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Abstract. This article is devoted to the study of a general class of Hamil-

tonian systems which extends the Calogero systems with external quadratic
potential associated to any root system. The interest for such a class comes
from a previous article of Aomoto and Forrester. We consider first the one-
degree of freedom case and compute the Birkhoff series defined near each of

its stationary points. In general, the analysis of the system motivates find-
ing some expression for the inverses of a rational map introduced by Aomoto
and Forrester. We derive here some diagrammatic expansion series for these

inverses.

1. Introduction

In [13], Gallavotti and Marchioro derived a remarkable integral formula as a con-
sequence of Feynmann-Kac path integral method applied to the quantum Calogero
system. They posed the question of finding a purely classical proof. In [9] the
question was answered and the formula was derived by showing the existence of an
associated symplectic action of the torus. In [2] an integral was computed for a
much general setting of an Hamiltonian defined on the complement of an arrange-
ment of hyperplanes. In this article, we call the Aomoto-Forrester Hamiltonian
system, the system defined by:

(1) H =
1

2

n∑
j=1

y2j +

[
xj −

∑
h∈A

λhuh,j

⟨uh, x⟩+ uh,0

]2 , ω =
n∑

j=1

dxj∧dyj , λh > 0

The index h enumerates an arrangement of real hyperplanes defined by the equa-
tions:

(2) fh(x) := ⟨uh, x⟩+ uh,0 = uh,0 +
n∑

j=1

uh,jxj = 0.

In the particular case where the arrangement of hyperplanes defines the walls of
Weyl chambers, and hence where the complement of these hyperplanes is invariant
under the action of a Weyl group, we recover the class of Hamiltonians considered
by ([4], [5], [6], [15], [14]) (both in quantum and classical cases). We call this
situation, the root system cases. For these root systems, the integral formula was
also proved via the existence of an associated symplectic action of the torus in ([7],
[8]). In contrast, the Aomoto-Forrester integral formula was proved by a complex
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analytic residue techniques (Griffiths residue). It is remarkable that it covers a
much more general situation. For instance, this one-dimensional system:

(3) H =
1

2
y2 +

1

2

(
x−

N∑
h=1

λh

x− ah

)2

,

ω = dx∧dy, λh > 0,

provides already a quite meaningful example. It is known that if a (n-degrees of
freedom) Hamiltonian System is associated to the symplectic action of an n-torus,
it displays critical points of Birkhoff type and the Birkhoff normal form is reduced
to linear terms.

After the Aomoto-Forrester article, it was natural to ask the question of the
existence of an associated symplectic action of the torus for the Aomoto-Forrester
system. This is rather easily disproved here with the one-dimensional system (3)
defined above. The system (3) displays N +1 critical points of Morse type. We are
indeed able to derive a formula for the inverse of the Birkhoff series of each of these
points using a Cauchy residue (Lagrange inversion formula). We check on specific
examples that in general these series do not reduce to linear terms.

In a second part, we obtain partial results in the general case of the Aomoto-
Forrester system. This system is likely to be non-integrable in general. Neverthe-
less, using some techniques ([1], [3], [16]) introduced around the Jacobian conjec-
ture, we can derive some expansion for the inverses of the Aomoto-Forrester map.

2. The one-dimensional case and the Lagrange inversion formula

In this paragraph, we focus on the one-dimensional Hamiltonian:

(4) H =
1

2
y2 +

1

2

x−
N∑
j=1

λj

x− aj

2

.

This Hamiltonian is defined on bands ]ai, ai+1[. Under the condition λj > 0, this
HS displays a unique stationary point (bi, 0), i = 0, ..., N on each interval ]ai, ai+1[
and these stationary points are minima and of Birkhoff type. To each of these
points one can associate a Birkhoff normal form. This Birkhoff normal form can be
obtained as follows:

In the coordinate system (y, w), the system displays

(5)
H =

1

2
y2 +

1

2
w2, w = x−

N∑
j=1

λj

x− aj
,

ω = dx∧dy.

(6) w = f(x) =
q(x)

p(x)
, q(x) =

N∏
j=0

(x− bj), p(x) =
N∏
j=1

(x− aj).

