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Abstract

We describe actions, semidirect products and crossed modules in categories
of monoids with operations. Moreover we characterize, in this context, the
internal categories corresponding to crossed modules. Concrete examples in
the cases of monoids, semirings and distributive lattices are given.
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1. Introduction

In the category of groups, there is a well-known equivalence between ac-
tions and split extensions, obtained via the semidirect product construction.
It is also well known (see, for example, [5]) that internal categories in the
category of groups are equivalent to crossed modules. In the paper [11],
Porter proved the same equivalence in the case of categories of groups with
operations, which includes the examples of rings, associative algebras, Lie
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algebras, Jordan algebras and many others.

The equivalence between internal categories and crossed modules is not
true in weaker algebraic contexts, such as monoids. However, in the paper
[10], Patchkoria introduced, in the category of monoids, a particular kind
of internal categories, called Schreier internal categories, and he proved the
equivalence between them and what he called crossed semimodules. Schreier
internal categories in monoids are equivalent to homogeneous categories in
the sense of Lavendhomme and Roisin [6]: in that paper, the authors proved
that homogeneous internal categories in monoids are equivalent to crossed
modules.

The aim of the present paper is to generalize Patchkoria’s result to a
wider class of categories, whose objects are called monoids with operations.
This class, which includes monoids, commutative monoids, semirings, join-
semilattices with a bottom element and distributive lattices with a bottom
element, actually generalizes at the same time Patchkoria’s result concerning
monoids and Porter’s result concerning groups with operations.

The paper is organized as follows. In Section 2 we introduce the notion
of monoids with operations and we describe actions and the construction of
semidirect products in this context. In Section 3 we define crossed modules
in monoids with operations and we prove that they are equivalent to Schreier
internal categories. Section 4 is devoted to comparing, in the case of monoids,
the notion of semidirect product described in Section 2 with the categorical
one introduced by Bourn and Janelidze in [4]. In Section 5 the case of
semirings, and of distributive lattices as a particular case, is developed with
concrete examples.

2. Monoids with operations

The following definition is inspired by the analogous one, given by Porter
n [11], of groups with operations.

Definition 2.1. Let ) be a set of finitary operations such that the following
conditions hold: if §; is the set of i-ary operations in €2, then:

(1) Q:Q()UQlUQQ;



(2) There is a binary operation + € Qy (not necessarily commutative) and
a constant 0 € Qq satisfying the usual axioms for monoids;

(3) Qo ={0};
(4) Let Q2 = Q\{+}; if x € Qf, then x° defined by = x°y = y * x is also

in Q;
(5) Any x € Q) is left distributive w.r.t. +, i.e.:

ax(b+c)=axb+axc;

(6) For any * € Q) we have b0 = 0;
(7) Any w € Q4 satisfies the following conditions:

- w(e ty) = w@) +w(y);
- for any x € Q), w(axb) =w(a)x*b.

Let moreover E be a set of axioms including the ones above. We will denote
by C the category of (2, E)-algebras. We will call the objects of C monoids
with operations.

Remark. The definition above does not include the case of groups, or
more generally, the one of groups with operations. Indeed, the unary oper-
ation given by the group inverses, denoted by —, does not satisfy Condition
7. However, in order to recover all these structures, it suffices to add another
condition: if the base monoid structure (given by the operations + and 0) is
a group, then the operation — should be distinguished from the other unary
operations. In other terms, Condition 7 should be satisfied only by opera-
tions in Q] = Q;\{—}. In this way, our definition becomes a generalization
of the concept of groups with operations.

Example 2.2. Apart from the known structures covered by Porter’s defi-
nition, such as groups, rings, associative algebras, Lie algebras and many
others, our definition includes the cases of monoids, commutative monoids,
semirings (i.e. rings where the additive structure is not necessarily a group,
but just a commutative monoid), join-semilattices with a bottom element,
distributive lattices with a bottom element (or a top one).



Observation 2.3. Let us observe that requiring left and right distributivity
of any = € Q, with respect to +, as in Definition 2.1 (or, in other terms,
left distributivity of * and %°), implies a partial commutativity of +. Indeed,
consider the element (a + b) * (¢ + d); on one hand we have:

(a+b)*(c+d)=(a+b)*xc+(a+b)xd=axc+bxc+axd+bxd,
while, on the other hand:

(a+b)x(c+d)=ax(c+d)+bx(c+d)=axc+axd+bxc+bxd,
and hence the two expressions on the right are equal.

From now on, let C be a category of (2, E')-algebras as in the definition
above.

Definition 2.4. Let X and B be two objects of C. A pre-action of B on X
15 a set, indexed by the set Qo of binary operations, of set-theoretical maps
a,: BxX = X, x€ Q.

What we call pre-action is what was called set of actions in [9], in the
more restricted context of categories of interest (which are particular cate-
gories of groups with operations, in the sense of Porter).

Given a pre-action of B on X, we can construct a semidirect product of X
and B with respect to this pre-action, following the analogous construction
already known for groups with operations.

Definition 2.5. Given a pre-action o = {au|x € Qao} of B on X, the semidi-
rect product X x, B of X and B with respect to « is the Q-algebra with
underlying set X x B and operations defined by:

(21,01) + (22,b2) = (21 + a4 (b1, 22), b1 + b),
(1,b1) * (22, b2) = (1 * Tg + (b1, T2) + yo (ba, 1), by * by), for x € ),
w(z,b) = (w(x),w(d)), for we Q.

