector X with unknown probability density function f , also denoted

by fX , and probability distribution Pf , and Nd the class of d-variate normal probability

density functions. The problem of assessing multivariate normality (MVN) is to test, on

the basis of X1, . . . , Xn, the hypothesis

H0 : f ∈ Nd,

against a general alternative. This is a classical problem in the statistical literature and a

huge amount of work has been done on this topic, as stressed by Mecklin and Mundfrom

(2000) who noticed the existence of about fifty procedures for testing multivariate normality.

See also the bibliography given in Csörgő (1986) and the review papers by Henze (2002)

and Mecklin and Mundfrom (2004). Despite this fact, there is a continued interest in this

subject as attested by the recent papers of Liang et al. (2005), Mecklin and Mundfrom

(2005), Székely and Rizzo (2005), Sürücü (2006), Arcones (2007), Farrel et al. (2007),

Coin (2008), Chiu and Liu (2009), Liang et al. (2009) and Tenreiro (2009). A strong

practical motivation for this continued effort is the fact that many multivariate statistical

methods, including MANOVA, multivariate regression, discriminant analysis, and canonical

correlation, depend on the acceptance of the MVN hypothesis.

Among the existing wide class of MVN test procedures the Mardia’s (1970) tests, based

on the Mardia’s empirical measures of multivariate skewness and kurtosis, play an impor-

tant role being among the most recommended and widely used test procedures for assessing

MVN (see Romeu and Ozturk, 1993; Mecklin and Mundfrom, 2005; and references therein).

Denoting by X̄n = n−1
∑n

j=1Xj and Sn = n−1
∑n

j=1(Xj − X̄n)(Xj − X̄n)
′ the sample mean

vector and the sample covariance matrix, respectively, Mardia’s MS (multivariate skewness)

and MK (multivariate kurtosis) test statistics are given by

MS = nb1,d (1)

and

MK =
√
n | b2,d − d(d+ 2)|, (2)

with

b1,d =
1

n2

n
∑

j,k=1

(Y ′
jYk)

3 and b2,d =
1

n

n
∑

j=1

(Y ′
jYj)

2,

where Yj = S
−1/2
n (Xj−X̄n), j = 1, . . . , n, are the scaled residuals and S

−1/2
n is the symmetric

positive definite square root of S−1
n . Under the null hypothesis of MVN, we have nb1,d

d−→
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6χ2
d(d+1)(d+2)/6 and

√
n ( b2,d−d(d+2))

d−→ N(0, 8d(d+2)) (see Mardia, 1970). The MS test

rejects H0 for large values of b1,d and the MK test rejects H0 for both small and large values

of b2,d. Mardia’s test statistics are affine invariant but, similarly to almost all the MVN

tests proposed in the literature, they are not consistent against each alternative distribution.

Denoting by β1,d = E((X1 − µ)′Σ−1(X2 − µ))3 and β2,d = E((X1 − µ)′Σ−1(X1 − µ))2 the

population counterparts to the previous sample skewness and kurtosis measures, where µ is

the mean vector and Σ the covariance matrix of X , Baringhaus and Henze (1992) showed

that if E(X ′X)3 < ∞ the MVN test based on b1,d is consistent if and only if β1,d > 0,

and Henze (1994) proved that if E(X ′X)4 <∞ the MVN test based on b2,d is consistent if

and only if β2,d differs from d(d + 2). Therefore, although these tests may present a high

power for an alternative in skewness or kurtosis, they can also show a very poor performance

especially when the alternative distribution has MVN values of skewness and kurtosis. This

problem can also be found in some other test statistics that combine the previous measures

of multivariate skewness and kurtosis in order to obtain a single “omnibus” test procedure,

such as those proposed by Mardia and Foster (1983), Mardia and Kent (1991), Horswell

and Looney (1992) or Doornik and Hansen (1994).

In order to avoid the lack of consistency for some alternative distributions, a different

test for MVN can be used such as a test from the BHEP (Baringhaus–Henze–Epps–Pulley)

family introduced by Baringhaus and Henze (1988) and Henze and Zirkler (1990), which

extends the Epps and Pulley (1983) procedure to the multivariate context. The BHEP

test statistic is a weighted L2-distance between the empirical characteristic function of the

scaled residuals

Ψn(t) =
1

n

n
∑

j=1

exp
(

i t′Yj
)

, t ∈ R
d,

and the characteristic function Φ of the d-dimensional standard Gaussian density φ(x) =

(2π)−d/2 exp(−x′x
/

2), x ∈ R
d, with weight function t→ |Φh(t)|2 = exp(−h2t′t), where Φh

is the characteristic function of φh(·) = φ(·/h)/hd and h is a strictly positive real number

that needs to be chosen by the user (see Jiménez-Gamero et al., 2009; for a recent reference

on goodness of fit tests based on the empirical characteristic function). Therefore the BHEP

test statistic is given by

B(h) = n

∫

|Ψn(t)− Φ(t)|2|Φh(t)|2dt

=
1

n

n
∑

i,j=1

Q(Yi, Yj; h),

with Q(u, v; h) = φ(2h2)1/2(u−v)−φ(1+2h2)1/2(u)−φ(1+2h2)1/2(v)+φ(2+2h2)1/2(0), for u, v ∈ R
d.

