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Abstract In this paper we study a generalization of the notion of categorical
semidirect product, as defined in [6], to a non-protomodular context of cate-
gories where internal actions are induced by points, like in any pointed variety.
There we define semidirect products only for regular points, in the sense we ex-
plain below, provided the Split Short Five Lemma between such points holds,
and we show that this is the case if the category is normal, as defined in [12].
Finally, we give an example of a category that is neither protomodular nor
Mal’tsev where such generalized semidirect products exist.
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1 Introduction

The categorical definition of semidirect products was introduced by D. Bourn
and G. Janelidze in [6], where they proved that, in the category of groups, this
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E-mail: martins.ferreira@ipleiria.pt

A. Montoli
CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
E-mail: montoli@mat.uc.pt

M. Sobral
CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
E-mail: sobral@mat.uc.pt



2 Nelson Martins-Ferreira et al.

notion coincides with the classical one.

A characterization of pointed categories with categorical semidirect prod-
ucts was given in [14]. The existence of such products implies, in particular,
that the category is protomodular. However there are many non-protomodular
varieties where classical semidirect products exist and play an important role,
like the category of monoids (and the same for the category of monoids with
operations introduced in [15]).

The present paper gives a generalization of the concept of categorical
semidirect products to the context of non-protomodular categories, by restrict-
ing attention to an equivalence between the category of regular points (i.e.
points such that the kernel and the section are jointly strongly epimorphic)
and the category of internal actions, rather than demanding an equivalence
involving the category of all points as in the original definition of semidirect
products by D.Bourn and G.Janelidze [6]. We show that, in a normal variety
and also in a Barr-exact Mal’tsev normal category, the category of regular
points is equivalent to that of internal actions. This is then used to obtain the
generalized semidirect product, which can only involve regular points rather
than arbitrary points.

We recall that a category is Barr-exact [1] if it has pullback stable coequal-
izers of equivalence relations and every equivalence relation is the kernel pair
of some morphism. A finitely complete category is Mal’tsev [7] if every internal
reflexive relation is an equivalence relation. A pointed, finitely complete cate-
gory is protomodular [5] if the Split Short Five Lemma holds in it. A pointed
regular category is normal [12] if every regular epimorphism is a cokernel.

The present paper complements the article [15], in the sense that [15]
studies actions and semidirect products defined “externally” in the context
of monoids with operations, analogously to the well-known construction for
groups. It then relates the crossed modules defined using these semidirect
products to particular internal categories called Schreier internal categories.
The article then shows that certain conditions imply that these external ac-
tions are equivalent to the internal ones.

In contrast, the present article does not restrict itself to the context of
monoids with operations, and focuses on internal actions and categorical semidi-
rect products, rather than external ones, in the context of pointed non-protomo-
dular categories where every internal action is strict in the sense of [14]. In this
case, if the category satisfies the Split Short Five Lemma for regular points,
then these points correspond to the internal actions via the generalized semidi-
rect products.
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The example of implication algebras shows that there are categories that
are neither protomodular nor Mal’tsev where such generalized semidirect prod-
ucts exist.

2 Internal actions and categorical semidirect products

We start recalling the categorical definition of semidirect product introduced
in [6]. For an object B of a category C, we will denote by Pt(B) the category
of points (i.e. split epimorphisms) in C with codomain B.

Definition 21. ([6], Definition 3.2) A category C with split pullbacks is said
to be a category with semidirect products if, for any arrow p : E → B in C, the
pullback functor p∗ : Pt(B) → Pt(E) (has a left adjoint and) is monadic.

In this case, denoting by T p the monad defined by this adjunction, given a
T p-algebra (D, ξ) the semidirect product (D, ξ)o (B, p) is the domain of the
object in Pt(B) corresponding to (D, ξ) via the canonical equivalence Φ:

[Pt(E)]T
p

��
⊢

Pt(B)

Φ

99t
t

t
t

t

p∗
//⊥ Pt(E)

p!oo

OO
(1)

If C has split pullbacks, that is if we can define p∗ for every morphism p,
split pushouts of monomorphisms, so that the functors p∗ have left adjoints
p!, and an initial object 0, then it is enough to consider the functors iB

∗ for
the unique morphisms iB : 0 → B:

Proposition 22. ([16], Corollary 3) Let C be a category with finite limits,
pushouts of split monomorphisms and initial object. Then the following state-
ments are equivalent:

(i) all pullback functors i∗B defined by the initial arrows are monadic;
(ii) for any morphism p in C, the pullback functor p∗ is monadic, i.e. C admits

semidirect products.