For a generic pre-action a, X X, B is not a (2, E)-algebra. The main
goal of this section is to characterize those pre-actions for which the corre-
sponding semidirect product is a (€2, E')-algebra.



Let B be an object of C. The category Pt(B) is the category of the points
of the comma category C over B, i.e. the cocomma category 1p over C/B.
This amounts to the category whose objects are the split epimorphisms with
codomain B. In fact a morphism from the terminal 15: B — B to an object
a: A — B is precisely an arrow 5: B — A such that af = 1. An object
of Pt(B) will be called point over B. We will consider, in the context of
monoids with operations, a particular kind of point. The definition below is
inspired by the definition of Schreier internal category given in [10] in the
category of monoids:

Definition 2.6. A point
X:KerpLA%B (1)

is said to be a Schreier point if, for any a € A, there exists a unique x € X
such that a = k(x)+ sp(a) (where, as in Definition 2.1, we use the symbol +
for the monoid operation).

In other terms, a Schreier point is a point of the form (1) equipped with
a unique set-theoretical map ¢: A — X with the property that

a = kq(a) + sp(a)

for any a € A.

It comes immediately from the definition above that, in a Schreier point,
the morphisms k£ and s are jointly epimorphic. Hence they have the following
interesting property:

Proposition 2.7. In a point of the form
X t-A==B,

if k and s are jointly epimorphic, then p is the cokernel of k. In other terms
the sequence

0 Xk A P B 0

1s exact and the point is a split extension.



Proof. Given a morphism f: A — D such that fk = 0, we have that fs
makes the triangle below commutative:

X-t-A=—=B

X I

D.

Indeed:
fsps=fs and fspk=0= fk,

and since k and s are jointly epimorphic, we have that fsp = f. Moreover,
given any g: B — D such that gp = f, we have that

g=gps=[s.
O

It is known that, in a category C of monoids with operations, there are
points that are not split extensions. For example, in the category Mon of
monoids, consider the following point, where N is the monoid of natural
numbers with the usual sum:

(0,1)
O*O>N><N$N.

Now we can introduce the concept of action, which corresponds to the
one of set of derived actions, introduced in [9] for categories of interest.

Given a Schreier point over B with kernel X, we can define a pre-action
of B on X in the following way:

ay (b, x) = q(s(b) + k(x)),
a,(b,z) = q(s(b) * k(x)), for x € Q.

Definition 2.8. A pre-action defined as above, starting from a Schreier
point, will be called an action of B on X.

Now we can state the main result of this section:

Theorem 2.9. A pre-action o of B on X is an action if and only if the
semidirect product X X, B is an object of C.
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Proof. Let
X="LA==p

be a Schreier point. First let us observe that a, (b, x) is the unique element
of X such that:
5(8) + k(z) = oy (b,) + 5(b)

(this follows from the Schreier condition applying ¢ to the element a = s(b) +
k(x)). Now, considering « as in Definition 2.8, we have to show that A is
isomorphic to the semidirect product X x, B of X and B with respect to the
action a.. Consider the map ¢: A — X x, B sending an element a € A to the
pair (¢(a),p(a)). It is a bijection, whose inverse is the map ¢: X x, B — A
sending a pair (z,b) to the element k(x) + s(b). Indeed:

p(a) = p(q(a),p(a)) = kq(a) + sp(a) =

and
Yo(a,b) = P(k(z) + s(b) = (g(k(z) + s(b)),b),

so it remains to prove that ¢(k(z) + s(b)) = z. Putting a = k(z) + s(b) and
q(a) = 2/, we have that 2’ is the unique element of X such that

k(z) + s(b) = a = kq(a) + s(b) = k(z') + s(b),

and hence x = 2/. Finally, ¢ (and hence v) is a homomorphism, in fact
preservation of unary operations is obvious, and moreover:

o((x1,01) + (72,b2)) = p(x1 + ay (b1, T2), b1 + ba2) =

= k(1 + ay (b, x2)) + s(by + be) = k(z1) + kay (by, z2) + s(by) + s(by) =
= k(x1) + s(b1) + k(22) 4 s(b2) = (901751) + @(22,b);
(0,0) = £(0) + s(0) =
and, for any % € :

o((x1,b1) * (x2,b2)) = (a1 * T3 + (b, T2) + o (ba, 1), by * by) =

= (w1 * 22 + q(s(b1) * k(22)) + q(s(ba) *° k(x1)), by * ba) =
= (w1 * 22 + q(s(b1) * k(w2)) + q(k(z1) * 5(ba)), by * by) =



= k(x1 % xo + q(s(by) * k(z2)) + q(k(x1) * s(b2))) + s(by * by) =
= k(1) * k(w2) + kq(s(b1) * k(x2)) + kq(k(1) * s(b2)) + 5(b1) * s(b2).
But kq(s(by) * k(xs)) = s(by) * k(x2); indeed:

s(b1) * k(z9) = kq(s(by) * k(z2)) + sp(s(by) * k(z2)),

but sp(s(by)*k(x2)) = 0, because s(by)*k(x2) € Ker p; analogously, kq(k(z1)x*
s(b2)) = k(xq) * s(by). Hence:

o((w1,b1) % (22, b)) = k(xq)xk(xe)+8(by)*k(x2)+k(x1)*5(ba)+5(by)*s(be) =

= (k(z1) + s(b1)) * (k(22) + s(b2)) = @(21, b1) * p(22, b2).
Being X x, B isomorphic to A, it is an object of C.