The simplicity of the previous expression shows the attractive feature of the considered
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weight function. As noted by Henze and Zirkler (1990) and Fan (1998), the statistic B(h)

can also be interpreted as the L2-distance between the Parzen-Rosenblatt kernel estimator

based on the scaled residuals with kernel K = φ and smoothing parameter (bandwidth) h,

and the convolution Kh ∗ φ, which can be seen as an approximation of the standardized

null density when h is close to zero. In this form the statistic B(h) was firstly considered by

Bowman and Foster (1993). In some of the previous references an alternative smoothing

parameter β = 1/(
√
2 h) is considered. A theoretical description of the asymptotic behavior

of B(h) under the null hypothesis, a fixed alternative distribution and a sequence of local

alternatives, can be obtained from the work of several authors such as Baringhaus and

Henze (1988), Csörgő (1989), Henze and Zirkler (1990), Henze (1997), and Henze and

Wagner (1997). In particular, for each h > 0, B(h) has as limiting null distribution a

weighted sum of χ2 independent random variables and the associated test procedure is

consistent against each fixed alternative distribution. Extreme choices of h, h → 0 and

h → +∞, have been studied by Henze (1997), that shows that B(h) is, in some sense,

related to the Mardia’s measures b2,d and b1,d, respectively.

From a practical point of view, it is well-known that the finite sample performance of

the BHEP test is very sensitive to the choice of h. In the multivariate case the standard

choice for h, as proposed by Henze and Zirkler (1990), is given by h = hHZ := 1.41. This

was the choice of h considered in the above mentioned comparative studies of Mecklin

and Mundfrom (2005) and Farrel et al. (2007) that lead to the recommendation of the

Henze–Zirkler test as a formal test of MVN. Despite these good overall comparative results,

especially for heavy tailed distributions, these studies also identify some extremely poor

results of the Henze–Zirkler test for some alternatives. In a recent paper, Tenreiro (2009)

examines the previous standard choice of the smoothing parameter h. As a result of a large-

scale Monte Carlo study, two distinct behavior patterns for the BHEP empirical power as

a function of h are identified. This leads the author to propose two distinct choices of the

bandwidth, depending on the data dimension (2 ≤ d ≤ 15), which are suitable for short

tailed or high moment alternatives and for long tailed or moderately skewed alternative

distributions, respectively:

h = hS := 0.448 + 0.026 d (3)

and

h = hL := 0.928 + 0.049 d. (4)

These choices agree with a heuristic interpretation of the test performance in terms of the

bandwidth h. For large values of h the weight function t → exp(−h2t′t), puts most of its

mass near the origin, and then, as the tail behavior of a probability distribution is reflected

by the behavior of its characteristic function at the origin, it is natural to expect that the
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test can be sensitive against alternative distributions with long tails. For small values of

h, a test sensitive to short tailed or high moments alternative distributions is expectable

to be obtained. Taking into account the fact that the formulation of a specific alternative

hypothesis is in general impossible in a real situation, the author strongly recommends the

use of the combined bandwidth

h = h̄ :=
1

2
hS +

1

2
hL, (5)

which has been shown to lead to a powerful test against a wide range of alternatives.

Despite this good property, for several alternative distributions the BHEP test based on

B(h̄) is clearly outperformed by one of the Mardia’s tests. The main propose of the present

paper is to show that it is not mandatory to choose between one of the previous approaches

for assessing MVN. Using the method introduced in Fromont and Laurent (2006), which can

be viewed as an improvement of the classical Bonferroni method, it is possible to propose

a multiple test procedure that combines the previous MVN tests in a single test procedure

that inherits the good properties of each test included in the combination. Given a finite

set of affine invariant statistics, Tn,h, h ∈ H , the multiple test procedure rejects the null

hypothesis of MVN if one of the statistics is larger than its (1 − un,α) quantile under the

null hypothesis, un,α being calibrated so that the final test has a α-level of significance.

This paper is organized as follows. Sufficient conditions for the exact α-level property

and the consistency of the multiple test procedure are given in Section 2. In Section 3 the

previous approach is used to propose a MVN test that combines both Mardia’s tests and

the BHEP tests based on B(hS) and B(hL). A simulation study is carried out in Section 4

to analyze its finite sample power performance in comparison to other highly recommended

MVN tests. The proposed multiple test procedure reveals a good performance for a wide

range of alternative distributions showing that it may be considered a benchmark MVN

test. Finally, in Section 5 we provide some overall conclusions. All the proofs are deferred

to Section 6. The simulations and plots in this paper were carried out using the R software

(R Development Core Team, 2009).

