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1. Introduction

The notion of n-Lie superalgebra was presented by Daletskii and Kushnirevich in
[1] as a natural generalization of a notion of n-Lie algebra introduced by Filippov
in 1985 (cf. [2]). Following [3] and [7], we use the terms Filippov superalgebra and
Filippov algebra instead of n-Lie superalgebra and n-Lie algebra, respectively.
Filippov algebras were also known before under the names of Nambu Lie algebras
and Nambu algebras. We may also remark that Filippov algebras are a particular
case of n-ary Malcev algebras (see, for example, [10]).

This work is one of the first steps on the way of the classification of finite-
dimensional simple Filippov superalgebras over an algebraically closed field of
characteristic 0. In [8], finite-dimensional commutative n-ary Leibniz algebras
over a field of characteristic 0 were studied by the first author. There it was
shown that there exist no simple ones. The finite-dimensional simple Filippov
algebras over an algebraically closed field of characteristic 0 were classified earlier
by Wuxue in [11]. Notice that an n-ary Leibniz algebra is exactly a Filippov
superalgebra with trivial even part, and a Filippov algebra is exactly a Filippov
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superalgebra with trivial odd part. Bearing in mind these facts, in this article
we consider the n-ary Filippov superalgebras with » > 3 and with nonzero even
and odd parts. In [9], it was proved that there are no simple finite-dimensional
Filippov superalgebras with multiplication Lie superalgebra isomorphic to
B(0, n) under the assumption that a generator of a module over B(0,n) is even.
The case of odd generator requires techniques different from the one that was
used in the even case. In the present work we eliminate the assumption for the
generator to be even, and prove a theorem (analogous to the main theorem of
[9]) for the general case.

We start recalling some definitions. An Q-algebra over a field &k is a linear
space over k equipped with a system of multilinear algebraic operations Q =
{o;||w;| = n; € N,i e I}, where |;| denotes the arity of ;.

An n-ary Leibniz algebra over a field k is an Q-algebra L over k with one n-ary
operation (xi,...,x,) satisfying the identity

(2ot covig s )y Yoyioonss ¥u) :Z(xl,...,(,\‘;,yz,...,y”).,...,x”).

If this operation is anticommutative, we obtain a definition of Filippov (n-Lie)
algebra over a field.

An n-ary superalgebra over a field k 1s a Z;-graded n-ary algebra L = Ly @ L
over k, that is, if x; € Ly, o € Z3, then (x1,...,x,) € Ly 4.4y, An n-ary Filippov
superalgebra over k is an n-ary superalgebra .7 = 7; @ #7 over k with one n-ary
operation [xy, ..., x,| satisfying the identities

["\‘]: A A R PR ':"\‘M‘] . _(_]‘)F{-\-f I]ﬁ{‘\-f][‘xli ces XNy Xy :)“M‘]: (]')
"

[ sdils Doy il = Y (—BYPR[Rrgony [y Soywvsy Vulpossgly  1(2)

i=1

where p(x) =! means that x € 5 p= 3", p(¥i), § =2, P(x;), 3,=0.
The identities (1) and (2) are called the anticommutativity and the generalized
Jacobi identity, respectively. By (1), we can rewrite (2) as

n

20 Y 61 s all = S0P 0xty oy gy il oo, (3)

i=1

where ¢; = Z;;,]p(x_;), g1 = 0. (Sometimes instead of using the long term “n-ary
superalgebra” we simply say for short “superalgebra™.) If we denote by L, =
L(x1,...,Xy_1) the operator of left multiplication L,y = [x1,...,Xs_1, ], then,
by (3), we get



On simple Filippov superalgebras of type B(0,n}, 11

n—1

[L}-: L\] == Z(— l)ﬂq"L{)(] s :L__,,JC;: e ;xu—l): (4)

i=1

where L, is an operator of left multiplication and p is its parity. (Here and after-
wards, we denote by [,] the supercommutator.)

Let L = L @ Ly be an n-ary anticommutative superalgebra. A subalgebra
B = B; @ B; of the superalgebra L, B; < L;, is a Z>-graded vector subspace of L
which is a superalgebra. A subalgebra I of L is called an ideal if [I, L, ..., IAR=9 8

H B

The subalgebra (in fact, an ideal) L'V = [L, ..., L] of L is called the derived alge-

braof L. Put LY = [LU-1)  LU=D] je N, i> 1. The superalgebra L is called
solvable if L) = 0 for some k. Denote by R(L) the maximal solvable ideal of L
(if exists). If R(L) =0, then the superalgebra L is called semisimple. The super-
algebra L is called simple if L'V # 0 and L lacks ideals other than 0 or L.