Conversely, let a be a pre-action of B on X such that X x, B is an object
of C. Then we have the following point in C:

x - x . B2
00

This is a Schreier point, where ¢ = 7x; the uniqueness of g comes from the
following fact: if y € X is such that

(xab) = <170>(y) + <07 1>7TB(x>b>7

then
(2, 0) = (1,0)(y) + (0, Hmp(z,b) = (y,0) + (0,b) = (y,b),

and hence y = x = 7wx(x,b). Moreover, it is immediate to see that the
action defined by this Schreier point is exactly the pre-action o with which
we started. This completes the proof. O

We conclude this section with a remark that will be useful in what follows:

Lemma 2.10. Let o be an action of B on X in C. For any b,by,bs € B,
x,r1,x2 € X and x € ) we have:

(1) ay(b,x1 + 22) = ag (b, x1) + ay (b, z2);
(2) oy (by + ba, ) = oy (by, vy (ba, )
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(3) a,(0,2) = z;
(4) a4(b,0) =0;

(5) c(b, o1+ 22) = an(b, 21) + (b, z2);
(6) cu(by + by, 7) = cu(br, ) + (b, 7).

Proof. The equalities above follow immediately from the fact that X x, B is
an object of C, and hence + is a monoid operation on it, with identity given
by (0,0), and any * € Q) is distributive with respect to +. O

3. Crossed modules and Schreier internal categories

Theorem 2.9 allows us to obtain, in the context of monoids with opera-
tions, an equivalence between crossed modules and particular internal cate-
gories, that will be called Schreier internal categories (following [10]). This
fact is a generalization of the known equivalence for groups with operations,
described in [11], and for monoids, as in [10].

We start describing what is a crossed module in a category of monoids
with operations. Throughout all the section, C will be a category of (X2, E')-
algebras as in Definition 2.1.

Definition 3.1. Given two objects X and B of C, an action o of B on X
and a morphism f: X — B, we say that the pair (c, f) is a crossed module
if, for any x,x1,x9 € X, b € B and x € §2, the following conditions hold:

(i) flaw(b,x))+b="b+ f(z);
(1t) ay(f(x1),22) + 1 = 21 + X9;
(ii) f(aw(b,x)) =bx* f(x);
(iv) o (f(21), 22) = o (f(22), 21) = Ty * 2.

Given two crossed modules (X, B, «, f) and (X', B, &/, f'), a morphism be-
tween them is a pair (8,7) of morphisms in C, where f: X — X' and
~v: B — B’, such that the following conditions hold:

(a) Blay(b,z)) = (v(b),B(x)) for anybe B, v € X;



(b) Blax(b,x)) = . (v(b),B(x)) for any b € B, x € X and x € Q;
(c)vf =15

Crossed modules in C and morphisms between them form a category,
which will be denoted by XMod(C). We will show that this category is
equivalent to a category whose objects are particular internal categories.
Recall that an internal category in C is a reflexive graph:

d
A==RB
C

(i.e. de = ce = 1p) with a morphism (giving the composition of arrows)
m: Axg A — A (A xp A is the pullback of d along c¢) satisfying asso-
ciativity and identity axioms. A morphism between two internal categories
(A, B,d,c,e,m)and (A", B',d',, e, m'), also called internal functor, is a pair
(91, 90), where g;: A — A’ and go: B — B’, preserving domain, codomain,
composition and identities.

Definition 3.2. An internal category (A, B,d,c,e,m) in C is a Schreier
internal category if the point

X = Kerd—*~A="=B

18 Schreier.

In [6], Lavendhomme and Roisin introduced the notion of homogeneous
internal category in the category of monoids, and they proved that homo-
geneous categories are equivalent to crossed modules. We recall now their
definition (extending it to any category of monoids with operations), in order
to compare it with the notion of Schreier internal category.

Definition 3.3. An internal category (A, B,d,c,e,m) in C is homogeneous
if, for any b € B, the map ap: d=1(0) — d=(b) defined by

ap(a) = a+e(b)
18 bijective.

Proposition 3.4. An internal category in C is homogeneous if and only if
it is Schreier.
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Proof. Suppose that (A, B, d, c,e,m) is a Schreier internal category. For any
b € B, we can define the map 3,: d~'(b) — d~1(0) by putting Sy(a) = kq(a).
By is the inverse map of «ay, indeed:

apfp(a) = kq(a) + e(b) = kq(a) + ed(a) = a,

and
Braw(c) = Bo(c +e(b)) = kql(c +e(b)) =,

where the last equality follows from the uniqueness in the Schreier condition,
since, for ¢ € d71(0) = k(X) we have:

c+e(b) =kq(c+e(b)) +ed(c+e(b)) = kq(c+e(b)) + e(b).

Conversely, if (A, B,d,c,e,m) is a homogeneous internal category, we can
define ¢: A — X by putting ¢(a) = x, where x is the unique element of X

such that og(fl)(a) = k(x). Then ¢ satisfies the Schreier condition. Indeed:

kq(a) + ed(a) = a;(}z)(a) +ed(a) = ad(a)og(z)(a) = a.
Furthermore, to prove its uniqueness, suppose that y € X is such that

a = k(y) + ed(a);

then
a = k(y) + ed(a) = aaw (k(y)),
and hence
k(y) = 04;(2)(@)7
which implies that y = g(a). O

We will denote by SCat(C) the category whose objects are Schreier in-
ternal categories in C and whose morphisms are internal functors between
them.

