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Abstract. We show that the special Schreier extensions of monoids, with
abelian kernel, admit a Baer sum construction, which generalizes the clas-
sical one for group extensions with abelian kernel. In order to do that, we
characterize the special Schreier extensions by means of factor sets.

1. Introduction

It is a well-known fact that, in the category of abelian groups, every set Ext(B,X)
of isomorphic classes of extensions of an abelian group B by an abelian group X is
endowed with an abelian group structure, called the Baer sum of extensions. This
abelian group structure is related with cohomology: indeed, the group Ext(B,X)
is isomorphic to the second cohomology group of B with coefficients in X. The
same fact is true, more generally, in every category of R-modules, where R is a
commutative ring with unit.

In the category of groups the situation is more complicated. In fact, even when
X is an abelian group, it is not possible to endow Ext(B,X) with an abelian
group structure which turns it isomorphic to a cohomology group. In order to have
such a result, it is necessary to make a partition of the set Ext(B,X) into subsets
Ext(B,X,φ) of isomorphic classes of extensions of B by X which induce a fixed
action φ : B → Aut(X) of B on X (see, for example, [4] for more details). Any of
these subsets can be endowed with an abelian group structure (called again Baer
sum) which turns it isomorphic to the second cohomology group of B with coeffi-
cients in the B-module φ : B → Aut(X).

The aim of the present paper is to describe a Baer sum construction for exten-
sions of monoids. The extensions which allow such kind of construction are the
so-called special Schreier extensions [1] with abelian kernel. The notion of special
Schreier extension derives from the one of Schreier split epimorphism. This latter
one has been introduced in [7] (although it appears implicitly already in [9]), and
further developed in [2, 1]. The notion of Schreier split epimorphisms of monoids is
important because it is equivalent to the classical notion of monoid action, where an
action of a monoid B on a monoid X is a monoid homomorphism φ : B → End(X),
End(X) being the monoid of endomorphisms of X. Special Schreier extensions are
then those surjective homomorphisms such that their kernel congruence gives rise
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to two Schreier split epimorphisms (all the needed details about these notions are
recalled in Section 2).

The existence of a Baer sum construction for special Schreier extensions with
abelian kernel was deduced in [1] by categorical arguments. Our goal here is to
give a concrete and explicit description of the Baer sum. We show that, with every
special Schreier extension with abelian kernel, it is possible to associate a factor set,
similarly to what happens for group extensions. Our main result, Theorem 3.7, says
that, given a monoid B, an abelian group X and an action φ : B → End(X) of B
on X, the set SExt(B,X,φ) of isomorphic classes of special Schreier extensions of
B by X inducing the action φ is in bijection with the quotient of the abelian group
of factor sets by the subgroup of the so-called inner factor sets. This fact allows to
endow SExt(B,X,φ) with an abelian group structure, which is the generalization of
the classical Baer sum for group extensions. The study of the relationship between
this abelian group structure and the cohomology of monoids is material for a future
work.

2. Schreier split epimorphisms and special Schreier extensions

In this section we recall from [7, 2, 1] the notions of Schreier split epimorphism,
Schreier congruence and special Schreier extension.

2.1. Schreier split epimorphisms.

Definition 2.1 ([7], Definition 2.6). A split epimorphism A
f

// B
soo of monoids

is said to be a Schreier split epimorphism when, for any a ∈ A, there exists a unique
x in the kernel Ker(f) of f such that a = x · sf(a).

In other terms, a Schreier split epimorphism is a split epimorphism (A,B, f, s)
equipped with a unique set-theoretical map q : A 99K Ker(f), called the Schreier
retraction of (A,B, f, s), with the property that, for any a ∈ A, we have:

a = q(a) · sf(a).
The definition of Schreier split epimorphism of monoids was first implicitly con-

sidered in [9], in connection with the notion of Schreier internal category (although
the name Schreier extension was already used, with a different meaning, in older
papers, see for example [11]). In [7] it was not only made explicit, but also ex-
tended to a wider class of algebraic structures, called monoids with operations (the
name is inspired by the analogous notion of groups with operations in the sense of
Porter [10], see also [8]). This class includes, beyond monoids, also commutative
monoids, semirings, semilattices with a bottom element, distributive lattices and
several other examples (see [7] for more details). Later, in [6], the definition of
Schreier split epimorphism was considered in the wider context of Jónsson-Tarski
varieties, i.e. varieties (in the sense of universal algebra) whose corresponding the-
ories contain a unique constant 0 and a binary operation + satisfying the equalities
0 + x = x+0 = x for any x. For the purposes of the present paper, we restrict our
attention only to the case of monoids.