The article is organized as follows. In the second section, we recall how to re-
duce the classification problem of the simple Filippov superalgebras to some ques-
tion about Lie superalgebras, using the same ideas as in [11]. We reduce this
question to an existence problem for some skew-symmetric homomorphisms of
semisimple Lie superalgebras and their faithful irreducible modules.

In the last section, we restrict our attention to the case of the Lie superalgebra
B(0,n) (and an odd generator of a module over B(0,#n)) and solve the existence
problem of these skew-symmetric homomorphisms in this case. It turns out that
the required homomorphisms do not exist. Therefore, there are no simple Filip-
pov superalgebras of type B(0,n) over an algebraically closed field of characteris-
tic 0, as stated in the main result of this article (Theorem 3.1).

In what follows, by @ we denote an algebraically closed field of characteristic
0, by F a field of characteristic 0, by £ a field and by {w,;p € ') a linear space
over a field (the field is clear from the context) generated by the family of vectors
{wy;0 € T},

2. Reduction to Lie superalgebras

Let # be a Filippov superalgebra over k. Denote by .# *(L(#)) the associative
(Lie) superalgebra generated by the operators L(xy,...,x,_1), x; € #. The alge-
bra L(7) is called the algebra of multiplications of .7 .

Lemma 2.1 ([9]). Given ¥ = 75 @ 7 a simple finite-dimensional Filippov super-
algebra over a field of characteristic 0 with F5 # 0, the algebra L = L(F) =
Ly @ Ly has nontrivial even and odd parts.

Theorem 2.1 ([9]). If .7 is a simple finite-dimensional Filippov superalgebra over a
field of characteristic 0, then L = L(.F) is a semisimple Lie superalgebra.
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Given an m-ary superalgebra 4 with a multiplication (-,...,-), we have
End(4) = Endj 4 @ End; A. The element D € End; A4 is called a derivation of de-
gree s of A if, for every ay,...,a, € A, p(a;) = p;, the following equality holds:

3

Digy,.... @)= Z(—l)‘“’”(dh ose s DB cas SERYs

where ¢; = Z;;]' pi- We denote by Der; 4 < End; A the subspace of all derivations
of degree s and set Der(4) = Der; 4 @ Der; 4. The subspace Der(A4) = End(4)
is easily seen to be closed under the bracket

la,b] = ab — (—1)%8@ desb)p,

(known as the supercommutator) and is called the superalgebra of derivations of A.
Fix elements xy,...,x,_1 € A4, ie {l,...,n}, and define a transformation
ad;(x1,...,x,-1) € End(A4) by the rule

adi("\.l §id E :‘xu—])x = (_I)P‘?f (J\.l: AR A P TR v PR :IH—]): (5)

n—1

where p = p(x), pi = p(xi), qi = D25 p)-

If the transformations ad;(xy,...,x, 1) € End(A4) are derivations of A for
alli=1,...,nand xy,...,x,_1 € A, then we call them strictly inner derivations
and A an inner-derivation superalgebra (.¥ Z-superalgebra). Notice that the n-ary
Filippov superalgebras and the n-ary commutative Leibniz algebras are examples
of .7%-superalgebras.

Now let us denote by Inder(A) the linear space spanned by the strictly inner
derivations of A. If A is an n-ary J%-superalgebra, then it is easy to see that
Inder(A) is an ideal of Der(A4).

Lemma 2.2. Given a simple 9%-superalgebra A over k, the Lie superalgebra
Inder(A4) acts faithfully and irreducibly on A.

