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Abstract

We show that weak solutions of the degenerate p−Laplace equation

ut − div
(
|∇u|p−2∇u

)
= 0, p ≥ 2

in the whole space are constant if their growth at infinity is properly controlled in an
intrinsic manner.
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1 Introduction

A classical result from Complex Analysis asserts that if h : C → C is an entire, bounded
holomorphic function then h must be constant. This keystone result was originally proven
by the french mathematician Joseph Liouville back in the 19th century [6]. Nowadays results
of such a nature – usually called Liouville-type theorems – are spread all over the modern
theory of mathematical analysis and applications.

Within the theory of elliptic PDEs, the most basic Liouville theorem asserts that bounded,
harmonic functions, ∆h = 0, defined in Rn must be constant. There are quite a few different
ways to prove this result. Probably the simplest form is by exploring the mean value property
for harmonic functions, i.e., h(y) =

∫
Br(y)

h(x)dx: since h is bounded, the difference between
the average in balls centered at two points is o(1) as the radius tends to infinity. Despite its
elegancy, the above argument is confined to the Laplace equation. Moser, in his fundamental
work [9], noticed that a Liouville-type theorem could be derived by means of Harnack’s
inequality. In particular, bounded entire solutions to div(aij(x)∇u) = 0 must be constant,
provided aij is uniformly elliptic.

As a matter of fact, Moser’s argument for proving a Liouville-type theorem only requires
a one-sided bound on the solution. For evolutionary problems though, a one side bound is not
enough to conclude that solutions in Rn×R have to be constant. For example, u(x, t) = ex+t

is a non-constant solution to the heat equation ut − u′′ = 0 in R × R. Liouville’s theorem,
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as stated above, also fails to hold if the equation is non-homogeneous. This is easily verified:
the function x 7→ |x|2, for instance, is not constant and satisfies ∆(|x|2) = 2 in Rn.

Bernstein, in his study about global minimal surfaces, established that any entire solution
to a linear, uniformly elliptic equation in the plane,

a11(x, y)uxx + 2a12(x, y)uxy + a22(x, y)uyy = 0, in R2,

which grows sublinearly at infinity, must be constant. The proof of Bernstein’s theorem was
revisited in [3] and [7], and since then a number of other proofs were derived, see [8] for a
particularly striking one. The result can be seen as a refinement of Liouville’s Theorem – a
solution to a uniformly elliptic equations in the plane that grows as o(|x|) at infinity must
be constant.

The goal of this note is to obtain a Bernstein result for degenerate parabolic equations
of the form

ut − div
(
|∇u|p−2∇u

)
= 0 in Rn × R, (1.1)

where p > 2 . This class of equations has been thoroughly studied in the last 30 years and
is now quite well understood (see the standard reference [1] and the more recent account in
[13]). The approach of [12], where a precise and sharp derivation of the Hölder exponent
of solutions is carried out, shifted the focus of the analysis from quantitative to qualitative
results (see also, in this direction, [4] and [5]). We proceed here in this vein, showing that
solutions of (1.1) are forced to remain constant if their growth at infinity is controlled. We
will show that the rate of decay is given by a power of the appropriate intrinsic norm, explored
in [12].

Probabilistic interpretations of Liouville’s theorem (e.g. [10]) are quite helpful for an
intuitive understanding of the theorem we shall present here. Our proof though is based
on the geometric tangential analysis recently developed in [12], combined with an intrinsic
blow-up argument.

2 An intrinsic Liouville theorem

We consider local weak solutions (for the precise definition see [12])

u ∈ Cloc

(
R;L2

loc(Rn)
)
∩ Lploc

(
R;W 1,p

loc (Rn)
)

of the degenerate parabolic equation

ut − div
(
|∇u|p−2∇u

)
= 0, p > 2. (2.1)

Given 0 < α < 1, define the (2, p)−interpolator

θα := 2α+ p(1− α), (2.2)

which clearly satisfies 2 < θα < p. For such θα, consider the intrinsic parabolic cylinders

Gθατ :=
(
−1

2
τ θα ,

1
2
τ θα
)
×Bτ (0), τ > 0
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and the intrinsic norm of a point (x, t)

‖(x, t)‖θα := |t|1/θα + |x|.