Proposition 2.2 ([2], Proposition 2.4). A split epimorphism (A,B, f, s) is a Schreier
split epimorphism if and only if there exists a set-theoretical map q : A 99K Ker(f)
such that:

q(a) · sf(a) = a

q(x · s(b)) = x

for every a ∈ A, x ∈ Ker(f) and b ∈ B.
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We showed in [7] (see also Section 5.2 in [1]) that the Schreier split epimorphisms
of monoids correspond to the monoid actions, where an action of a monoid B on
a monoid X is just a monoid homomorphism φ : B → End(X), End(X) being
the monoid of endomorphisms of X. Let us briefly recall how the equivalence

is obtained. Given a Schreier split epimorphism A
f

// B
soo with kernel X, the

corresponding action φ : B → End(X) is given by

φ(b)(x) = q(s(b) · x).

Conversely, given an action φ : B → End(X), we can build a Schreier split epimor-

phism A
f

// B
soo where A is the semidirect product of B and X w.r.t. φ: it is the

cartesian product X ×B, equipped with the following monoid operation:

(x1, b1) · (x2, b2) = (x1 · φ(b1)(x2), b1 · b2).

The following properties of the Schreier retraction will be useful later.

Proposition 2.3 ([1], Proposition 2.1.5). Given a Schreier split epimorphism
(A,B, f, s), we have:

(a) q(x) = x for every x ∈ Ker(f);
(b) qs is the null homomorphism, i.e. qs(b) = 1 for every b ∈ B;
(c) q(1) = 1;
(d) if b ∈ B and x ∈ Ker(f), then q(s(b) · x) · s(b) = s(b) · x;
(e) for every a, a′ ∈ A q(a · a′) = q(a) · q(sf(a) · q(a′)).

Proof. (a) it is a straighforward consequence of the second identity in Propo-
sition 2.2.

(b) for b ∈ B we have:

s(b) = 1 · sf(s(b))

and the uniqueness of q gives that qs(b) = 1 for every b ∈ B.
(c) obviously we have 1 = 1 · sf(1).
(d) for any b ∈ B and any x ∈ Ker(f) we have:

s(b) · x = q(s(b) · x) · sf(s(b) · x) =

= q(s(b) · x) · sfs(b) · sf(x) = q(s(b) · x) · s(b).

(e) q(a · a′) is the unique element of Ker(f) such that

a · a′ = q(a · a′) · sf(a · a′) = q(a · a′) · sf(a) · sf(a′),

so it suffices to prove that

q(a) · q(sf(a) · q(a′)) · sf(a) · sf(a′) = a · a′.

By point (d), we have that

q(sf(a) · q(a′)) · sf(a) = sf(a) · q(a′)

and hence

q(a) · q(sf(a) · q(a′)) · sf(a) · sf(a′) = q(a) · sf(a) · q(a′) · sf(a′) = a · a′.

�
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2.2. Schreier internal relations. We call internal relation on a monoid A a
relation R which is compatible with the monoid operation. It is known that it can
be described equivalently as a submonoid of the product A×A. By considering the
homomorphic inclusion

R� A×A

and by composing it with the two projections of the product, we get two parallel
homomorphisms

R
r1 //
r2

// A,

that are the first and the second projection of the relation. More explicitly, denot-
ing an element of R by a pair (x, y), such that x and y belong to A and are linked
by the relation R, we have that r1(x, y) = x and r2(x, y) = y.

An internal relation is reflexive when r1 and r2 have a common section σ : A→ R.
In the notation above, we have that σ(a) = (a, a) for any a ∈ A.

Definition 2.4 ([2], Definition 5.1). An internal reflexive relation of monoids

R
r2

//

r1 //
Aσoo

is a Schreier reflexive relation if the split epimorphism (R,A, r1, σ) is a Schreier
one.

It is well known that, in a Malt’sev variety [5], every internal reflexive relation
is a congruence. This is false for the variety of monoids. However, a partial version
of this result can be recovered for Schreier reflexive relations:

Theorem 2.5 ([2], Theorem 5.5). Any Schreier reflexive relation is transitive. It
is a congruence if and only if Ker(r1) is a group.