Let .# be an n-ary Filippov superalgebra over k. We point out that the map
ad :=ad, : ®"_I F + Inder(7) satisfies

n—1
[D;ad(x1,0we5 %1)] = D (1) ad(X1y oy X1, DXty i 1500405 Xnt)
i=1

for all D € Inder(.#), and the associated map

(Higonoydn) Era0(Xy ooy Xn1) %oy
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from ®" F to F is Z,-skew-symmetric. If we consider .# as an Inder(.7 )-
module then ad induces an Inder(.# )-module morphism from the (n — 1)-th exte-
rior power /\"_I Z to Inder(.#) (which we also denote by ad) such that the map
(X1, ey 2) — ad(x1, .. ., X4 1) X, is Z2-skew-symmetric. (Note that in /\”_] F we
have: Xy A AX;AX A AX = —(=1D)PP o A AN AN A AR .)
Conversely, if L is a Lie superalgebra, V' is an L-module, and ad is an L-module
morphism from /\”_] V' +— L such that the map (v1,...,v,) — ad(vy A+ - AU )0y

from ®” V to V is Z,-skew-symmetric (we call the homomorphisms of this type
skew-symmetric), then V' becomes an n-ary Filippov superalgebra by putting

[B1,...,00] = ad(vi A - ADy_1)0n

Therefore, we have a correspondence between the set of n-ary Filippov superalge-
bras and the set of the triples (L, V', ad), satisfying the conditions above.

We shall assume that all vector spaces appearing in the following section are
finite-dimensional over F.

It .# is a simple n-ary Filippov superalgebra, then Theorem 2.1 establishes that
the Lie superalgebra Inder(#) is semisimple, and .# is a faithful and irreducible
Inder(.# )-module. Moreover, the Inder(# )-module morphism ad : /\”_] F —
Inder(.#) is surjective.

Conversely, if (L, V', ad) is a triple such that L is a semisimple Lie superalgebra
over F, V' is a faithful irreducible L-module, ad is a surjective L-module mor-
phism from /\”_] V' onto the adjoint module L and the map (vy,...,v,) —
ad(vy A+ Avp_1)v, from ®” V to V' is Zy-skew-symmetric, then the correspond-
ing n-ary Filippov superalgebra is simple. A triple with these conditions will be
called a good triple. Thus, the problem of determining the simple n-ary Filippov
superalgebras over F can be translated to that of finding the good triples.

3. Lie superalgebra B(0, n)

In this section, we recall some notations and results from [5], [6] on the Lie super-
algebra B(0,n) (and its irreducible faithful finite-dimensional representations) and
give some explicit constructions which shall be used later on. Then we apply these
results to the study of the simple n-ary Filippov superalgebras of type B(0,n). Let
us start recalling the definition of an induced module.

Let % be a Lie superalgebra, U(.%) its universal enveloping superalgebra
[5], H a subalgebra of %, and ' an H-module. The module ¥ can be ex-
tended to U(H)-module. We consider the Z>-graded space U(¥) @) V, the
quotient space of U(¥) ® V by the linear span of the elements of the form
gh@v—g® h(v),ge U(¥), h e U(H). This space can be endowed with a struc-
ture of a .#-module as follows: g(u®v) =gu v, ge L, ue U(¥L),ve V. The
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so constructed .¥-module is said to be induced from the H-module V and is de-
noted be Ind‘,;“’y F.

From now on we denote by G a contragredient Lie superalgebra over @ and
consider it with the “standard™ Z-grading (cf. [5], Sections 5.2.3 and 2.5.7).

Let G= @!.z_d G;. Set H=(Go)g= <hy, .. k), NY = @:w G; and B =
H@®N". Let Ae H*, A(h;)=a; e @, and let {vao)> be an one-dimensional
B-module such that N*(va) =0, hi(va) = aiva. Let Vi = Indg"(v/\)/fi\, where
I, is the (unique) maximal submodule of the G-module Indg<EA>. Then A is
called the highest weight of the G-module V5. The numbers a; are called the nu-
merical marks of A. By [5], every faithful irreducible finite-dimensional G-module
may be obtained this way. Note that now we suppose that | ® v € V5, which pro-
vides a Z»-graded structure of V.

Lemma 3.1. Let V be a module over a Lie superalgebra G, let V =@V, be its
weight decomposition, and let ¢ be a homomorphism from /\m V into G. Then, for
every v; € V, ,

Choose the classical basis of Gj: {h =exn —e33,9 25 = es2,925 = €23}, and of
G7:{9-s =en2—e31,95 =e13 +en}. Here H=<{h) is a Cartan subalgebra of
G, and 6 € H* is such that d(h) = 1. We have

G = (425> D 42> ®<hY ® (> D> = Y . G

=2
This gives the canonical Z-grading of . Therefore,
B = <h, g5, 9257,
U(B) = (h* g53gi; ki € No,e € {0,1}),
U(G) = <h* g539"5505'9%: ki € No, ei € {0, 1},
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Note some relations in the universal enveloping algebra U(G):