2 A multiple test procedure for MVN

Given a finite family of statistics Tn,h = Tn,h(X1, . . . , Xn), h ∈ H , to test the MVN hypoth-

esis H0 : f ∈ Nd, and a preassigned level of significance α ∈ ]0, 1[, the standard Bonferroni

method enables us to define a multiple test procedure which leads to the rejection of H0 if

at least one of the test statistics Tn,h is larger than its quantile of order 1 − α/|H|, where
|H| denotes the cardinality of H and the large values of the different test statistics are
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considered significant. However, this is in general too conservative a procedure that lacks

power especially when several highly correlated test statistics under H0 are considered.

Assuming that Tn,h, h ∈ H , are affine invariant statistics, that is,

Tn,h(AX1 + b, . . . , AXn + b) = Tn,h(X1, . . . , Xn),

for all b ∈ R
d and nonsingular matrix A, we consider in this section an alternative method

proposed by Fromont and Laurent (2006) to define an affine invariant multiple test for

assessing MVN with an exact α-level of significance. Note that the results presented in this

section do not depend on the considered null hypothesis of normality. They are also valid

if other affine invariant null family of probability density functions is considered.

2.1 Description of the multiple test procedure

For u ∈ ]0, 1[ and h ∈ H , denote by cn,h(u) the quantile of order 1 − u of the test statistic

Tn,h under the hypothesis H0 and take the corrected statistic

Tn(u) = max
h∈H

(Tn,h − cn,h(u)) . (6)

Since fX ∈ Nd if and only if fAX+b ∈ Nd, the quantile cn,h(u) does not depend on the

distribution considered under the null hypothesis. Moreover, the affine invariance of each

one of the statistics Tn,h, h ∈ H , implies the affine invariance of Tn(u), for every u ∈ ]0, 1[.

The idea is now to consider the test procedure that rejects the null hypothesis whenever

Tn(un,α) > 0

where

un,α = sup In,α (7)

with

In,α = {u ∈ ]0, 1[: Pφ(Tn(u) > 0) ≤ α} ,

and φ the d-dimensional standard Gaussian density. In practice, the value un,α, the level

at which each one of the tests Tn,h, h ∈ H , is performed, is estimated by Monte Carlo

experiments under the null hypothesis as described in Fromont and Laurent (2006) and

explained later.

Denoting by FTn,h
the probability distribution function and by F−1

Tn,h
the quantile func-

tion of Tn,h under H0, we have

Pφ(Tn(α/|H|) > 0) ≤
∑

h∈H

Pφ(Tn,h > cn,h(α/|H|)) =
∑

h∈H

(

1− FTn,h
(F−1

Tn,h
(1− α/|H|))

)

≤ α.



7

Therefore α/|H| ∈ In,α and α/|H| ≤ un,α, which shows that the test I(Tn(un,α) > 0) is

at least as powerful as the Bonferroni procedure I(Tn(α/|H|) > 0) whenever its level of

significance is at most α, as established in the following paragraph.

2.2 Finite sample behavior under H0

Under some conditions on the null distribution of the statistics Tn,h, h ∈ H , the next non-

asymptotic result states that the level of significance of the test procedure I(Tn(un,α) >

0), with un,α given by (7), is at most α. As we can conclude from the proof given in

Section 6, this result essentially depends on the continuity properties of the function ψ(u) =

Pφ(Tn(u) > 0) defined on the interval ]0, 1[.

Theorem 1. If for all h ∈ H the distribution function of Tn,h under H0 is strictly increasing

(on the set {t : 0 < FTn,h
(t) < 1}), then for all f ∈ Nd we have

Pf (Tn(un,α) > 0) ≤ α,

for 0 < α < 1. Moreover, if the distribution function of Tn,h under H0 is continuous for all

h ∈ H, then un,α ≤ α and for all f ∈ Nd we have

Pf(Tn(un,α) > 0) = α.

2.3 Consistency against fixed alternatives

Under the previous conditions, for a fixed alternative f the power Pf (Tn(un,α) > 0) of the

multiple test satisfies the following double inequality that emphasizes its main features

max
h∈H

Pf(Tn,h > cn,h(un,α)) ≤ Pf (Tn(un,α) > 0) ≤
∑

h∈H

Pf (Tn,h > cn,h(α)).

The multiple test presents a low power for alternatives that show a low power for each one

of the tests based on Tn,h, h ∈ H . However, its power is always superior to the power of

the best of the involved tests performed at level un,α. Whenever the level un,α is bigger

than α/|H| we expect that the test I(Tn(un,α) > 0) may show a better power performance

than the standard Bonferroni test procedure. Under the conditions of Theorem 1, note

that if the test statistics Tn,h, h ∈ H , are independent under H0 then un,α = 1− (1−α)1/|H|

which is close to α/|H| for small α. Therefore, if the test statistics Tn,h, h ∈ H , are highly

uncorrelated the test I(Tn(un,α) > 0) may be close to a Bonferroni multiple test procedure.

Under some weak conditions the proposed multiple test procedure is consistent, as

stated in the next result. In particular, it is consistent for each alternative distribution if

at least one of the involved tests is consistent against each alternative distribution.
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Theorem 2. Let f be a non-normal probability density function, and assume there exists

h ∈ H such that Tn,h
p−→ +∞, under f . If Tn,h

d−→ T∞,h under H0, where the distribution

function of T∞,h is strictly increasing, then Pf (Tn(un,α) > 0) → 1, as n→ +∞.