A Schreier reflexive relation which is a congruence will be called a Schreier
congruence. We will be particularly interested in a specific kind of congruences,
the so-called kernel congruences: given a monoid homomorphism f : A → B, the
corresponding kernel congruence Eq(f) is defined by: a1Eq(f)a2 if and only if
f(a1) = f(a2). We represent Eq(f) with the following diagram:

Eq(f)
f2

//

f1 //
A,⟨1,1⟩oo

where ⟨1, 1⟩ is the diagonal of A: ⟨1, 1⟩(a) = (a, a). Let us observe that, thanks to
the symmetry of the relation, the split epimorphisms (f1, ⟨1, 1⟩) and (f2, ⟨1, 1⟩) are
isomorphic. Hence, if one of the two is a Schreier split epimorphism, the other is
such, too.

2.3. Special Schreier homomorphisms. We recall from [1, 3] the following no-
tion:

Definition 2.6. A monoid homomorphism f : A→ B is a special Schreier homo-
morphism if the kernel congruence Eq(f) is a Schreier congruence.

As a consequence of Theorem 2.5, we have that the kernel of a special Schreier ho-
momorphism, which is isomorphic to the kernel of the projections f1, f2 : Eq(f) → A,
is a group. A Schreier split epimorphism is not always a special Schreier homomor-
phism: it happens if and only if its kernel is a group ([3], Proposition 6.9).



BAER SUMS OF SPECIAL SCHREIER EXTENSIONS OF MONOIDS 5

In the rest of the paper we will restrict our attention to special Schreier surjective
homomorphisms. We first recall the following fact:

Proposition 2.7 ([1], Proposition 7.1.3). Every special Schreier surjective homo-
morphism f : A → B is the cokernel of its kernel. In other terms, the following
sequence is an extension of B by Ker(f):

Ker(f) // k // A
f // // B.

Thanks to the previous proposition, a special Schreier surjective homomorphism
can be called a special Schreier extension. Let f : A → B be a special Schreier
extension. Then the split epimorphism

X
⟨k,0⟩ // Eq(f)

f2

// A,
⟨1,1⟩oo

where ⟨k, 0⟩ is the morphism sending x ∈ X to (x, 1), is a Schreier split epimor-
phism. Combining Proposition 2.2 and Lemma 2.3 we get the following:

Corollary 2.8. Let f : A → B be a special Schreier extension. Denote by X the
kernel of f . Then there exists a (unique) map q : Eq(f) 99K X which satisfies the
following conditions, for every a ∈ A, (a1, a2), (a

′
1, a

′
2) ∈ Eq(f) and x ∈ X:

(i) q(a1, a2) · a2 = a1;
(ii) q(x · a, a) = x;
(iii) q(a · x, a) · a = a · x;
(iv) q(a1 · a′1, a2 · a′2) = q(a1, a2) · q(a2 · q(a′1, a′2), a2).

Proof. The first two conditions are just the reformulation of the conditions of Propo-
sition 2.2. Conditions (iii) and (iv) are the reformulation of Conditions (d) and (e)
of Lemma 2.3, respectively. �

3. Baer sums of special Schreier extensions with abelian kernel

The aim of this section is to give a description of the Baer sum of special Schreier
extensions of monoids with abelian kernel (i.e. whose kernel is an abelian group),
in analogy with the Baer sums of group extensions. In the group-theoretical case,
it is not possible to define the Baer sum in the whole set Ext(B,X), where B and
X are groups and X is abelian. It is necessary to make a partition of this set into
the subsets Ext(B,X,φ), where φ : B → Aut(X) is a fixed group action of B on
X, and Ext(B,X,φ) is the set of isomorphic classes of extensions of B by X which
induce the action φ.

In the case of monoids we have to make a similar partition of the set SExt(B,X)
of isomorphic classes of special Schreier extensions of a monoid B by an abelian
group X. We recall that the Short Five Lemma holds for special Schreier extensions
([1], Proposition 7.2.1). Hence, two special Schreier extensions of B by X are
isomorphic if and only if there is a morphism between them, as it happens in the
case of group extensions. In order to make the partition we need, we first have to
recall how to associate, with any element of SExt(B,X), an action of B on X. Let
f : A → B be a special Schreier extension with abelian kernel X. As we observed
in the previous section, the Schreier split epimorphism

X
⟨k,0⟩ // Eq(f)

f2

// A
⟨1,1⟩oo
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determines a monoid action ψ : A → End(X) of A on X. We can then define an
action φ : B → End(X) of B on X, which is given by

φ(b)(x) = ψ(a)(x) = q((a, a) · (x, 1)) = q(a · x, a) for all a ∈ A such that f(a) = b.