Lemma 3.5. Let (A, B,d,c,e,m) be a Schreier internal category in C, and
let a,a’ € A be composable arrows (i.e. d(a') = c¢(a)). Then

m(d’,a) = kq(a') + kq(a) + ed(a).
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Proof. We know that
a = kq(a) + ed(a);

1moreover:
d(a’) = c(a) = c(kq(a) + ed(a)) = ckq(a) + d(a),
and hence
a' = kq(d') +ed(d') = kq(a') + e(ckq(a) + d(a)).
Since m is a morphism in C and it preserves identities, we have:
m(a',a) = m(kq(a') + e(ckq(a) + d(a)), kq(a) + ed(a)) =

= m(kq(a’),0) + m(e(ckq(a) + d(a)), kq(a) + ed(a)) =
= m(kq(a'), edkq(a’))+m(ec(kq(a)+ed(a)), kq(a)+ed(a)) = kq(a')+kq(a)+ed(a).
[

Corollary 3.6. A Schreier internal reflexive graph (i.e. an internal reflexive
graph such that the domain and the identity form a Schreier point) admits
at most one structure of internal category.

Theorem 3.7. The categories X Mod(C) and SCat(C) are equivalent.
Proof. Let
d
X =Kerd—*-A ——2B

be a Schreier internal category in C, and ¢: A — X the unique map satisfying
the Schreier condition. In the previous Section we proved that ¢ defines an
action o of B on X in the following way:

ai(b,x) = qle(b) + k(x)),

a.(b, ) = q(e(b) * k(z)), for x € €U,

Consider then the morphism f = ck. We have to show that (X, B, «, f) is a
crossed module:
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(i) For any b € B and x € X we have that:
e(b) + k(x) = kay (b, x) + e(b);
applying the morphism ¢ on both sides of the equality we get:
ce(b) + ck(x) = ckay (b, z) + ce(b),
and since ce = 1g we have:

b+ f(x) = fai(b,x)+b.

(ii) Applying the Schreier condition to the element eck(zi) + k(x2), we
have, for any x1, 29 € X:

eck(xy)+k(xs) = kay (f(x1), x2)+ed(eck(xy)+k(xe)) = kay (f(x1), xo)+eck(zy).

It is easy to see that the elements ko (f(z1),x2) + eck(xy) and k(zq)
in A are composable; hence, applying Lemma 3.5:

k(o (f(z1),22) +21) = kay (f(21), 22) + k(21) =

= m(kay(f(x1), x2) + eck(xq), k(x1)) =
= m(eck(x1) + k(z2), k(x1)) = m(eck(x1), k(z1)) + m(k(z2),0) =
= m(eck(xy), k(x1)) +m(k(xa), edk(xs)) = k(x1) + k(z2) = k(x1 + x2),

and since k is injective, we have that o, (f(x1),22) + 11 = 21 + o.

(iii) We already observed, in the proof of Theorem 2.9, that
kq(e(b) x k(x)) = e(b) x k(z) for any b € B,x € X and x € Q;
hence:
flax(b,x)) = ckq(e(b) xk(x)) = c(e(b) xk(x)) = ce(b) xck(x) = bx f(x).
(iv) We have:

ko (f(21), x2) = kau(ck(xy), x2) = kq(eck(z1)*k(xq)) = eck(z1)*k(x2),

13



and hence, using Lemma 3.5 and the fact that m preserves the binary
operation x:

ko (f(z1), x2) = m(ka,(f(x1),x2),0) = m(eck(xy) * k(x),0) =
= m(eck(z1) * k(z2), k(x1) * 0) = m(eck(x1), k(1)) * m(k(xz),0) =
= k(xq) * k(xg) = k(1 % x2),
and, since k is a monomorphism, we have that:
(f(z1),72) = 1 % T35
the proof that aue(f(z3),x1) = o1 * x5 is similar.

Consider now the following commutative diagram:

k _d
X—>A=——=B8B (2)

| AT

;K | —— DI
X —==A ee;—B,
C

such that (g1, go) is a morphism of internal categories; we can define a mor-
phism of crossed modules

(6.4): (X, B, ) = (X', B, )
by putting § = ¢ and v = gg. Indeed:
(a) using the Schreier condition we have
gika (b, x) + €'go(b) = gika (b, x) + gre(b) =

= g1(kay (b, ) +e(b)) = gi(e(b) + k(x)) = gre(b) + g1k(x) =
= €'go(b) + K'0(x) = Koy (90(b), 6(x)) + €'go(b);
by uniqueness in the Schreier condition we obtain that:
Kooy (b,x) = gikay (b, z) = Ko, (g0(D), 6(2)),
and since k' is injective we get
day (b, x) = a;(go(b)ﬁ(iﬁ))a
ie.

Bay(b,xz) =, (v(b), B(x)).