When the category C is pointed, the algebras for the monad (T iB , η, µ) are
called internal actions in [4] and the endofunctor T iB is usually denoted by
B♭(−).

We recall that ηX and µX are the unique morphisms such that k0ηX = ιX
and k0µX = [k0, ιB]k

′
0, as displayed in the diagrams

B♭X
k0 // X +B

X

ηX

OO

ιX

::uuuuuuuuuu

, B♭(B♭X)

µX

��

k′
0 // (B♭X) +B

[k0,ιB ]

��
B♭X

k0

// X +B,
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where k0 and k′0 denote the kernels of [0, 1] : X +B → B and of [0, 1] : (B♭X) +B → B,
respectively.

The algebras for this monad are pairs (X, ξ : B♭X → X) satisfying the
usual conditions:

ξηX = 1X , and ξµX = ξ(1♭ξ).

We denote by Act(B) the category of algebras for the monad B♭(−), i.e.
the category of internal actions, and by ΦB : Pt(B) → Act(B) the comparison
functor of the adjunction iB! ⊣ i∗B .

3 The comparison adjunction

Let C be a pointed, finitely complete and finitely cocomplete category. Then,
in particular, the comparison functor ΦB has a left adjoint LB , for every object
B ∈ C. In this section we provide an explicit description of the corresponding
comparison adjunction between the category of internal actions and the cate-
gory of points.

Given a point (A, p, s) in Pt(B), ΦB(A, p, s) is a pair (X, ξ) where X is the
kernel of p and ξ is the unique morphism induced by the universal property of
the kernel, as in the following diagram:

B♭X
k0 //

ξ

��

X +B
[0,1] //

[k,s]

��

B
ιB

oo

X
k

// A
p // B.
s

oo

Given an internal action (X, ξ) ∈ Act(B), consider the diagram

B♭X
k0 //

ξ

��

X +B
[0,1] //

q

��

B
ιB

oo

X
qιX

// Q
pξ // B,
sξ

oo

where q is the coequalizer of k0 and ιXξ, sξ = qιB and pξ is defined by
the universal property of q, since [0, 1]k0 = 0 = [0, 1]ιXξ. Hence LB(X, ξ) =
(Q, pξ, sξ). We have that pξqιX = 0 but, in general, qιX is not the kernel of pξ.
These are the object-functions of the two functors, their definition on arrows
being straightforward.

The largest equivalence induced by the comparison adjunction LB ⊣ ΦB is
the adjoint equivalence

Fix(c)
ΦB

// Fix(u)∼
LBoo
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between the full subcategories Fix(c) of Pt(B) and Fix(u) of Act(B) whose
objects are those for which the counit c and the unit u of the adjunction
LB ⊣ ΦB are isomorphisms, respectively.

Let (A, p, s) ∈ Pt(B). Consider the diagram

B♭X
k0 //

ξ′·B♭u(X,ξ)

""D
DD

DD
DD

DD

ξ

��

X +B
[0,1] //

q

""E
EE

EE
EE

EE

[k,s]

��

B
ιB

oo

??
??

??
??

??
??

??
??

X ′ k′
// Q

pξ //

c(A,p,s)

||

B
sξ

oo

��
��
��
��

��
��
��
��

X

u(X,ξ)

<<

k
// A

p // B,
s

oo

(2)

where (X, ξ) = ΦB(A, p, s), (Q, pξ, sξ) = LB(X, ξ), and k and k′ are the ker-
nels of p and pξ, respectively. The two dotted morphisms are the component
of the unit u and the counit c of the adjunction LB ⊣ ΦB: starting with
(X, ξ) ∈ Act(B), u(X,ξ) is the unique morphism such that k′u(X,ξ) = qιX ,
while, starting with (A, p, s) ∈ Pt(B), c(A,p,s) is the unique morphism such
that c(A,p,s)q = [k, s].

Therefore we have that Fix(c) is the full subcategory of Pt(B) whose ob-
jects are the points (A, p, s) such that the induced morphism [k, s] from the
coproduct X +B is the coequalizer of k0 and ιXξ and Fix(u) is the full sub-
category of Act(B) whose objects are the internal actions (X, ξ) such that qιX
is the kernel of pξ.