This action of B on X is well defined (i.e. it does not depend on the choice of the
inverse images of the elements of B) because X is an abelian group. Hence the set
SExt(B,X) of isomorphic classes of special Schreier extensions of B by X can be
partitioned into the subsets SExt(B,X,φ) of isomorphic classes of special Schreier
extensions which induce the action φ. We will endow any of this subsets with an
abelian group structure (the Baer sum). In order to do this, we will describe special
Schreier extensions in terms of factor sets. We start by introducing the following
definition, which is a generalization of the classical notion of factor sets for group
extensions:

Definition 3.1. Given a monoid B, an abelian group X and an action
φ : B → End(X) of B on X, a factor set is a map g : B × B → X which sat-
isfies, for all b, b1, b2, b3 ∈ B, the following conditions:

(i) g(b, 1) = g(1, b) = 1;
(ii) g(b1, b2) · g(b1 · b2, b3) = φ(b1)(g(b2, b3)) · g(b1, b2 · b3).

We observe that the conditions above are the necessary and sufficient conditions
in order to have that the cartesian product X × B, equipped with the following
binary operation, is a monoid:

(1) (x1, b1) · (x2, b2) = (x1 · φ(b1)(x2) · g(b1, b2), b1 · b2).
Let

(2) X // k // A
f // // B

be a special Schreier extension with abelian kernel. We can associate with it a
factor set in the following way: let s : B → A be a set-theoretical section of f (it
exists, since f is surjective). Let us choose s such that s(1) = 1. Then, for any
b1, b2 ∈ B:

f(s(b1) · s(b2)) = b1 · b2 = f(s(b1 · b2)).
Hence the pair (s(b1) ·s(b2), s(b1 ·b2)) belongs to Eq(f). Consider then the following
diagram:

Eq(f)

f2

��
f1

��

q

xx
X //

k
//

⟨k,0⟩

88qqqqqqqqqqqq
A

f
// //

⟨1,1⟩

OO

B,

where q is the Schreier retraction corresponding to the Schreier split epimorphism
(f2, ⟨1, 1⟩). Then we can define a map g : B ×B → X by putting:

(3) g(b1, b2) = q(s(b1) · s(b2), s(b1 · b2)).
In order to prove that this map g is a factor set, we need the following lemma:

Lemma 3.2. If a1, a2, a3 ∈ A are such that f(a1) = f(a2) = f(a3), then

q(a1, a2) · q(a2, a3) = q(a1, a3).

Proof. By Condition (i) of Corollary 2.8, q(a1, a3) is the unique element of X such
that q(a1, a3) · a3 = a1. Then it suffices to show that

q(a1, a2) · q(a2, a3) · a3 = a1.

Using twice Condition (i) of Corollary 2.8, we get:

q(a1, a2) · q(a2, a3) · a3 = q(a1, a2) · a2 = a1.
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�

Proposition 3.3. Given a special Schreier extension (2) with abelian kernel, the
map g defined as in (3) is a factor set.

Proof. The first factor set condition is easy to check, indeed for every b ∈ B we
have that:

g(b, 1) = g(1, b) = q(s(b), s(b)) = q⟨1, 1⟩(s(b)) = 1,

since q⟨1, 1⟩ is the null homomorphism by Proposition 2.3 (b). It remains to prove
that

g(b1, b2) · g(b1 · b2, b3) = φ(b1)(g(b2, b3)) · g(b1, b2 · b3)
for all b1, b2, b3 ∈ B. The expression on the left is, by definition, equal to

q(s(b1) · s(b2), s(b1 · b2)) · q(s(b1 · b2) · s(b3), s(b1 · b2 · b3)).
Using Proposition 2.3 (b), we have that q(s(b1 · b2), s(b1 · b2)) = 1. Hence the
previous expression is equal to

q(s(b1) · s(b2), s(b1 · b2)) · q(s(b1 · b2), s(b1 · b2)) · q(s(b1 · b2) · s(b3), s(b1 · b2 · b3)).
Using Corollary 2.8 (iv), this is the same as

q(s(b1) · s(b2) · s(b3), s(b1 · b2) · s(b3)) · q(s(b1 · b2) · s(b3), s(b1 · b2 · b3))
and, by Lemma 3.2, this is q(s(b1) · s(b2) · s(b3), s(b1 · b2 · b3)). Concerning the
expression on the right, we have:

φ(b1)(g(b2, b3)) · g(b1, b2 · b3) =

= φ(b1)(q(s(b2) · s(b3), s(b2 · b3))) · q(s(b1) · s(b2 · b3), s(b1 · b2 · b3)) =
= q(s(b1) · q(s(b2) · s(b3), s(b2 · b3)), s(b1)) · q(s(b1) · s(b2 · b3), s(b1 · b2 · b3)).