14



(b) using the fact that kq(e(b) * k(x)) = e(b) * k(z) for any b € B, x € X,

we have:
K'oq(e(b) * k(x)) = gikq(e(b) = k(x)) = gi(e(b) * k(z))
= gie(b) x gik(x) = 'go(b) x K'6(x) = K'¢'('go(b) * K'd(x)),
and since k' is injective, we obtain:

B (b, x) = dq(e(b) * k(x)) = ¢'(¢'go(b) * K'd(x)) = a((b), B(x)).

(c¢) The fact that vf = f' comes immediately from the commutativity of
diagram (2).

This defines a functor
F: SCat(C) - X Mod(C).

In order to show that this functor is an equivalence, we will define another
functor

G: XMod(C) — SCat(C).

Given a crossed module (X, B, a, f), we can define A = X x, B and we
obtain a Schreier point:

x - x . BB
0D

Putting d = g, e = (0,1), k = (1,0) and defining ¢ by ¢(x,b) = f(x) + b we
obtain a reflexive graph:

Xt A==B;

¢ is a morphism, indeed preservation of unary operations is obvious, and
moreover:

C(($1, bl) + (ZL‘Q, bg)) = C($1 + (Jé+(b1,l’2), b1 + bg) =

= f(w1)+ fay (b, 22) +b1+ba = f(x1) +b1+ f(x2) +ba = c(1, b1) + (12, ba),
and, for any % € (2}

c((w1,b1) * (w2,02)) = c(w1 * 22 + @, (br, T2) + o (bg, 1), b1 % by) =
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(1'1 * Ig) + foz*(bl, IL’Q) —+ fOz*o(bQ, ZL‘l) + b1 * b2 =
(1) % f(wa) + by * f(x2) + f(1) x by + by % by =
= (f(x1) +b1) * (f(22) + b2) = c(x1,b1) * (22, b).

Now we have to define the composition m. First observe that two pairs (z, b)
and (2/,b") are composable if and only if & = f(z) + b. Hence we can define
m in the following way:

m((z', f(x) +b), (z,b)) = («" + z,b).

m is a morphism, indeed preservation of unary operations is obvious, and
moreover:

m[((«, f(z1) + b1), (w1, b1)) + (2, f(22) + b2), (22, 02))] =

= m[(z}, f(x1) +b1) + (25, f(22) + b2), (21,b1) + (w2, b2)] =
m[(x’l +Oé+(f(&31) +b1, xé), f(LUl) +b1 +f($2) +b2), (LUl +C¥+(b1, .TQ), bl +bg)] =

= (2] + ar(f(z1) + by, 2h) + x1 + g (by, 2), by + by),

while

m((xlh f('rl) + b1)7 (3:17 bl)) + m(('r/Qa f(x2) + b2)7 (1’2, b2)) =

= (2] +21,b1) + (2 + 22,b0) = (2] + 21 + ay (b, 25 + x2), b1 + ba),
and the two pairs are the same, because, thanks to Lemma 2.10, we have:
ooy (f(@1)+by, b)) +x1+ay (b, 22) = i +ag (f(21), g (br, 25))+z1+aq (b, 22) =
= $/1 + 1+ Oé+(bl, x'Z) + Oé+(b1,$2) = Q?/l + 1+ Oé+<b1, SL’/2 + LL’Q).

Analogously it can be proved that m preserves any * € 25:

m[((a, f(z1) + 1), (w1, b1)) * (25, f(22) + b2), (22, 02))] =

= m[(z}, f(x1) + b1) * (24, f(22) + ba), (x1,b1) * (22,b2)] =
= m[(@]*xy+an(f(z1)+br, 25) +ase (f (22) +ba, 1), (f (1) +b1) % (f(22)+02)),
(1 * g + (b1, T2) + Qo (bo, 1), b1 * by)] =
= (2 b+ (f(21)+b1, )+ (f(22)+ba, ) +1xw0+ (by, To)+teo (by, 1), byxby) =
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= (T xrytan(f(z1), 15) 0 (b1, 75) +aue (f(22), 7)) +aue (ba, 7))+ 152+ (b, 2) +
—i-Oé*o(bz,iﬁl),bl * bz) =

= (2 *ah+r1xry+a, (by, 1) +a % Lo+ o (ba, 7))+ 219+ (b1, T2)+ o (ba, 1), b1%by),

(3)

while
m((‘rll’ f(x1)+b1>’ (xh bl))*m((‘réa f(x2>+b2)7 ('er b2>) - (x/1+x17 bl)*<xl2+x27 b2) =

= ((2] + x1) * (2 + 22) + (b1, T + x2) + Qyo (bo, ] + 1), b1 * bg) =
= (($/1+$1)*(513'2+-’E2)+a*(b17$’2)+0z*(51,fEQ)‘I—Oé*o(bz,$/1)+Oz*o(b2,$1)7b1*52) =

= () *ay+axay+a) x o+ x@a+ o (b, 25)+au (by, Ta) + e (be, )+t (be, 1), bi*by);
(4)

in order to prove that m preserves any x € 2, we have to show that (3)

and (4) are equal. Since the second components are equal, it suffices to

show that also the first components are the same. To do this, we can ap-

ply the monomorphism & to them. In fact, thanks to the Schreier condition,

ko (b, x) = s(b)xk(x) for any b € B, x € X. Then the partial commutativity

of + in A, as explained in Observation 2.3, can be applied to give the result.