G269-25 = g-28925 + h, gsd—256 = g-2545 + g5, g-6d-25 = g-254-6,
9260- = G-5026 — 95, Gs9-s +9-s095=h, 9595 =—0g_2.
Let A(h) =a e ®and Uy = Indﬁ(m). Set v = va. Itis clear that Uy has the

following basis: {vx = g‘e_rz(s R v, W = 9”595 @uik,m € Ng}. Using the rela-
tions in U(G), we obtain the following action of the basis elements of G on Ua:

hvy = (a — 2k)uy, hwy = (a — 2k — 1)wy,
gasvk = k(a — k + D)o, gaswk = k(a — k)wg_1,
g-25Uk = Ukt 1, g-26Wk = Wit 1,
gsvx = kwg_1, gswi = (@ — k)vg,
g-oVk = Wi, g-—oWk = — Uiyl

One can see that Ux has a finite-dimensional quotient module if and only
if a=k—1 for some ke N. In this case, Jo = {vj,w; j=k,i =k —1} and
dim Vo = Up/IA =2k — 1.

Definition 3.1. Given a Lie superalgebra G, we say that a Filippov superalgebra
7 has type G if Inder(#) = G.

Lemma 3.2. There are no simple finite-dimensional Filippov superalgebras of type
B(0,1) over @.

Proof. Assume the contrary. Let % be a simple (n+ 1)-ary finite-dimensional
Filippov superalgebra of type B(0,1) over ®. Let G = B(0,1) and V = V) =
V (k) be a faithful irreducible G-module with the highest weight A, A(h) = a,
a=k—1eNgy Thenk # 1 (i.e., a # 0), since otherwise dim V' = | and # is ei-
ther a Filippov algebra or an n-ary Leibniz algebra. Since ¢ is surjective, there are
u; € V, such that ¢(u; A+ Auy,) = h (in what follows, we denote @(uy A+ Auy)

by ¢(u1,...,u,)). Then

d(ur,. .., un)vo = hvg = avo.

Since ¢ is skew-symmetric, we have |—y; +a| < 2 for every i, ie., |-y, + k— 1|
< 2. Therefore, we have either k =2 or k = 3.

fFhk=2thena=1and V={op )@ <wi> P 1>=N@&Ve@® V_,. Then
there are u; € V,, such that ¢(u1,...,u,) = gs. By [9], we may assume that 1 @ v
is odd. Since the action of g; on g_5 ® v provides a nonzero element and g s @ v
is even, it follows that v; #¢g s @ vfor i=1,...,n. Thus we have n =2k + 1,

k=1, and
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A=¢1@0,1®0,9 2@v,)=0g

for some 0 # « € ® (where u, v, means that the elements u# and v are k-times
repeating: u, v, ...,u,v, and we omit the index & when its value is clear from the
context). by

Multiplying the latter equality by g_s, we have

(k+1D)plg-s@v,1®v,9 26 v, ) = ah.

Repeating this procedure with g5, we come to (k + 1)4 = —ags and 4 = 0, which
is a contradiction.
Ifk=3thena=2,y, =0foralli and

V=Cv);@<wpy @<v1y@<wip @<y =1enelrelV eV,

this equality twice by g5 we obtain that ng(wg,vr,...,01) = —ags and
ng(ve, vy,...,01) = —agss. Acting with both sides of ¢(vy,...,v1) = ah on vy and
of ng(vo, v1,...,01) = —og2s on vy, we come to

[1,...,01, 0] = 2009 and  nlvy,vy,...,01] = —2an
Therefore, n = —1, which gives again a contradiction. ]

Let G be a contragredient Lie superalgebra of rank n, U = Ind§{va), and
V = VA =U/N be a finite-dimensional representation of G, where N = I is a
maximal proper submodule of the G-module U. Let G = ), G, be a root decom-
position of G relative to a Cartan subalgebra H. Denote by .o/ the following set of
roots: o/ = {a;g, ¢ B}.

Lemma 3.3. Let g, € Gy and g, @ v # 0 (v = va). Then

"r 2] n i Nk
I Xve UL k) A ) )0:

Jforall j € N, and there exists a minimal positive integer k € N such that qf ®veN
and the set &, ={1®v,9,Rv,... ,gf" ® v} is linearly independent in V.