3 Combining Mardia’s and BHEP tests

From several simulation studies it is well-known that Mardia’s skewness test performs well

for skewed or long tailed alternatives and Mardia’s kurtosis test is especially good for short

tailed alternatives, being among the most recommended tests for MVN (cf. Henze and

Zirkler, 1990; Romeu and Ozturk, 1993). However, the Mardia’s tests do not reveal any

power if the alternative distribution has MVN values of skewness and kurtosis. In order to

overcome this negative feature, the approach introduced in the previous section is used here

to propose a MVN test that can perform well for a wide range of alternative distributions.

The multiple test we consider, labeled MB henceforth, involves both Mardia’s test

statistics MS and MK given by (1) and (2), and the BHEP tests with h = hS and h = hL

given by (3) and (4). From Tenreiro (2009), we know that B(hS) is suitable for short tailed

or high moment alternatives and B(hL) presents a relevant performance for long tailed or

moderately skewed alternative distributions. Moreover, these two last tests are consistent

against each alternative distribution. Therefore, for Tn,1 = MS, Tn,2 = MK, Tn,3 = B(hS)

and Tn,4 = B(hL), the MB multiple test is based on

Tn(u) = max
h∈H

(Tn,h − cn,h(u)) , (8)

where H = {1, 2, 3, 4} and cn,h(u) is the quantile of order 1 − u of the test statistic Tn,h

under the null hypothesis of MVN. The next result, which is a consequence of Theorems

1 and 2, establish that the test I(Tn(un,α) > 0) based on (8) with un,α given by (7) is

consistent against each fixed alternative and has a level of significance that is at most equal

to α.

Theorem 3. For n > d and 0 < α < 1 we have Pf (Tn(un,α) > 0) ≤ α, for all f ∈ Nd.

Moreover, Pf (Tn(un,α) > 0) → 1, as n→ +∞, for all f /∈ Nd.

In order to implement the MB test, 20,000 simulations under the null hypothesis of the

involved test statistics and the R function quantile(·,type=7) were used for estimating the

1 − u quantiles cn,h(u) for u varying on a regular grid, ui+1 = ui + p with u1 = p, on the

interval ]0, 1[, and further 20,000 simulations were used for estimating the probabilities

Pφ(Tn(u) > 0 ). Finally, we have taken the largest value of u that satisfies Pφ(Tn(u) > 0)
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data dimension
sample
size 2 3 4 5 7 10

α = 0.01

20 3.8e-03 4.1e-03 2.7e-03 2.9e-03 2.5e-03 2.5e-03

60 3.4e-03 3.2e-03 3.1e-03 2.6e-03 3.0e-03 2.8e-03

100 4.0e-03 2.9e-03 3.3e-03 3.0e-03 3.2e-03 3.0e-03

200 3.6e-03 3.1e-03 2.6e-03 2.6e-03 2.6e-03 2.8e-03

400 3.3e-03 3.2e-03 2.7e-03 3.0e-03 3.2e-03 3.0e-03

α = 0.05

20 1.8e-02 1.7e-02 1.6e-02 1.6e-02 1.5e-02 1.5e-02

60 1.9e-02 1.9e-02 1.6e-02 1.5e-02 1.4e-02 1.5e-02

100 2.1e-02 1.7e-02 1.7e-02 1.7e-02 1.5e-02 1.5e-02

200 1.8e-02 1.7e-02 1.6e-02 1.6e-02 1.5e-02 1.4e-02

400 1.8e-02 1.7e-02 1.8e-02 1.7e-02 1.6e-02 1.6e-02

Table 1: Estimates of un,α for α = 0.01, 0.05 based on a regular grid of size 0.0001 on

the interval ]0, α]. The number of replications for each stage of the estimation process is

20,000.

data dimension
sample
size 2 3 4 5 7 10

α = 0.01

20 1.04e-02 9.91e-03 9.61e-03 9.98e-03 9.03e-03 1.05e-02

60 9.84e-03 9.26e-03 9.48e-03 9.16e-03 9.10e-03 9.77e-03

100 1.06e-02 9.37e-03 1.05e-02 1.04e-02 1.02e-02 1.03e-02

200 9.72e-03 9.71e-03 9.34e-03 8.92e-03 9.17e-03 9.62e-03

400 1.01e-02 9.65e-03 9.26e-03 1.07e-02 1.08e-02 9.22e-03

α = 0.05

20 5.01e-02 4.99e-02 5.13e-02 5.25e-02 5.06e-02 5.17e-02

60 4.94e-02 4.87e-02 4.78e-02 4.85e-02 4.58e-02 5.10e-02

100 5.19e-02 4.88e-02 5.02e-02 5.17e-02 5.09e-02 5.26e-02

200 4.90e-02 5.03e-02 4.88e-02 4.92e-02 4.94e-02 4.74e-02

400 5.02e-02 5.06e-02 5.02e-02 4.99e-02 5.04e-02 5.03e-02

Table 2: Estimates of the nominal level of significance of the multiple test MB for a preas-

signed level α. The number of replications for each case is 100,000.
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Figure 1: Empirical power at level α = 0.05 based on 104 replications for each distribution

and data dimension d. Alternative A is a Pearson Type II distribution with m = 0.5 and

alternative B is a high moment Khintchine distribution with GEP marginals. Alternatives