It is straightforward to check that m is associative and preserves identities.
Hence we have a Schreier internal category. Moreover, given a morphism

(8,7): (X, B,a, f) = (X, B, f')

of crossed modules, we can define a morphism (g1, go) between the corre-
sponding Schreier internal categories by putting

go=", gi(z,b) = (B(z),v(b)).

g1 is a morphism, indeed preservation of unary operations is obvious, and
moreover:

g1((z1,01) + (22,b2)) = g1(21 + (b1, 22),b1 + bo) =

= (Bx1)+Boy (b, xa), ¥ (b14b2)) = (B(w1)+a! (7(b1), B(w2)), ¥(b1)+7(ba2)) =
= (B(z1),7(b1)) + (B(w2),7(b2)) = g1(w1,b1) + g1 (w2, b2),
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and, for any * € :
g1((w1,b1) * (22,02)) = g1 (1 * T2 + @u(by, T2) + Qo (b, 1), b1 * by) =

= (B(z1 * 2) + B (b1, x2) + Bove (ba, 1), (b1 * b2)) =
= (B(x1) * Bx2) + oL (Y(b1), B(2)) + e (v(b2), Bl21)), y(b1) * ¥(b2)) =
= (B(z1),7(b1)) * (B(x2), 7(b2)) = gu(1, b1) * g1(w2, b2).
Moreover, we have:
god(z,b) = go(b) = 7(b) = d'(B(x),~(b)) = d'gi(,b);
goc(x,b) = go(f(2)+b) = 7f(2)+7(b) = f'B(x)+y(b) = ¢(B(x),7(b)) = g1 (z, b);
€'go(b) = €y(b) = (0,7(0)) = 91(0,b) = gre(b);
m' (g1 x g1)((2", b)), (x,0)) = m'((B(2"), y(¥)), (B(x),~(D))) =
= (B(2") + B(x),7(b)) = g1 (2" + 2,b) = gim((2", V'), (2, D).
So we have a functor

G: XMod(C) — SCat(C).

It is immediate to see that F'G = 1lxoqc); let us prove that GF ~
1scat(c)- In order to do that consider, for any Schreier internal category

d
Xt A==p,
C

the following diagram

. d
X A=——2~B

i

XTm)X X, B0IZ B,

where the lower line is the image of the upper one under the functor GF' and
the morphisms ¢ and ¢ are defined as in the proof of Theorem 2.9:

b(a) = (q(a),d(a)), @(x,b) = k(z) + e(b).
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We already know that ¢ and ¢ are isomorphisms in C; it remains to prove
that they give rise to internal functors. ¢ (and hence 1) is a morphism of
internal reflexive graphs, indeed:

do(z,b) = d(k(x) + e(b)) = b= mp(z,b);
co(z,b) = c(k(z) + e(b)) = ck(z) + ce(b) = ck(x) + b= ' (z,b);
©(0,1)(b) = ¢(0,b) = e(b).
Moreover, 1 preserves composition, i.e. ¥m = m/(1) x ¢). Indeed:
vm(d',a) = ¥(kq(a’) + kq(a) + ed(a)) = (q(kq(a’) + kq(a) + ed(a)), d(a)),

while

m' (Y x ¥)(d';a) = m'((¢(d), d(a')), (q(a),d(a))) = (q(a’) + q(a), d(a)),

and they are equal, because, applying the Schreier condition to the element
k(q(a’) 4+ q(a)) + ed(a) € A we have:

k(q(a’) + q(a)) + ed(a) = kq(k(q(d') + q(a)) + ed(a)) + ed(a)

and the thesis follows by the uniqueness in the Schreier condition. This
concludes the proof. O

Definition 3.8. ([10]) A Schreier internal groupoid is an internal category

k d
X +t-A=e=B (5)

in C endowed with a set-theoretical map i: A — A giving inverses for the
composition m, 1.e.:

di=c, ci=d, m(i(a),a) = ed(a), m(a,i(a)) = ec(a) for any a € A.

We observe that, in the definition above, it is not necessary to ask ¢ to be
a C-morphism. Indeed, for an internal category in a category with pullbacks,
being an internal groupoid is a property, which can be expressed by saying
that the kernel pair of the domain morphism is given by the composition
morphism and one of the projections (as showed, for example, in Proposition
A.3.7 in [1]). Hence, since for any variety the forgetful functor into the
category of sets preserves and reflects pullbacks, any internal category is an
internal groupoid as soon as it is a groupoid in the category of sets.
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Corollary 3.9. A Schreier internal category in C is a Schreier internal
groupoid if and only if, in the corresponding crossed module (X, B, «, f) in
C, X is a group.

Proof. Given a Schreier internal groupoid of the form (5), for every y € X
we have that

m(ik(y), k(y)) = edk(y) =0, m(k(y),ik(y)) = eck(y).

By the Schreier condition, there exists a unique x € X such that
ik(y) = k(z) + edik(y) = k(z) + eck(y),
hence
m(k(z) + eck(y), k(y)) = 0, m(k(y), k(z) + eck(y)) = eck(y).
Using Lemma 3.5, we obtain
kq(k(z)+eck(y))+k(y) =0,  k(y)+kq(k(z)+eck(y))+ed(k(x)+eck(y)) = eck(y),
hence
kq(k(x) + eck(y)) + k(y) =0,  k(y) + kq(k(z) + eck(y)) + eck(y) = eck(y).
By the Schreier condition we have that kq(k(z) + eck(y)) = k(z) and so:
k(z)+k(y) =0, k(y)+ k(z) + eck(y) = eck(y).