Moreover, setting h = [g_,, g,|, we have:

1) A(h) = —W if either g, € Gy or k odd;
2) a(h) =0ifg, € Gy and k even.
Proof. Using induction, the first inclusion is clear. Suppose that thereis no k € N

with these properties. Construct a basis of V7 starting with the elements | ® v,
g, X v, g_g @ uv,.... Since dim I < oo, there is a minimal number k& such that
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= Zf:ﬂﬁ(-gi ®v e N and f; #0. Choose h € H such that (k) # 0. We have
hu = Ef:u Byigl ®ve N, where y; = ia(h) + A(h). If y, =0 then y, =0 for
some i < k, which is impossible. Therefore, u —ihu e N and y; =y, which is
again impossible. Thus, there exists k € N such that &, ; is linearly independent
in VV and g¥' ® v € N for every i € N U {0}. Moreover, since g¥ ® v € N, in the

case g, € Gz we have
9_ag ® v = k(a(h)(k—1)/2+ A(h))gf" ®v e N,

where & = [g_,,g,]. Therefore, A(h) = —w. The remaining cases may be
considered analogously. Namely, if k=25 and g, € G5, then g_ ,(gf ®v=
soc(h)gf" ®uv and a(h) =0. If k=25+1 and g, € Gy, then g_ng"” Rv=
(A(h) + sa(h))g® ® and A(h) = —w. ]

Remark 3.1. Note that if we start with a root f§, then there exists s € N such that
&p,s 1s linearly independent, but &, ;. U &5 ¢ may not be linearly independent.

Recall that a set & is called a pre-basis of a vector space W if (&> = W.

Let {gfl‘ - .gri-_"; ki € Ny, o; € o/} be a basis of V. As we have seen above, for
every i = 1...,s, there exists a minimal number p; € N such that gl € N. Using
the induction on the word length, it is easy to show that {gfl' ...gf\-_";k; e Ny,
ki < pi,o; € o} is a pre-basis of V/N. '

Consider the algebra B(0,7). It consists of the matrices of type

0 x ¥
y' 4 B
—xT C -AT

where A4 is a (r x n)-matrix, B and C are some symmetric (r x #n)-matrices, and x,
y are some (n x 1)-matrices.
Choose the following generators of G = B(0, n) [4]:

Ry = €1 i1 — el
ku = €pil,n+1 — E2n41. 2041
€ B(0,n);

G5 1 —6; = Cit2 i+l — Cikntl,i+n+2;

48,6, = €i+-1,i42 — Cipnt2,i4ntl

-4, = €l,n4+1 — €2n41,1;

} € B(0,n);.

g5, = €n+1,1 T €1, 2n+1,
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We write out also some elements and multiplications that will be needed in the
following:

gs = €i+1,1 + €1 n+i+1, G-6 = €1,i+1 — €nti+1,1,

925, = €i4l ntitl, G-28, = €ntitl, i+,

(926 9-25] = [95,9-0) =i, [95,9-25] = 95,

[926,, 9-3) = — g5

G5 —8; = Ci+1,j+1 — €jbntl,nti+l G-8—8; = €ntitl,j+1 T €npjtl it

95:+8 = €j+1,n+i+1 T Cigl ntj+l [Q’é-n—cSJ g5 §] =h 4k

(95,05 955 = By — b (9265 9—6,-5,] = 5,5,
[9-5,9-5] = —09-5-5, (96, 95,] = 9149,
[9-6,48,9-20] = —9-5,5 96, 9-5-6) = 95,
[95,—3» 9-6,-5] = —9-5,—5, (9516, 9-26] = 95,45,

The space H = <{h;i=1,...,n) is a Cartan subalgebra of B(0,n), and d;,
i=1,...,n, ate the linear functions on H such that 0i(h;) = 0y, where 0y is
the Kronecker delta. Then A= AguUA; is a root system for B(0,n), where
Ay ={0,+d; +6;} and Ay ={+4}, i.j=1,...,n. The roots {d; —di,
i=1...,n—1,0,} are simple. The condltlom Gs, € G, 1, HE Gy and
G 5, = G_y1 k1 provide the standard grading of B(0,n) [5], Section 5.2.3. The
negative part of this grading is G_s,_; for every i, j; Gj,_5 for i > j, and G_ for
every i. Henceforth, the set

kn l ku k.\' k\ l 552
{q(sn_(sn L g(sn_(jlgr.sn [—(5,.; 270 g(sz_(sl g_zdfg_fsu_éu l
A £y £ o g
--9—2519_5"---9—'51®‘~':ka N, & e Z3} (6)

is a basis of the induced module M = Ind?(tﬁg\) (v =vA).