C and D are mixtures of MVN distributions. Alternative C is symmetric with light tails

and alternative D is skewed with heavy tails.
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≤ α as an approximation for un,α defined by (7). For α = 0.01 and α = 0.05, and several

sample sizes n and data dimensions d, we present in Table 1 the estimated levels un,α based

on a regular grid of size p = 0.0001. Note that for moderate and large data dimensions

and especially for α = 0.01, the considered combination is close to the Bonferroni test

procedure.

Table 2 shows estimates for the nominal levels of significance of the MB test based on

100,000 simulations under the null hypothesis. With some few exceptions the estimated

levels are inside the approximate 95% confidence interval for the preassigned level α. Al-

though we were not able to prove that the test I(Tn(un,α) > 0) has an exact α-level of

significance, the previous implementation enables us to obtain a multiple test procedure

with an attained level of significance close to α.

With the goal of gaining some insight into the finite sample behavior of the multiple

test procedure in relation to each of the tests included in the combination, we present in

Figure 1 their empirical power for four alternative distributions labeled A, B, C and D. A

more detailed description of these alternatives will be given in the next section. Alternative

A is a Pearson Type II distribution with m = 0.5 (see Johnson, 1987; p. 110–117). It is

symmetric with light tails and MK is the best of the considered tests for this distribution.

Alternative B is a high moment Khintchine alternative with generalized exponential power

marginals (see Johnson, 1987; chapter 8 and paragraph 2.4). Both Mardia’s tests have no

power and B(hS) is the best choice for this alternative. Alternatives C and D are mixtures

of multivariate normal distributions. Alternative C is symmetric with light tails, whereas

alternative D is skewed with heavy tails. The BHEP tests B(hS) and B(hL) are, respectively,

the best of the considered tests for these alternatives.

From Figure 1 we see that the MB test is never the best of the considered tests. However,

it inherits the good properties of each of the tests involved in the multiple test procedure

revealing a good performance for all the referred alternatives. Bearing in mind that the for-

mulation of a specific alternative hypothesis is in general impossible in a real situation, this

is an important property that is not shared by any of the tests included in the combination.

4 Finite sample power analysis

In order to assess the performance of the proposed multiple test, a simulation study is

conducted to compare its empirical power with other highly recommended MVN tests. In

this section we describe the MVN tests and the alternative distributions included in the

study and we summarize the observed empirical power results.
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4.1 Tests under study

Besides the MB multiple test, five other MVN tests have been included in the study. We

have chosen three affine invariant tests that are consistent against all fixed alternatives: the

Henze and Zirkler’s (1990) test (labeled HZ) which is based on B(hHZ) with hHZ = 1.41, the

BHEP test based on B(h̄) with h̄ given by (5) and the test proposed by Székely and Rizzo

(2005) (labeled SR). The HZ test was considered in the comparative studies by Henze and

Zirkler (1990), Mecklin and Mundfrom (2005) and Farrel et al. (2007) which recommend

HZ as a formal test of MVN. The BHEP test based on B(h̄) was recommended by Tenreiro

(2009) as a good alternative to the HZ test which usually reveals a poor performance

against short tailed alternatives. The results of a Monte Carlo power study, undertaken

by Székely and Rizzo (2005), suggest that the SR test is a powerful competitor to existing

affine invariant tests, being very sensitive against heavy tailed alternatives.

Two other MVN tests that have revealed promising behavior in some recent studies

have been included in our study. The first one, labeled RW, has been considered in Farrel

et al. (2007). It is a revision given by Royston (1992) of the Royston’s (1983) multivariate

extension of the Shapiro and Wilks’s (1965) goodness of fit test. The second one, labeled

SU, is the test proposed by Sürücü (2006). This test is based on a d-variate version of a

test statistic defined as a weighted sum of the Shapiro and Wilks’s (1965) statistic and a

correlation statistic due to Filliben (1975), the weights being determined by the sample

skewness and kurtosis.

4.2 The alternative distributions

The considered set of alternative distributions includes a wide set of distributions previously

considered in other simulations studies such as those of Henze and Zirkler (1990), Romeu

and Ozturk (1993), Mecklin and Mundfrom (2005) and Székely and Rizzo (2005).

We investigate some symmetric distributions from Pearson’s Types II and VII families,

including the multivariate uniform and the multivariate Cauchy distributions, and the

quasi normal distributions with parameter m = 10 from both families. The Pearson Type

II distributions have tails lighter than normal whereas the Pearson Type VII distributions

have tails heavier than normal. For a detailed discussion about these two types of elliptically

contoured distributions see Johnson (1987; p. 110–121).