From now on, we will assume, in addition, that C is regular. We are going
to analyze the categories Fix(u) and Fix(c). Let us start with the actions:

Proposition 31. Let (X, ξ) be an internal action; the following conditions
are equivalent:

(i) (X, ξ) ∈ Fix(u), i.e. u(X,ξ) is an isomorphism;
(ii) qιX is a monomorphism;
(iii) the following square is a pullback:

B♭X
k0 //

ξ

��

X +B

q

��
X

qιX
// Q.
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Proof Consider the following diagram, where k′ is the kernel of pξ:

B♭X
k0 //

ξ

��

X +B
[0,1] //

q

��

B
ιB

oo

X

u(X,ξ)

��

qιX
// Q

pξ // B.
sξ

oo

X ′
k′

::uuuuuuuuuu

Let us first observe that the square

B♭X
k0 //

u(X,ξ)ξ

��

X +B

q

��
X ′

k′
// Q

is a pullback. In fact, this is a particular case of the following known fact: in
any commutative diagram

A

α

��

k // B

β

��

f // C

γ

��
A′

k′
// B′

f ′
// C ′,

if k is a kernel of f , k′ is a kernel of f ′ and γ is a monomorphism, then the
left-hand side square is a pullback.

Hence, since the category C is regular and q is a regular epimorphism,
also u(X,ξ)ξ is, and so u(X,ξ) is always a regular epimorphism. Moreover, since
k′u(X,ξ) = qιX and k′ is a monomorphism, we have that u(X,ξ) is a monomor-
phism (and hence an isomorphism) if and only if qιX is a monomorphism. This
proves the equivalence between conditions (i) and (ii).

Let us now prove that (ii) implies (iii). Suppose that qιX is a monomor-
phism. If f : C → X and g : C → X +B are morphisms such that qg = qιXf ,
then

[0, 1]g = pξqg = pξqιXf = 0,

and hence there exists a unique morphism t : C → B♭X such that k0t = g. It
remains to prove that ξt = f , but this follows from the fact that

qιXξt = qk0t = qg = qιXf

and the fact that qιX is a monomorphism.
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Finally, let us prove that (iii) implies (ii). Let f1, f2 : C → X be such that
qιXf1 = qιXf2. Consider the following diagram:

P

h

��

g1

��
g2

��

q̄ // C

f1
��

f2
��

B♭X

k0

��

ξ / / X

qιX

��
X +B

q
// Q,

where the square below is a pullback and P is the pullback of q along qιXf1 =
qιXf2. The two dotted arrows are induced by the universal property of the
pullback, and we have

k0gi = h, and ξgi = fiq̄, i = 1, 2.

But k0 is a monomorphism, so g1 = g2 and

f1q̄ = ξg1 = ξg2 = f2q̄.

Now q̄ is a regular epimorphism (because q is and the category is regular),
hence f1 = f2 and qιX is a monomorphism.

Internal actions satisfying Condition (iii) above were called strict in [14].
Under regularity of C, they are exactly the objects of Fix(u), as proved in
Proposition 31, and so we denote this category by StrAct(B). We point out
that these are exactly what M. Hartl and B. Loiseau called internal actions in
[9], in the context of homological categories.

The points for which the morphism [k, s] is the coequalizer of k0 and
ιXξ were called free split epimorphims in [11]. Here we will denote Fix(c)
by FPt(B) and call it the category of free points. By RegPt(B) we denote the
category of what we call regular points over B, i.e. points (A, p, s) such that
[k, s] is a regular epimorphism. It is clear that we have the inclusions

FPt(B) ⊆ RegPt(B) ⊆ Pt(B).

Both inclusions above are strict, in general. For example, in the category of
monoids, if N is the monoid of natural numbers with the usual addition, the
point

N
⟨1,0⟩ // N× N

π2 // N;
⟨1,1⟩
oo

is not regular, because [⟨1, 0⟩, ⟨1, 1⟩] : N+ N → N× N is not a surjective ho-
momorphism (hence a regular epimorphism): for instance, the element (0, 1) ∈
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N × N does not belong to its image. Moreover, as follows from Section 4 in
[15], the point

N
⟨1,0⟩ // A

π2 // N,
⟨0,1⟩
oo

where A is, as a set, the cartesian product of N with itself, and the monoid
operation is defined by

(a1, b1) + (a2, b2) = (a1 + 2b1a2, b1 + b2)

is regular but not free. In fact, the only free point over N with kernel N is the
direct product N× N.