Theorem 1. Let u be an entire solution to

ut − div
(
|∇u|p−2∇u

)
= 0, p > 2. (2.3)

Suppose, for some 0 < α < 1, there holds

u(x, t) = O
(
‖(x, t)‖αθα

)
, (2.4)

as ‖(x, t)‖θα →∞. Then u is constant.

Proof. Without loss of generality, we assume u(0, 0) = 0. Fix a large positive number `� 1
and define in Gθα1 ≡ G1 the intrinsically scaled function

V`(x, t) :=
u(`x, `θαt)

`α
.

We first show that
sup
G1

|V`| ≤ C, (2.5)

for `� 1. Let (x`, t`) be a point in G1 such that

sup
G1

|V`| = |V`(x`, t`)| =
∣∣∣∣u(`x`, `θαt`)

`α

∣∣∣∣ .
We have

‖(`x`, `θαt`)‖αθα =
(
|`θαt`|1/θα + |`x`|

)α
≤ (2`)α,

hence
1
2α

sup
G1

|V`| =
∣∣∣∣u(`x`, `θαt`)

(2`)α

∣∣∣∣ ≤
∣∣u(`x`, `θαt`)

∣∣
‖(`x`, `θαt`)‖αθα

. (2.6)

We now take the limit as ` → ∞. If ‖(`x`, `θαt`)‖θα → ∞, the right-hand side in (2.6) is
bounded, due to condition (2.4), and (2.5) holds. If, on the contrary, ‖(`x`, `θαt`)‖θα remains
bounded then, since u is continuous,∣∣∣∣u(`x`, `θαt`)

(2`)α

∣∣∣∣ ≤ C

(2`)α
−→ 0

and (2.5) still holds.
We now follow [12] and compute

∂tV`(x, t) = `θα−αut(`x, `θαt)

and

div
(
|∇V`(x, t)|p−2∇V`(x, t)

)
= `p−(p−1)αdiv

(
|∇u(`x, `θαt)|p−2∇u(`x, `θαt)

)
,
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to conclude, recalling (2.2), that

∂tV` − div
(
|∇V`|p−2∇V`

)
= 0 (2.7)

in G1.
Next, fix α < β < 1 and the corresponding θβ. Notice, from (2.2), that θα is a decreasing

function of α; hence θβ < θα. From [12, Theorem 3.4], we obtain

|V`(x, t)| ≤ C
(
|t|1/θβ + |x|

)β
, ∀(x, t) ∈ Gθβ1/2, (2.8)

where C is universal. Then, after scaling,

sup
G
θβ
`/2

|u(x, t)|(
|t|1/θβ + |x|

)β = sup
G
θβ
1/2

|u(`x, `θβ t)|
`β
(
|t|1/θβ + |x|

)β
= `α−β sup

G
θβ
1/2

∣∣V`(x, `−θα+θβ t)
∣∣

(|t|1/θβ + |x|)β

≤ `α−β sup
G
θβ
1/2

∣∣V`(x, `−θα+θβ t)
∣∣

(|`−θα+θβ · t|1/θβ + |x|)β

= o(1),

(2.9)

as ` → ∞, by virtue of estimate (2.8). Observe that, taking ` � 1 large enough, we can
assume `−θα+θβ < 1. Notice also that (x, `−θα+θβ t) does belong to Gθβ1/2 provided (x, t) does.

Clearly (2.9) implies that u is zero in the whole Rn × R and the proof of the theorem is
concluded.

Remark. Theorem 1 is a generalization of [2, Theorem 1.1], at least for the case of the
p-Laplacian and assuming T = +∞. To the best of our knowledge, the result is new even in
the elliptic case.
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