(7) γ = {y = c sin θ, w = c cos θ, θ ∈ [0, 2π[}.
Relative cohomology techniques developed around the isochore Morse lemma

([10], [11], [12]) show that the (inverse of) Birkhoff series is essentially given by the
following:

(8)

∫
γ

xk(w)dy,

where xk(w) denotes the unique series obtained by inverting w = f(x) near the
point (bk, 0). This inverse series can be obtained in many different ways.
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Here we focus on the Lagrange inversion formula:

Proposition 2.1. Let

(9) gi(z) =
∂i−1

∂zi−1

{[
z − bk
f(z)

]i}
,

then

(10) xk(w) = bk +
+∞∑
i=1

gi(bk)
wi

i!
.

Proof. Let γ0 be a closed curve around 0 and γk = xk(γ0) such that f has no more
singularities inside γk than bk. Cauchy integral formula reads,

xk(w) =
1

2
√
−1π

∫
γk

xk(z)

z − w
dz.

Making z = f(x) we have

xk(w) =
1

2
√
−1π

∫
γk

xf ′(x)

f(x)− w
dx

=
1

2
√
−1π

∫
γk

x
f ′(x)

f(x)

1

1− w
f(x)

dx

=
1

2
√
−1π

∑
i≥0

∫
γk

x
f ′(x)

f(x)i+1
widx

=
1

2
√
−1π

∫
γk

x
f ′(x)

f(x)
dx+

1

2
√
−1π

∑
i≥1

wi

∫
γk

x
f ′(x)

f(x)i+1
dx.

By residue formula,

xk(w) = bk +
∑
i≥1

wiResx=bk(x− bk)
f ′(x)

f(x)i+1

= bk +
∑
i≥1

wi

i
Resx=bk

1

f(x)i

= bk +
∑
i≥1

wi

i

1

(i− 1)!

∂i−1

∂xi−1

[
(x− bk)

i

f(x)i

]
|x=bk

,

and Lagrange integral formula follows. �

Note that the closed formula derived above for the coefficients of this series can
be easily implemented. We did it with Mathematica. The final step is to include
this formula in the integral:

(11)

∫
γ=H−1(c)

xk(w)dy.

(12)

∫
γ=H−1(c)

xk(w)dy =
∑
i

∫ 2π

0

1

i!
gi(bk)c

i+1(cos θ)i+1dθ

(13) =
∑
p

1

(2p− 1)!
g2p−1(bk)c

2p

∫ 2π

0

cos2p θdθ =
∑
p

2π
2p

(2pp!)2
g2p−1(bk)c

2p.
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3. The general case and the inverses of the Aomoto-Forrester map

Let A be a finite arrangement of hyperplanes in the n-dimensional complex
affine space Cn. Let N(A) be the union of hyperplanes of A in Cn and M(A) be its
complement. It is further assumed that A is real, meaning that the defining function
of every hyperplane fh(z) = uh,0 +

∑n
i=1 uh,izi has real coefficients. We define the

Aomoto-Forrester system on T ∗(M(A) ∩ Rn) by the Hamiltonian function:

(14) H =
1

2

n∑
i=1

y2i +
1

2

n∑
i=1

(
xi −

∑
h∈A

λhuh,i

fh(x)

)2

.

The isochore geometry of this Hamiltonian system is, in particular, devoted to the
study of the canonical partition function

(15)

∫
exp(−βH)Ω, Ω = dnx∧dny.

In the purpose of computing this function, Aomoto and Forrester introduced the
mapping:

(16) F : z 7→ w, wi = zi −
∑
h∈A

λhuh,i

fh(z)
.

A connected component of M(A) ∩Rn is called a chamber. Aomoto and Forrester
proved that the mapping F displays in restriction to any chamber ∆ a unique
analytic inverse. Note that this map displays a special form which seems to have
not been exploited before. It writes:

(17) F : z 7→ w, wi = zi −
∂P

∂zi
,

with:

(18) P = log

(∏
h∈A

fh(z)
λh

)
.

It is possible to show, for instance by using the Abyankhar formula for the inverse
of a map ([1], [3]) that the inverse of a map of this type is also a map of this type:

(19) G : w 7→ z, zi = wi +
∂Q

∂wi
.

Inspired on the recent contributions to the Jacobian conjecture ([16]), we propose
to characterize these inverses as follows. We consider for that purpose the mapping

(20) Ft : z 7→ Ft(z) = z − t∇P.