For x € A and w € &, we denote by 6(x, w) the degree of the element g, in w.
For example, #(—2d;,w) = k,, where w from (6). By Lemmas 3.1 and 3.3, it is
casy to obtain the following

Lemma 3.4. Given w € &, y(w) = Y"1, 7,(w)d; is a weight of M, where

ZH Zﬁo — o W) ZB =iy W)

j<i J=i J#i
—O(—5i, W) — 20(—25;, w) + A(hy). (7)
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Let V' be an irreducible module over G = B(0.n) with the highest weight A,
A(H;) =b;. (Here H; are the elements of the standard basis of H, cf. [5],
H;=h; — hy, Hy=2h,.) By |[5], b;e N, b, € 2N. It is possible to check that
ai=Alh) = (T by) +0a/220, i=1,...,0—2, an1:=Alh1)=bp1+
b,/2 =0, a,:=Ah,)=5,/2=0 and g = - > a, = 0. We see that the weight
A can be defined by means of the n-tuple (a,..., a,), with a; e Ny, i=1,...,n,

¥ ¥ ?

such thata; >+ > a, > 0 and A(h;) = a;. Denote A = (ay,...,a,).

Before proving the main theorem, we present some technical lemmas on irre-
ducible modules of a special type (a1 = 1) over B(0,n).

Lemma 3.5. Let V = VA be an irreducible module over B(0,n) with A=

(L,az,...,ay). Then we have the following:

l) 93251 ®@v=0; 9) 13’3.5l ®v=—g 2 v,

2) 2595 ®v=0; 10} gs,5.9-5-8 ®v

3) g%, ®@v="0(g% ®v#0); = 92505, @01 J;

4) g_25,95-5 ® v="0; 11) g5, 6,968 @v=—(1+ai)g 25 @,
5) g-259 56 @v=0 12) 95895 ®@v#0(far=1)

6) 95,955 ®v=0; 13) 95,-6.9-5 @0 #0 (if az = 1);

7) do,-5.05, 5, @ = 0; 14) 95,596, ®v#0 (if a2 = 1, 4; = 0),
8) 9-6-86.9-6-6, @V

=—0259-5-5,QV

Proof 1) By Lemma 3.3, if a=—2d;, then h = [g2s,9 25] =M, | = A(h) =
k—1land k= 2.
2) By 1), g,slgfzél ®v=0. Since [g5,,9-25,] = g—s,, we have

(926,95 + 9-6.)9-26, @V = 9725 95, ® v+ g_25,9-5 @ v+ 95925
=29 259-5, ®v=0.

3) It is easy to see that g 5, @ v # 0, h = [g5,, g_5,] = M, —01(l1) # 0. There-
fore, by Lemma 3.3, k is odd and 1 = A(h;) = —“(—E”(—l), =

4) We have [g5,15,,9-26,] = g5,—s, and g5,459%,5 ®v. Hence, (925,515 +
J-5.45,)9-20, ® V=0 250-5+5 @ v+ 9545925, ®v=0.

5) Since [gs, 5, 9-25] = —g-9,-5, and gs, 5,975 ® v =0, we have (925,95, 5 —
g-5-5)9-25 ®v=—29 259 55 Qv=0.

6) 9o, +6:9-20.9-5 ®v=0 = g 545,96 ®v=0.

7) 95.9-595,-5, @ v = G5,-5,95,-5, ® v = 0.
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8) By 5)* gs —fjj'g—zrj|g—rsj—fj| = 0. Since [g(}]—(}',--.g—Z()‘l] = —0-8-d, (g—2fjlg(51 —d; —
9-5,-5,)9-5, —5, ®v=0. Since

g5 ssda-sl=—033: (~O025ds-5—0-5-50-5-5)B0v=0

9) Since [g5,,9-25,] = 95, and [g5,,9_5]| = i, we have 0 = g59 59 25 ® v =
(—g-5.95 +11)g-25, ®v=—g%; ®v—g 25 Ov.