Adding q(s(b1), s(b1)) = 1 in the middle, we get

q(s(b1) ·q(s(b2) ·s(b3), s(b2 ·b3)), s(b1)) ·q(s(b1), s(b1)) ·q(s(b1) ·s(b2 ·b3), s(b1 ·b2 ·b3)).
Using Corollary 2.8 (iv) and the fact that X is commutative, we obtain that this
expression is equal to

q(s(b1) · s(b2) · s(b3), s(b1) · s(b2 · b3)) · q(s(b1) · s(b2 · b3), s(b1 · b2 · b3))
and, using again Lemma 3.2 this is the same as q(s(b1) · s(b2) · s(b3), s(b1 · b2 · b3)).
So the two expressions are equal, and this concludes the proof. �

Starting with a special Schreier extension (2) with abelian kernel, if we associate
with it a factor set as we described before and we equip the cartesian product X×B
with the monoid operation (1), we obtain an extension which is isomorphic to the
one we started with:

Proposition 3.4. Given a special Schreier extension X // k // A
f // // B with

abelian kernel X, define a factor set g : B ×B → X as in (3), where s is a section
of f such that s(1) = 1. Then we get isomorphisms of extensions as in the following
diagram:

(4) X // k // A

β

��

f // // B

X //
⟨1,0⟩

// X ×B

α

OO

πB

// // B,

where the monoid operation on X × B is defined as in (1), πB is the product
projection, and ⟨1, 0⟩ sends any x ∈ X to (x, 1).
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Proof. The map α : X ×B → A is defined by

α(x, b) = x · s(b);
its inverse β : A→ X ×B is given by

β(a) = (q(a, sf(a)), f(a)).

These two maps are mutually inverse, indeed the pair (a, sf(a)) belongs to Eq(f);
hence, thanks to the properties of the Schreier retraction q (Proposition 2.2), we
have that:

(a, sf(a)) = ⟨k, 0⟩q(a, sf(a)) · ⟨1, 1⟩(sf(a)) = (q(a, sf(a)), 1) · (sf(a), sf(a)),
and so

a = q(a, sf(a)) · sf(a) = αβ(a).

Conversely,

βα(x, b) = β(x · s(b)) = (q(x · s(b), s(b)), b),
and we need to prove that q(x · s(b), s(b)) = x. But again, thanks to Proposition
2.2, we have that:

q(x · s(b), s(b)) = q((x, 1) · (s(b), s(b))) = q(⟨k, 0⟩(x) · ⟨1, 1⟩(s(b))) = x.

Moreover, α (and then also β) is a monoid homomorphism. In order to show this,
let us first recall that the monoid operation in X ×B is given explicitly by:

(x1, b1) · (x2, b2) = (x1 · φ(b1)(x2) · q(s(b1) · s(b2), s(b1 · b2)), b1 · b2),
and φ(b1)(x2) = q(s(b1) · x2, s(b1)). Hence
α((x1, b1) · (x2, b2)) = α(x1 · q(s(b1) · x2, s(b1)) · q(s(b1) · s(b2), s(b1 · b2)), b1 · b2) =

= x1 · q(s(b1) · x2, s(b1)) · q(s(b1) · s(b2), s(b1 · b2)) · s(b1 · b2).
Using twice Corollary 2.8 (i), we obtain that the last expression is equal to:

x1 · q(s(b1) · x2, s(b1)) · s(b1) · s(b2) = x1 · s(b1) · x2 · s(b2) = α(x1, b1) · α(x2, b2).
Finally, it is immediate to see that α and β are morphisms of extensions, i.e. that
they make all the squares in Diagram (4) commute. This concludes the proof. �

An immediate consequence of the previous proposition is the following fact,
which will be useful later on:

Corollary 3.5. Given a special Schreier extension X // k // A
f // // B with abelian

kernel X, every a ∈ A can be written in a unique way as a = x · s(b), with x ∈ X
and b ∈ B.