Again by the Schreier condition, the second equality gives k(y) + k(x) = 0;
since k is a monomorphism, we have that

r+y=y+ax=0,
and X is a group.

Conversely, let (X, B,«, f) a crossed module such that X is a group.
Consider the corresponding Schreier internal category

B
XTO)>X Xo B201= B,

where ¢(z,b) = f(z) + b and m((2/, f(x) + b), (z,b)) = (2’ + x,b). We can
define ¢ by:
i(x,b) = (—x, f(x) +b).

It is immediate to see that ¢ gives inverses for m. O]
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4. The case of monoids

The aim of this section is to compare, in the case of monoids, the semidi-
rect product defined in Section 2 with the categorical one, defined by D.
Bourn and G. Janelidze in [4]. We start recalling the categorical definition
of semidirect products introduced in [4].

Let C be a category. A diagram

D-%-4 (6)

s

is called a split commutative square if a8 = 1g, v6 = 1g and it commutes
both upwards and downwards, i.e. ag = py and ¢d = Sp.

A split pullback is a universal such square. More precisely, the diagram
(6) is a split pullback of («, 5) along p if, for any other split commutative
square

D/LA

4

E T> B,
there exists a unique morphism d: D' — D such that
yd =+, dé’ =0, qd = ¢ .

Dually, the same diagram defines a split pushout of (y,d) along p when,
for any other split commutative square

D" u

v e

E ? B,
there exists a unique morphism a: A — A’ such that
/ /

da=a, af=p, ag=q.
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We say that the category C has split pullbacks (resp. split pushouts) if it
admits split pullbacks (resp. split pushouts) along any morphism p: £ — B.

The existence of split pullbacks defines a contravariant pseudofunctor
Pt: C? — Cat

(the pseudofunctor of points) that assigns to a morphism p: E — B, the
pullback functor
p*: Pt(B) — Pt(F),

where the category Pt(B) is the category of points over B, as in Section 2.

Hence the following is a purely categorical definition:

Definition 4.1. ([4], Definition 3.2) A category C with split pullbacks is said
to be a category with semidirect products if, for any arrow p: E — B in C,
the pullback functor p* (has a left adjoint and) is monadic.

In this case, denoting by 7% the monad defined by this adjunction, given
a TP-algebra (D,¢) the semidirect product (D,&) x (B,p) is an object in
Pt(B) corresponding to (D, &) via the canonical equivalence K:

[PH(E)™ (7)

Let us observe that, if C is finitely complete, the pullback functors p*
have left adjoints p; (for any p in C) if and only if C has split pushouts.
Moreover, in the paper [8] the authors proved that, if C is finitely complete,
it has pushouts of split monomorphisms and an initial object, then it is not
necessary to consider all morphisms p in C, but it is sufficient to consider
only the morphisms ig: 0 — B with the initial object as domain. Indeed:

Proposition 4.2. (/8/, Corollary 3) Let C be a category with finite lim-
its, pushouts of split monomorphisms and initial object. Then the following
statements are equivalent:

(i) all pullback functors i3 defined by the initial arrows are monadic;
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(i1) for any morphism p in C, the pullback functor p* is monadic, i.e. C
admits semidirect products.

The algebras for the monad T"2 are called internal actions in [2]. The
monad T is usually denoted by Bb(—); for any object X, BbX is the kernel
of the morphism [0,1]: X + B — B. Algebras for this monad are hence
morphisms &: BbX — X satisfying the usual conditions for an algebra. Our
aim is to compare internal actions with the actions defined by a Schreier split
extension, as in Section 2, that will be called external actions from now on.

Let now C be the category Mon of monoids. It is known that this cat-
egory doesn’t have semidirect products in the categorical sense, or, in other
terms, that the points are not equivalent to the internal actions. Indeed, the
category Mon is not protomodular in the sense of [3], and it is known that
protomodularity is a necessary condition in order to have semidirect prod-
ucts (see [4]; see also [7], where a characterization of pointed categories that
admit semidirect products is given). On the other hand, Theorem 2.9 gives
an equivalence between Schreier points and external actions (i.e. pre-actions
such that the corresponding semidirect product is an object of C). Hence it
is worth comparing internal and external actions in this context.

In general, internal and external actions are not equivalent. To see that,
we can consider the monoid N of natural numbers (with the usual sum as
operation) as acting monoid B. In this case, Nb.X = X for any monoid X.
Indeed, it is easy to see that the kernel of the morphism [0,1]: X + N — N
is just X. Hence an internal action is a morphism &: X — X satisfying the
usual conditions; in particular, ¢ should be a split epimorphism, with section
given by the inclusion : X — BbX. But in this case n = 1x, and this forces
€ to be the identity. In other terms, the set IntAct(N, X) of internal actions
of N over X is just a singleton.

However, the set FxtAct(N, X) of external actions of N over X is not a
singleton in general. To see that, we can choose also X to be the monoid N
of natural numbers. Consider then, for any natural number n, different from

0, the following pre-action of N on itself:
an(b,z) = nlx.

It is straightforward to verify that the semidirect product defined using any
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of these pre-actions, as in Definition 2.5, is a monoid. Hence «,, is an exter-
nal action for any n. It is easy to see that these actions do not give rise to
semidirect products that are all isomorphic: it suffices to observe that the
semidirect product N x,, N is just the direct product of N with itself, hence
it is a commutative monoid, while the semidirect products N x,,, N are not

commutative if n # 1. Hence IntAct(N,N) # ExtAct(N,N).