10) We have to apply ¢s4s to 5) and use [gs+0,9-20,] = g-s, 40
(95,46, 9-5,-5,] = G55

11) In 10) we have to use [gs,+4,,g-s,—s.] = M + h; instead of the last equality.

12) If i # 2 and we suppose that g_5,_59-5, ® v = 0, then the action with g;,
gives g ;5 5, ® v =0, which is a contradiction. If g 5 ;5,9 5 ® v =0, then the
action with g5 leads to gfr,; ® v = 0, again a contradiction.

13) If g_545,9-5. Qv =0, then 0 =9 51595 @ V=9g_595+5 Qv—4g_s
® v, which is a contradiction.

14) If a;=0 and g¢g_s5.69-5, ®v=0, then the action with g5 gives
J-5,+6, @ v = 0, which is a contradiction. O

Corollary 3.1. Under the assumptions of Lemma 3.5 and az =0,
{925, ® 0,95, 156 R 0,95 @v,1 @1}
is a pre-basis of V.
Proof. Note that in this case we have g_5,, ® v=0, forx € {0, +J,}\{d;}. O

Lemma 3.6. Under the assumptions of Lemma 3.5,
dim V5,57 40, =0,

when k =2, o; € @.

Proof. By Lemma 3.5, g*,; appears in the expression (6) for a nonzero element of
V only if s = 1, and in this case we cannot find the element of the types g 5,.4,,
d-s,4. g-s, in this expression. By the same reason, in such expression (6), we
may find g_; only in degree 1, and it is not possible to find two elements of the
type g-s,—s, (OF g_5,+4,). The lemma follows. O

Now we are in a condition to state and prove the main result of this article.

Theorem 3.1. There are no simple finite-dimensional Filippov superalgebras of type
B(0, n) over @.
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Proof’ Let G = B(0,n), let V' be a finite-dimensional irreducible module over G
with the highest weight A = (ay,...,q,), and let ¢ be a surjective skew-symmetric

homomorphism from /" ¥ on G. Then there exist #; € V;, such that

‘;ﬁ(ulg---:um) = gd-26,. (8)

IfueV, (or G,) and y = > %0;, then we denote by J;(u) the element «;, and we
denote by d(u) the element ;. By Lemma 3.4, d(u;) = a; — k; for some k; € MNy.
By Lemma 3.1, ma; — Y ," ks = —2. Since g 25, (1®v) #0 and ¢ is a skew-

1, 1 ®v,u40,...,1,) #0. Since Il ® v) = ay, the inequality |k; —2| < 2
follows. Let @y = 2. By Lemma 3.3, we have

Bur, - ., tm)(g%55 ® 1) = g-25, (g% ®v) #0

and, analogously, |k; — 2a1| < 2. From these inequalities we see that the required
skew-symmetric homomorphism does not exist if @; = 4, and, in the case a; = 3,
we have the condition k; = 4 for all i.

Consider the case @ =3. Then, by (8), we have ¢(u1,u2) = g_25, where
o)) =0(up) = —1. Since (1 ®v) =3 and g 5 (1 @v) #0, we have ¢(l ®
v ) = g5 (In what follows, the symbol = denotes an equality up to a
nonzero coefficient.) Since ga5,(¢9_25, ® v) # 0, we have ¢(l ® v,g 25, @ v) #0,
(1 ®v)=3and d(g »5, ®v) = 1, which is a contradiction.

Consider the case a;j =2. By [9], we may assume that 1 ® v is odd. Let
G(ur,. .. thn) =g 5, u; € V,. Then 3" 6(u;) = —1. Since

1

qﬁ(ul:---:uin)(l@’:}):g—§l®v5é0: (9)

M1 @ v,uz, ... ty)(g-25, ®V) = gos,(g-25, @) = 2(1 ® ).

Thus, we may interchange, for example, the elements u; and g_»5 ® v. Repeating
this process, we obtain that

A1 ®v,g-20, @ V) = g25,.
Multiplying by g_s,, we come to the following:

PG5, ®v,g_25 ® V) — (m— 1)1 ® v,9_59_25 ®,9_25 @ V) = g5,
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Acting with the both sides of the last equality on g 5 & v, we arrive at

Pl ®v,9-59-25 ®V,g_25, ®v) (g5 ®v) #0

and
A=¢l®v,g 45 @v,g 25 1) #0.
It remains to notice that é(A4) = 3, which is a contradiction.