It is known (see, for example, [2], Theorem 3.3.13) that the comparison
functor of an adjunction is fully faithful if and only if all the components of
its counit are regular epimorphisms. In particular, for the adjunction

Pt(B)
i∗B

//⊥ C, ,
iB!oo

the components of the counit are ε(A,p,s) = [k, s] and so the comparison func-
tor Φ : Pt(B) → Act(B) is fully faithful, i.e. every point over B is free, if and
only if [k, s] is a regular epimorphism for every point (A, p, s). For a regular
category, this is equivalent to the fact that C is protomodular (this is a con-
sequence of Lemma 3.1.22 in [3]).

Let us recall that a pointed category is protomodular if and only if the
Split Short Five Lemma holds: for every morphism of points, i.e. for every
commutative diagram of the form

X ′ k′
//

g

��

A′
p′

//

f

��

B′

s′
oo

h

��
X

k
// A

p // B,
s

oo

(3)

where p′s′ = 1, ps = 1, k′ is a kernel of p′ and k is a kernel of p, if g and
h are isomorphisms, then also f is. Using the well-known fact that ΦB is an
equivalence when LB is fully faithful and ΦB is conservative, which follows
from the triangular identity ΦB c · u ΦB = id, we have the following:

Theorem 32. ([14], Theorem 3.1) A pointed, regular, finitely complete and
finitely cocomplete category C has semidirect products if and only if the Split
Short Five Lemma holds in C and every action is strict.
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4 The non-protomodular case

Now we are going to consider categories that are not protomodular, but where
every action is strict. They obviously don’t have semidirect products in the
sense of [6], however we show that it is possible to obtain a sort of generalized
semidirect product in this context.

Sufficient conditions for the internal actions in a category C to be strict
were presented in [14]: this is true when C is a pointed variety of universal
algebras and also when it is a Barr-exact, Mal’tsev ideal determined category.
We recall from [10] the definition of an ideal determined category:

Definition 41. A pointed category C with finite limits and finite colimits is
said to be ideal determined if the two following conditions hold:

(A) every morphism admits a pullback stable (normal epi, mono)-factorization,
where a normal epimorphism is a cokernel of some morphism;

(B) for every commutative diagram

F
q //

w

��

C

v

��
E

p
// B,

where p and q are normal epimorphisms, v and w are monomorphisms, if
w is normal, then so is v.

If C is regular, Condition (A) simply means that every regular epimor-
phism is normal. So, in our context, C satisfies Condition (A) if and only if it
is normal in the sense of [12].

A pointed, regular, finitely complete and finitely cocomplete category C is
normal if and only if every morphism with trivial kernel is a monomorphism,
and this is equivalent to the condition that every split epimorphism with triv-
ial kernel is an isomorphism ([12], Propositions 3.9 and 3.12).

Let us also mention that S. Mantovani proved in [13] that a pointed Barr-
exact Mal’tsev category is ideal determined provided that it is normal.

Lemma 42. The Split Short Five Lemma holds for free points, i.e. if in the
diagram (3) the two points involved are free and g and h are isomorphisms,
then so is f .
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Proof Without loss of generality, we can suppose that g and h are identities
and consider the diagram

B♭X
k0 //

ξ′

""D
DD

DD
DD

DD

ξ

��

X +B
[0,1] //

[k′,s′]

##G
GG

GG
GG

GG

[k,s]

��

B
ιB

oo

@@
@@

@@
@@

@@
@@

@@
@@

X

yy
yy
yy
yy

yy
yy
yy
yy

k′
// A′

p′
//

f

{{ww
ww
ww
ww
w

B
s′

oo

}}
}}
}}
}}

}}
}}
}}
}}

X
k // A

p // B.
s

oo

(4)

It is clear that f [k′, s′] = [k, s]; therefore the triangle on the left commutes,
and so ξ = ξ′. Since the points involved are free, both [k, s] and [k′, s′] are
coequalizers of the pair (k0, ιXξ), and this implies that f is an isomorphism.

Theorem 43. Let C be a pointed regular category with finite limits and finite
colimits, such that every internal action is strict. The following conditions are
equivalent:

(i) RegPt(B) = FPt(B) for every B ∈ C;
(ii) the Split Short Five Lemma holds for regular points.