We also considered some heavily skewed distributions such as the multivariate χ2
1 and

the multivariate lognormal with independent marginals. Some members of the multivariate

asymmetric Laplace family described in Kotz et al. (2001; chapter 6) were also studied. All

these distributions have tails heavier than normal and express strong departures from the
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MVN hypothesis.

Distributions with some characteristics identical to MVN were also included in the

study. These distributions include (meta-)Burr-Pareto-Logistic distributions with normal

marginals (see Johnson, 1987; chapter 9), and two Khintchine distributions with generalized

exponential power, GEP, marginal distributions (see Johnson, 1987; chapter 8 and para-

graph 2.4). A Khintchine distribution with GEP marginals with shape parameters α, τ > 0

is defined by X = Z(2U − 1) = Z(2U1 − 1, . . . , 2Ud − 1)′, where the Ui’s are independent

having a uniform distribution over the interval [0, 1] and Z = (3Γ(α)/Γ(α + 2τ))1/2W τ ,

where W is a gamma variable independent of U with shape parameter α and scale pa-

rameter 1. Note that X has a centrally symmetric distribution about the origin. For the

first alternative from this family we took α = 1.5 and τ = 0.5, which leads to a Khint-

chine distribution with normal marginals and Mardia’s kurtosis coefficient larger than the

MVN one. For the second alternative, we took α = 1.5 and τ > 0 is determined by

Γ(α+4τ)Γ(α)/Γ(α+2τ)2 = 5(d+2)/(5d+4). In this way we obtain an interesting departure

from multivariate normality since the values of Mardia’s skewness and kurtosis are equal

to the MVN ones. Moreover, the marginal distributions of this high moment alternative

are symmetric with mean 0, variance 1 and kurtosis coefficient given by 9(d+ 2)/(5d+ 4).

Finally, to assess the effect of data contamination, we took five mixtures of two multi-

variate normals from Székely and Rizzo’s (2005) study. Three of them are location mixtures

of the form pNd(0, I) + (1 − p)Nd(µ, I), where µ = (3, . . . , 3)′ and p = 0.5, 0.79, 0.9, and

the other two are scale mixtures of the form pNd(0, B) + (1− p)Nd(0, I), where B denotes

a correlation matrix with all off-diagonal elements equal to 0.9 and p = 0.5, 0.9. The scale

mixtures are symmetric with tails heavier than normal whereas the location mixture with

p = 0.5 is symmetric with tails lighter than normal. The remaining location mixtures with

p = 0.79 and p = 0.9 are skewed with normal kurtosis and tails heavier than normal, re-

spectively. Similar normal mixtures have also been considered in Henze and Zirkler (1990),

Romeu and Ozturk (1993) and Mecklin and Mundfrom (2005).

We used the algorithms described in Johnson (1987) and Kotz et al. (2001) to generate

all the previous distributions.

4.3 Empirical power results

The empirical power results presented in this paragraph for the MVN tests under consid-

eration are based on 10,000 samples of different sizes (n = 20, 40, 60, 80, 100, 200, 400) and

data dimensions (d = 2, 3, 4, 5, 7, 10) from the considered set of alternative distributions.

The standard level of significance α = 0.05 was used. With 10,000 repetitions the margin

of error for approximate 95% confidence intervals for the proportion of rejections does not
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exceed 0.01. For the affine invariant tests, the evaluation of the critical values was based

on 20,000 repetitions under the null hypothesis of MVN. The same number of repetitions

under H0 was used to estimate the first three moments of the SU test statistic, in order to

obtain an approximation of its null distribution as described in Sürücü (2006; p. 1322).

Figures 2–13 show the empirical power results for 12 typical alternatives that give us

a reasonably complete overview of the finite sample performance of the considered tests.

Some alternatives that show drastic departures from normality, such as the heavily skewed

alternatives or the asymmetric Laplace distributions, are not further considered because the

empirical power of the tests under consideration was very high, close to 1. From the figures

we can clearly identify some alternative distributions where the tests HZ, RW and SU show

a low empirical power. The test HZ is very sensitive against heavy tailed alternatives but

it also reveals an inferior performance for distributions with light tails. The test RW seems

to be especially effective when the marginal alternative distributions are far from normal,

but it shows a very poor behavior otherwise. For some of the alternatives, its power is

even inferior to the significance level of the test. Although these tests can reveal a very

good power for some of the considered alternatives, the fact that they can also present a

very poor performance for other alternatives is an undesirable feature, particularly when

no information about the alternative hypothesis is available. Hence, especially with the

availability of other test procedures with better power properties, the tests HZ, RW and

SU are not recommended.

A better overall performance seems to be attained by the affine invariant test procedures

SR, B(h̄) and MB. The SR test is very sensitive against heavy tailed alternatives, which

corroborate previous research by Székely and Rizzo (2005), but it also reveals an inferior

performance for distributions with light tails in comparison to the MB and B(h̄) tests,

especially for large data dimensions. Taking into account the excellent performance shown

by the MB test for some of the considered alternatives, together with the fact that this test

is among the best tests for all the considered alternative distributions, if one is going to

rely on one and only one of the considered test procedures the MB test is recommended.