Lemma 3.7. There are no good triples of the type (G,V, ¢), where G = B(0,n),
¥=¥x, A= Lgs .. a0

Proof. By above, there are the elements u; € V', such that Plut, ... um) = g_25,,
where —3 <d(i;) < 1. By Lemma 3.6, —1 <d(i;) < 1. Ifd(u;) = 1 for some i,
then the action by the last equality on g 5, ® v twice gives a contradiction (note
that g_s, ® v is an even element). Therefore, we come to the case ¢(uy,...,un) =
g-2s,, where d(u;) =d(uz) = —1, d(u;) = 0, i > 2. The action on g 5, @ v gives
w= @(u1,u2,9-3 @v,ua,...,um) € {9-5,,9-5-5,9-5+5} I we{gs,95-35}
then the action on g 4 ®@ v leads to a contradiction, by Lemma 3.5. Thus,
W= ¢ g+4, 1 # 2, a; =1, using Lemma 3.5 and the action on g 5, ® v. We have
proved that if w= ¢(u,u2, 95, @v,u4,...,uy,) #0, where d(u;) =d(uz) = —1,

o) =0,i>3 thenw=g 55, # 2, a = 1. Applying the equality w = g 5,5,

Lemma 3.5. By the above, w =g 544, j # 2, @, = 1. Repeating this process,
we arrive at

vo = P(ur,u2,9-6, D 0,955, ®V;-..,9-6,-5, ®V) = g5+, (10)
where i; # 2 and ¢;, = 1. If m > 4 then applying (10) to g_5, 5, ® v we obtain
vr = @1, u2,9-6,-5, ®V, ..., §6,-3, ®V) = g2,
and da(v) =m — 2+ da2(u1) + 02(u2) =0, d2(vg) =2 —m+m — 3 = —1, which is
a contradiction. If m = 3 then vy = @(u;, 2,95, @ v) = g_5,44. i #2. Replacing
u=g5 @uby g s s ®@v=u', we obtain that d2(u;) + d2(u2) = —1 (note that
02(u) = 1). Therefore, d;(v2) = —1, which leads to a contradiction.
Consider now the case m = 2. In this case, we have ¢(uy, u2) = g_25,. We may

assume that d>(u2) > 0. We have ¢(ur,u2)(1 ® v) # 0. It follows that

w=¢@(1 ® v,u2) € {g25,,95,, 95,48, 95,5, } -

If w e {g25,. 95, 95,0, }» then wg_»5 ® v # 0 and we have
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w1 = ¢(1 @ v, 925 ® V) = gas,.-

Therefore, (gs,wi)gs, ®v#0 and wa=¢(l@v,95 ®v) #0, ow) =1,
d2(w2) = 2, which is a contradiction. Thus, w = g5,.5,. In this case, wg 5 45 ® v
#0 and u=¢(1®@0v,9 5, 5 @v) #0. Hence, i=1, a3=---=a,=0 and
U = ¢s,4s,- Furthermore,

gstt =095 @0,9 5,5 @) — 1@ v,9 59 5,5 @) =1 — 1y = g,

and (g5 u)(g-s, ®v) #0 (observe that if wig 5, ®v+#0, then u"=
P(l®v,g 5 ®@v) #0and d(u") = 2, d,(u”) = 1). Therefore,

U = ¢(g-s, ® 0,95, ® V) = gs,+5,-

We have

(g95u)g 5 @v#0, uy=4¢d(g 5,9 5 ®v,9_5 V) = gs,,
usg_25, @V #0, ug=ed(g_25 ®v, 95 @v) #0, us=gs

and uag_5, ® v # 0, which is again a contradiction. O

Thus, we have come to the case A = (1,0,...,0). In this case, there are some
weight vectors u; € V such that

Plur, ..., tm) = + Z oihi. (11)
=3

Notice that we may assume that u; # g5, ® v. Act on (11) with g5 and use
Corollary 3.1. If 6(x;) =1, then u; =1 ®v and gs,u; =0. If 6(x;) =0, then
u; € {g_s,+5, ®v;i # 1) and g5 u; =0. If 6(u;) = —1, then u; =g ,5 @ v and
gs, i = g-s5, ® v. Finally, considering the action on ¢g_5 ® v, we come to a contra-
diction. O
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