For t small, this mapping is invertible. We give an expansion for this inverse which
exists for t small. Aomoto-Forrester showed that the map Ft is invertible till t = 1
when it is restricted to a chamber ∆. These local inverses are local restrictions of
extensions of the inverse we described below till t = 1.

Theorem 3.1. Let t be a small parameter, consider the deformation Ft(z) = z −
t∇P . The inverse map of z 7→ Ft(z) can be written:

(21) Gt(z) = z + t∇Qt(z),

where Qt(z) is the unique solution of the Cauchy problem for the Hamilton-Jacobi
equation:

(22)
∂Qt(z)

∂t
=

1

2
⟨∇Qt,∇Qt⟩,

Qt=0(z) = P (z)
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We include a proof to be self-contained although it follows the lines of ([16]).
Note that with Ut = ∇Qt, the equation can be alternatively written:

(23)
∂Ut(z)

∂t
= J(Ut(z))Ut(z),

where J is the Jacobian matrix, which is the inviscid n-dimensional Burgers equa-
tion (cf. [16]).

Proof. More generally, the formal inverse of Ft(z) = z − tM(z) is the formal series
Gt(z) = z + tNt(z) if and only if:

(24)
Nt(Ft(z)) = M(z),
M(Gt(z)) = Nt(z).

This yields the equations:

(25) 0 =
∂

∂t
[Nt(Ft(z))],

(26) 0 =
∂Nt

∂t
(Ft(z)) + J(Nt)(Ft(z)))

∂Ft

∂t
,

(27) 0 =
∂Nt

∂t
(Ft(z))− J(Nt)(Ft(z)))M.

After composing with Gt(z) from the right, this displays:

(28)
∂Nt

∂t
= J(Nt)M(Gt) = J(Nt)Nt.

The theorem is proved in particular in the gradient case where, M = ∇P , Nt =
∇Qt, ∇Qt(Ft) = ∇P and ∇P (Gt) = ∇Qt as a consequence of:

(29)
∂

∂zi

(
∂Qt

∂t

)
=
∑
j

∂2Qt

∂zi∂zj

∂Qt

∂zj
=

∂

∂zi

1

2
⟨∇Qt,∇Qt⟩.

�

This yields an expansion series for the inverse map obtained by solving the
Hamilton-Jacobi equation (3.8) as follows. Write:

(30)
Qt(z) =

+∞∑
m=0

tmQm(z),

Q0(z) = P (z),

and identify terms of equal powers in t displays the recurrence relation:

(31) mQm(z) =
1

2

∑
i+j=m−1

⟨∇Qi,∇Qj⟩.

Introduce at this point the notation uh for the n-dimensional vector uh,i, i =
1, ..., n where the index h enumerates the hyperplanes of the arrangement A. We
find successively:

(32) Q1(z) =
1

2

∑
(h,k)∈A×A

λhλk⟨uh, uk⟩
fh(z)fk(z)

,



6 RAQUEL CASEIRO, JEAN-PIERRE FRANÇOISE, AND RYU SASAKI

(33) Q2(z) = −1

2

∑
(h,k,l)∈A×A×A

λhλkλl⟨uh, uk⟩⟨uh, ul⟩
fk(z)f2

h(z)fk(z)
.

Each function Qm, m ≥ 1, may be represented by a graph. Each connected
component of the graph is a non-labelled tree and represents a different summand
of Qm. All the trees have m + 1 vertices connected by m edges. At a vertex hi

a factor λhi is attached and an edge connecting vertices hi and hj gives a factor
⟨uhi

, uhj
⟩

fhi(z)fhj (z)
to the corresponding summand. The whole expression is summed over∑

(h1,...,hm+1)∈Am+1 . arrangement A, trees are non-labeled. With this representa-

tion we see that:

Q1 :
1

2
` `

Q2 : −1

2
` ` `

Q3 :
1

3
` ` ``

+
1

2
` ` ` `

Q4 : −1

2
` ` ` ` ` − ` ` `` ` − 1

4
` ` ``̀

Q5 :
1

2
` ` ` ` ` ` + ` ` `` ` ` + ` ` `̀ ` ` + 1

2
` ` `` ` ` + ` ` `` `` +

1

5
` ` `` ``@�

Further analysis of this diagrammatic expansion will be developed in relation
with finding integrable cases in another publication.
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