Proof The implication (i)⇒ (ii) follows immediately from Lemma 42. To prove
the converse we consider the diagram

B♭X
k0 //

ξ′·B♭u(X,ξ)

""D
DD

DD
DD

DD

ξ

��

X +B
[0,1] //

q

""E
EE

EE
EE

EE

[k,s]

��

B
ιB

oo

??
??

??
??

??
??

??
??

X ′ k′
// Q

pξ //

c(A,p,s)

||

B
sξ

oo

��
��
��
��

��
��
��
��

X

u(X,ξ)

<<

k // A
p // B,
s

oo

(5)

where the point (A, p, s) is regular and q is the coequalizer of the pair (k0, ιxξ).
The morphism u(X,ξ) is an isomorphism by hypothesis, hence Condition (ii)
implies that c(A,p,s) is an isomorphism, too. This means that [k, s] is a coequal-
izer of the pair (k0, ιXξ), and so the point (A, p, s) is free.

Corollary 44. If the equivalent conditions of Theorem 43 hold, the categories
Act(B) and RegPt(B) are equivalent, for every object B ∈ C.

In particular, the equivalent conditions of Theorem 4.3 hold when the cat-
egory C is normal, as showed in the following proposition.

Proposition 45. For a pointed, regular, finitely complete and finitely cocom-
plete category C, the following conditions are equivalent:
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(i) C is normal;
(ii) in the following commutative diagram

X
k′

// A′ p′
//

f

��

B

X
k

// A
p

// B,

(6)

where k is the kernel of p and k′ is the kernel of p′, if f is a regular
epimorphism, then it is an isomorphism;

(iii) in the following commutative diagram

X
k′

// A′
p′

//

f

��

B
s′

oo

X
k

// A
p // B,
s

oo

where the two rows are points and the lower one is regular, f is an isomor-
phism.

Proof

(i) ⇒ (ii) We just have to prove that f has trivial kernel. Let c : C → A′ be a
morphism such that fc = 0. Hence 0 = pfc = p′c, and since k′ is the
kernel of p′, there exists a unique morphism t : C → X such that c = k′t.
Since

kt = fk′t = fc = 0,

and k is a monomorphism, it follows that t = 0 and thus also c = 0. Hence
Ker(f) is trivial.

(ii) ⇒ (iii) Given the diagram

X
k′

// A′
p′

//

f

��

B
s′

oo

X
k

// A
p // B,
s

oo

its commutativity implies that f [k′, s′] = [k, s], and since [k, s] is a regular
epimorphism, also f is. Hence the conclusion follows from (ii).

(iii) ⇒ (i) It is enough to prove that every split epimorphism with trivial kernel is
an isomorphism ([12], Propositions 3.9 and 3.12). Hence, given a split epi-
morphism f with trivial kernel, and section s, we consider the following
diagram:

0 // A
f //

f

��

B
s

oo

0 // B
1B // B.
1B

oo
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Since the lower point is clearly a regular point, condition (iii) implies that
f is an isomorphism.

Corollary 46. If the category C is normal, then the Split Short Five Lemma
holds for regular points.

Proof Condition (iii) in the previous Proposition obviously implies the Split
Short Five Lemma for regular points.

Corollary 46 implies that the equivalent conditions of Theorem 43 hold
when C is a normal variety and also when C is a Barr-exact Mal’tsev normal
category (which is then ideal determined, as already observed). So, in these
categories, internal actions are equivalent to regular points. This can be con-
sidered as a generalized semidirect product, in the sense that not every point
corresponds to an action, but only the regular ones. This generalized semidi-
rect product, although weaker, exists in a much wider context than the one
considered in [6]. A concrete example is the following.

Example 1 An implication algebra is a setX with a binary operation satisfying
the following axioms:

(1) (xy)x = x;
(2) (xy)y = (yx)x;
(3) x(yz) = y(xz),

for every x, y, z ∈ X.

As observed in [8], these axioms imply that xx = yy for every x, y ∈ X.
Hence 1 := xx is an equationally defined constant satisfying 1x = x for every
x ∈ X. Hence the category of non-empty implication algebras is pointed and,
as proved in [8], it is a normal variety (actually it is an ideal determined
category). But, as follows from a counterexample in [17], it is not a Mal’tsev
category (because equivalence relations are not permutable), and hence it is
not protomodular. Moreover, in [10], the authors used this example to prove
that there are even ideal determined Mal’tsev varieties (hence Barr-exact ideal
determined Mal’tsev categories) which are not protomodular.
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