4.4 P -value evaluation

The MB multiple test can be viewed as a test procedure based on the increasing family

of critical regions Rα = {Tn(un,α) > 0}, indexed by α ∈ ]0, 1[, where Tn(u) = Tn(u; s)

depends on the observation s = {X1, . . . , Xn}, and Pφ(Rα) ≤ α, for all α ∈ ]0, 1[ (cf.

Theorem 3). For a fixed level α, we reject the null hypothesis of MVN on the basis of the

the observation s0 if and only if s0 ∈ Rα. In practice, it is useful to be able to evaluate the

P -value associated to the observation s0 that represents the degree to which the test pro-
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Figure 2: Pearson Type II distribution with m = 0.
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Figure 3: Pearson Type II distribution with m = 0.5.
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Figure 4: Pearson Type II distribution with m = 10.



16

n = 40 n = 60 n = 80

data dimension

em
pi

ric
al

 p
ow

er

2 3 4 5 7 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

data dimension

em
pi

ric
al

 p
ow

er

2 3 4 5 7 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

data dimension                           

em
pi

ric
al

 p
ow

er

2 3 4 5 7 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MB
B(h)
SR
HZ
RW
SU

Figure 5: Pearson Type VII distribution with m = 10.
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Figure 6: Burr-Pareto-Logistic distribution with normal marginals and α = 1.
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Figure 7: Khintchine distribution with normal marginals.
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Figure 8: High moment Khintchine distribution with GEP marginals.
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Figure 9: Normal location mixture distribution with p = 0.5.
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Figure 10: Normal location mixture distribution with p = 0.79.
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Figure 11: Normal location mixture distribution with p = 0.9.
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Figure 12: Normal scale mixture distribution with p = 0.5.
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Figure 13: Normal scale mixture distribution with p = 0.9.
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cedure rejects H0. It is defined by Ln(s0) = inf{β ∈ ]0, 1[ : s0 ∈ Rβ} and it is easy to see

that s0 ∈ Rα whenever Ln(s0) < α and that Pφ({s : Ln(s) < α}) ≤ α. Thus, if we compare

the P -value with the preassigned level α and reject the null hypothesis if Ln < α, we get

a test procedure that has an error of first kind inferior or equal to α. An approximation

of Ln(s0) can easily be obtained if for each dimension d and sample size n we get Monte

Carlo estimates of the quantiles cn,h(un,α) for each one of the test statistics involved in the

MB multiple test and for α varying on a grid on the interval ]0, 1[. Such estimates and an

R function to evaluate (an approximation of) the P -value associated to an observation s0

may be obtained from the author.

5 Conclusions

In this paper, by using an improved Bonferroni method introduced by Fromont and Laurent

(2006), a multiple test procedure that enables the combination of a finite set of affine

invariant tests for MVN is considered. Its usefulness is illustrated through a multiple test

combining Mardia’s and BHEP tests which are among the most recommended procedures

to test a MVN hypothesis. The proposed multiple test procedure reveals a good empirical

power for a wide range of alternative distributions, showing an overall good performance

against the most recommended MVN tests in the literature.

6 Proofs

In the next lemma we establish some useful properties of the function ψ(u) = Pφ(Tn(u) > 0)

defined on ]0, 1[, where Tn(u) is given by (6) and φ is the d-dimensional standard Gaussian

density.

Lemma 1. For n ∈ N, the function ψ is increasing with limu↓0 ψ(u) = 0 and limu↑1 ψ(u) =

1. Additionally, it satisfies: a) If the distribution function of Tn,h under H0 is strictly

increasing for all h ∈ H, ψ is left continuous; b) If the distribution function of Tn,h under

H0 is continuous for all h ∈ H, ψ is right continuous.

Proof: Let u, v ∈ ]0, 1[ be such that u < v. For all h ∈ H we have cn,h(u) ≥ cn,h(v),

and then Tn(u) ≤ Tn(v) which entails that ψ(u) = Pφ(Tn(u) > 0) ≤ Pφ(Tn(v) >

0) = ψ(v). Moreover, Pφ(Tn,h > cn,h(u)) = 1 − FTn,h
(cn,h(u)) = 1 − FTn,h

(F−1
Tn,h

(1 −
u)) ≤ 1 − (1 − u) = u, (see Shorack and Wellner, 1986; p. 5, Proposition 1) and then

limu↓0 Pφ(Tn,h > cn,h(u)) = 0 and limu↑1 Pφ(Tn,h > cn,h(u)) = 1, for all h ∈ H . There-

fore, limu↓0 ψ(u) ≤
∑

h∈H limu↓0 Pφ(Tn,h > cn,h(u)) = 0 and, for h ∈ H , limu↑1 ψ(u) ≥
limu↑1 Pφ(Tn,h > cn,h(u)) = 1.
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a) For a fixed u ∈ ]0, 1[ let um be a sequence with um ↑ u. Using the right continuity of

F−1
Tn,h

for each h ∈ H , which comes from the fact that the distribution function of Tn,h under

H0 is strictly increasing for all h ∈ H (see Shorack and Wellner, 1986; p. 8, Proposition