We described how we can associate a factor set g with any special Schreier
extension (2) with abelian kernel, by choosing a section s of f . If we choose a
different section s′ of f , again with s′(1) = 1, we get another factor set g′. Now we
are interested in understanding the relationship between these two factor sets. So,
let s and s′ be two chosen sections of f . Then, for every b ∈ B, fs(b) = fs′(b) and
hence (s′(b), s(b)) ∈ Eq(f). Thanks to the properties of the Schreier retraction q,
we have that

(s′(b), s(b)) = (q(s′(b), s(b)), 1) · (s(b), s(b)),
and hence

s′(b) = q(s′(b), s(b)) · s(b).
Let us write h(b) = q(s′(b), s(b)). In this way we associate with the pair (s, s′) a
map h : B → X. Now, for any b1, b2 ∈ B we have, on one hand

s′(b1) · s′(b2) = h(b1) · s(b1) · h(b2) · s(b2).
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This last expression, by Corollary 2.8 (iii), is the same as

h(b1) · q(s(b1) · h(b2), s(b1)) · s(b1) · s(b2) =
= h(b1) · φ(b1)(h(b2)) · s(b1) · s(b2) =

= h(b1) · φ(b1)(h(b2)) · g(b1, b2) · s(b1 · b2),
where the last equality holds because

g(b1, b2) · s(b1 · b2) = q(s(b1) · s(b2), s(b1 · b2)) · s(b1 · b2) = s(b1) · s(b2)
thanks to Corollary 2.8 (i).

On the other hand we have

s′(b1) · s′(b2) = g′(b1, b2) · s′(b1 · b2) = g′(b1, b2) · h(b1 · b2) · s(b1 · b2).
By comparing the two expressions, we obtain the equality

h(b1) · φ(b1)(h(b2)) · g(b1, b2) · s(b1 · b2) = g′(b1, b2) · h(b1 · b2) · s(b1 · b2).
Corollary 3.5 allows us to delete s(b1 · b2) from both sides of the equality, obtaining
the following one:

h(b1) · φ(b1)(h(b2)) · g(b1, b2) = g′(b1, b2) · h(b1 · b2).
Using the fact that X is an abelian group, and that every element in the equality
above belongs to X, we can rewrite the equality as follows:

(5) g′(b1, b2) · g(b1, b2)−1 = h(b1) · φ(b1)(h(b2)) · h(b1 · b2)−1.

If, in particular, f is a special Schreier split extension, i.e. there exists a section
s which is a monoid homomorphisms, then the factor set defined by means of this
homomorphic section is the zero map. Hence the factor sets corresponding to special
Schreier split epimorphisms are the following:

Definition 3.6. A factor set g is called inner factor set if it is of the form

g(b1, b2) = h(b1) · φ(b1)(h(b2)) · h(b1 · b2)−1

for some map h : B → X such that h(1) = 1.

We will denote by F(B,X,φ) the set of all the factor sets corresponding to a
given action φ : B → End(X), and by IF(B,X,φ) its subset of inner factor sets.
The set of all functions B ×B → X has an abelian group structure inherited from
the one of X. It is explicitly given by pointwise addition:

(g1 + g2)(b1, b2) = g1(b1, b2) · g2(b1, b2) for g1, g2 : B ×B → X.

It is not difficult to check that the set F(B,X,φ) is a subgroup of this group XB×B .
The unique non-trivial condition to check is Condition (ii) of Definition 3.1, but
it follows easily from the fact that φ is a monoid homomorphism from B to the
monoid End(X) of endomorphisms of X. Similarly, it is easy to see that the subset
IF(B,X,φ) of inner factor sets is a (normal) subgroup of F(B,X,φ).

All these facts, together with Proposition 3.4, give the following:

Theorem 3.7. The set SExt(B,X,φ) of isomorphic classes of special Schreier ex-
tensions of a monoid B by an abelian group X inducing the action
φ : B → End(X) is in bijection with the factor abelian group

F(B,X,φ)

IF(B,X,φ)
.

Using this bijection, we can endow SExt(B,X,φ) with an abelian group struc-
ture, which is the Baer sum we were looking for. The unit of this abelian group
is the isomorphic class of the split extension obtained by taking the semidirect
product of X and B with respect to the action φ.
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