There are particular cases, however, where internal and external actions
coincide. One of them is described in the following

Proposition 4.3. If B is a group (and X is a generic monoid), then there
is a biection between IntAct(B,X) and ExtAct(B,X).

Proof. Let us first observe that every point
X +~A==B, (8)

such that B is a group, is actually a Schreier point. Indeed, we can define a
pre-action of B on X in the following way:

a(b,z) = s(b) + k(z) — s(b),

and it is immediate to show that the corresponding semidirect product X x,B
is a monoid, hence this pre-action is an external action and the point (8) is
a Schreier one: in fact we have that, in this case, g(a) = a — sp(a).

Moreover, when B is a group, BbX is the submonoid of the free product
X + B generated by chains of the form (b, z, —b) for b € B and x € X. Hence,
given an internal action £: BbX — X we can define a pre-action (which is
actually an external action) by:

a(b,x) = &(b, x,—b),

in the same way as it happens in the category of groups (see [4] for a more
detailed description of this bijection in the category of groups). Conversely,
given an external action a of B on X, we can consider the following commu-
tative diagram:

BhX . x4+ B="=B

[0,1]
o Jendh
\

X —— X X, B<;
(1,0)
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Then we can define an internal action £ just by restriction of the morphism
[(1,0),(0,1)] to BbX. It is straightforward to prove that, in this way, we
obtain a bijection between IntAct(B, X) and ExtAct(B, X). O

5. The case of semirings

In this section we explore in more details the example of semirings.

A semiring (A, +,0,-) is an algebraic structure with one constant and
two binary operations, in which (A4, +,0) is a commutative monoid, (4, -) is
a semigroup, and the following conditions are satisfied for every x,y, z € A:

- (y+z) = (z-y)+(z-2),
(@+y)-z = (z-2)+ - 2)
z-0= 0 =0-x.

If X=(X,+,0,:) and B = (B, +,0,-) are two semirings, a pre-action of
B on X consists of three maps

Oy (L), Qo L BxX — X.

Proposition 5.1. A pre-action o = {o, oy, aye } s an action if and only
if, for allb € B and all x € X,

ap(bx) ==z, (9)

and, if for simplicity we write o(y(b,z) = b2 and oy (b,z) = zgb, the
following conditions are satisfied for every b, € B and x,2’ € X :

(b+0)°(x + ') = b + 2" + b + V', (10)
(x+2)o(b+b) =z0b+ xcb + 2" 0b+ 2"V, (11)
(b°z) -2’ =0z -2") , x-(20b) = (z-2")ab, (12)
(b0 =00"%) , 2o0b-V)=(zab)sb, (13)
- (%) = (xob) -2/, (%)l = b (zub), (14)
092 = 0ub = b°0 = 2,0 = 0. (15)

Proof. Condition (9) is due to the fact that + is commutative, together with
the specifications a(0,2) = = and a4 (b,0) = 0, as it follows from Lemma

25



2.10. Conditions (10) to (15) are equivalent to the distributivity of - and -°
with respect to +, the fact that 0 is absorvent with respect to -, and the
associativity of -. Indeed, for any element (z,b) in the semidirect product
X X, B with the operations as specified in Definition 2.5, we have

(x,b) - (0,0) = (0,0) = (0,0) - (z,b)

and hence
b0 + 250 = 0 = 092 + 0ub,

now using the distributivity, as specified in Lemma 2.10, we also have

0=0%+0sb = (0+0)+05b
= OQI + (OQJJ + OQb)
=0 +0=0%.

The other identities in (15) are obtained in a similar way. It is now a routine
calculation to check that the equations (10) and (11) follow from the dis-
tributivity of the operation -, while the equations (12), (13) and (14) follow
from its associativity in X x, B. O

The example (N, +, 0, X) of natural numbers with zero, addition and mul-
tiplication is perhaps the paradigmatic example of a semiring. Other exam-
ples are hom(B, B), the set of all endomorphisms on a commutative monoid
B, with the zero map, the componentwise addition and the composition of
morphisms as multiplication. Moreover, given a set A, the set of languages
over the alphabet A (i.e. the set of subsets of the free monoid A* over A) is a
semiring, where the monoid operation is the set-theoretical union, while the
other operation is given by the concatenation of words: given two languages
L and L', a word 7 belongs to the product LL’ if and only if there exist o € L
and o’ € L' such that 7 = o0’. It is immediate to see that this concatenation
is associative and distributive with respect to the union.

An important particular instance of a semiring is a distributive lattice: a
distributive lattice is a semi-ring (A, +, 0, X) where, in particular, (A, +,0)
is an idempotent commutative monoid and (A, x) is an idempotent commu-
tative semigroup.

In the particular case when the operation x is commutative, a, = ayo.
As a concrete example, we can study actions of N on itself, where N denotes
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the semiring of natural numbers. There are exactly two actions of N on itself:
ax(n,m) = nm and ay(n,m) = 0. Indeed, from (10), ax must be of the
form ax (n,m) = knm, with k = ay (1, 1), but in order to satisfy (13), k must
be idempotent: k& = k2. The only two natural numbers with this property
are k =0and k = 1.
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