5), we get cn,h(um) = F−1
Tn,h

(1 − um) ↓ F−1
Tn,h

(1 − u) = cn,h(u), for all h ∈ H . Therefore,

Tn(um) ↑ Tn(u) and ψ(um) = Pφ(Tn(um) > 0) ↑ Pφ(Tn(u) > 0) = ψ(u).

b) For a fixed u ∈ ]0, 1[ let um be a sequence with um ↓ u. From the left continuity of

F−1
Tn,h

we have cn,h(um) = F−1
Tn,h

(1 − um) ↑ F−1
Tn,h

(1 − u) = cn,h(u), for all h ∈ H . Therefore,

Tn(um) ↓ Tn(u) and {Tn(u) > 0} ⊂
⋂

m{Tn(um) > 0} ⊂ {Tn(u) ≥ 0}. Finally, ψ(u) ≤
limm ψ(um) ≤ ψ(u) + Pφ(Tn(u) = 0), where Pφ(Tn(u) = 0) ≤ ∑

h∈H Pφ(Tn,h = cn,h(u)) =

0, from the continuity of FTn,h
under H0 for all h ∈ H .

✷

Proof of Theorem 1: Using the fact that ψ is an increasing function, we deduce that

In,α is an interval of the type In,α = ]0, β[ or In,α = ]0, β] with β = un,α by definition

of un,α. Taking um ∈ In,α such that um ↑ un,α, from part a) of Lemma 1 we conclude

that ψ(un,α) = limm ψ(um) ≤ α, which proves that the level of significance of the test

I(Tn(un,α) > 0) is at most α, whenever the distribution function of Tn,h under H0 is

strictly increasing for all h ∈ H . Additionally, assuming that the distribution function of

Tn,h under H0 is continuous for all h ∈ H , from part b) of Lemma 1 and for a sequence um

such that um ↓ un,α we have ψ(um) > α, because un,α is the supreme of In,α, and ψ(un,α) =

limm ψ(um) ≥ α. Therefore, ψ(un,α) = α which proves that the test I(Tn(un,α) > 0) has

a level of significance equal to α. Finally, we will prove that un,α ≤ α by using the fact

that there exists h ∈ H such that FTn,h
is continuous under H0. For such an h and for

u ∈ ]0, 1[ we have {Tn,h > cn,h(u)} ⊂ {maxh∈H (Tn,h − cn,h(u)) > 0} = {Tn(u) > 0} and

then {u ∈ ]0, 1[ : Pφ(Tn(u) > 0) ≤ α} ⊂ {u ∈ ]0, 1[ : Pφ(Tn,h > cn,h(u)) ≤ α}. From the

continuity of FTn,h
under H0 we get un,α ≤ sup{u ∈ ]0, 1[ : FTn,h

(F−1
Tn,h

(1−u)) ≥ 1−α} = α.

✷

Proof of Theorem 2: Let f be a non-normal density and take h ∈ H such that Tn,h
p−→

+∞ under f . We have Pf (Tn(un,α) > 0) ≥ Pf (Tn,h > cn,h(un,α)) ≥ Pf (Tn,h > cn,h(α/|H|)) ,
since cn,h(un,α) ≤ cn,h(α/|H|). Moreover, from the continuity of F−1

T
∞,h

and the conver-

gence F−1
Tn,h

(t) → F−1
T
∞,h

(t) for all 0 < t < 1 (see Shorack and Wellner, 1986; p. 10), we

get cn,h(α/|H|) = F−1
Tn,h

(1 − α/|H|) → F−1
T
∞,h

(1 − α/|H|), and then Pf (Tn(un,α) > 0) ≥
Pf (Tn,h > supn∈N cn,h(α/|H|)) → 1.

✷

Proof of Theorem 3: First note that the statistics Tn,h are defined and continuous on the

open subset of (Rd)n given by D = {x = (x1, . . . , xn) ∈ (Rd)n : Sn(x) is positive definite}
for which Pφ(D) = 1, where Sn(x) = n−1

∑n
j=1(xj − x̄n)(xj − x̄n)

′, x̄n = n−1
∑n

j=1 xj and
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n > d (see Dykstra, 1970). Using the continuity of Tn,h, for all s < t with 0 < FTn,h
(s) ≤

FTn,h
(t) < 1, we conclude that T−1

n,h(]s, t[) is a nonempty open subset of (Rd)n. Therefore,

we get Pφ(T
−1
n,h(]s, t[)) > 0 which enables us to conclude that FTn,h

is strictly increasing.

From Theorem 1 we finally get that the MB multiple test has a level of significance inferior

or equal to α. The consistency of MB follows from Theorem 2 since at least one of the test

statistics included in the combination, B(hS) (but the same is true for B(hL)), has a weighted

sum of χ2 independent random variables as limiting null distribution (see Baringhaus and

Henze, 1988) and the associated test procedure is consistent against each fixed alternative

distribution (see Csörgő, 1989).

✷
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Jiménez-Gamero, M.D., Alba-Fernández, V., Muñoz-Garćıa, J., Chalco-Cano, Y., 2009.
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