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Abstract. We define hypersymplectic structures on Lie algebroids recovering,
as particular cases, all the classical results and examples of hypersymplectic
structures on manifolds. We prove a 1-1 correspondence theorem between
hypersymplectic structures and (pseudo-)hyperkähler structures. We show
that the hypersymplectic framework is very rich in already known compatible
pairs of tensors such as Poisson-Nijenhuis, ΩN and PΩ structures.
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1. Introduction

Hypersymplectic structures on manifolds were introduced by Xu in [13]. Aiming
to study hyperkähler structures on manifolds from the viewpoint of symplectic ge-
ometry, Xu was led to introduce, in a natural way, the notion of hypersymplectic
structure. The aim of this paper is to define and study hypersymplectic structu-
res on Lie algebroids. Our definition is inspired in [13] and, generalizing a result
from [13] on manifolds, we prove that there exists a 1-1 correspondence between
hypersymplectic and hyperkähler structures on a Lie algebroid. We also show that
hypersymplectic structures on a Lie algebroid provide other type of interesting
structures on the Lie algebroid, such as Poisson-Nijenhuis, ΩN and PΩ structures.
The results of this paper are from [1] and were never published. We want to stress
that the proofs we give here are different from those in [1]. We have improved the
techniques and the proofs became much more elegant.

It is worth noticing that Hitchin [4] called hypersymplectic structures on a ma-
nifold M to what we call, in this work, para-hypersymplectic structures on the Lie
algebroid TM . On the other hand, the structures which we call hypersymplectic are
in 1-1 correspondence with hyperkähler structures (Theorem 6.6). For this reason,
many authors refer to them simply as hyperkähler structures.

The paper is divided into six sections. Since our computations widely use the
big bracket – the Poisson bracket induced by the symplectic structure on the cotan-
gent bundle of a supermanifold, Section 1 contains a short review of Lie algebroids
in the supergeometric framework and their deformation by Nijenhuis tensors and
bivector fields. We also review the definition of Schouten-Nijenhuis bracket of mul-
tivectors on a Lie algebroid A as a derived bracket expression, and give a definition
of the Frölicher-Nijenhuis bracket of two A-valued forms in supergeometric terms.
In Section 2 we introduce the concept of ε-hypersymplectic structure on a Lie al-
gebroid and we study the properties of the tensors induced on the Lie algebroid
by this structure. One of the interesting features of ε-hypersymplectic structures,
discussed in Section 3, is that pairs of these induced tensors determine well known
structures on the Lie algebroid, such as PΩ, ΩN and Poisson-Nijenhuis structu-
res. In Section 4, we consider a particular case, that amounts to fix a sign in
the ε-hypersymplectic structure, and we show that the number of PΩ, ΩN and
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Poisson-Nijenhuis structures on the Lie algebroid increases, when compared to the
general case. In Section 5 we take the opposite sign, and consider two cases: hy-
persymplectic and para-hypersymplectic structures. In both cases we are able to
define a pseudo-metric on the Lie algebroid. Using this pseudo-metric, we prove a
1-1 correspondence between (para-)hypersymplectic and (para-)hyperkähler struc-
tures on the Lie algebroid. The paper closes with an example in TR4 that provides
many (para-)hypersymplectic structures.

2. Preliminaries on Lie algebroids

2.1. Lie algebroids in supergeometric terms. We begin this section by intro-
ducing the supergeometric formalism, following the same approach as in [12, 10].
Given a vector bundle A → M , we denote by A[n] the graded manifold obtained
by shifting the fibre degree by n. The graded manifold T ∗[2]A[1] is equipped with
a canonical symplectic structure which induces a Poisson bracket on its algebra of
functions F := C∞(T ∗[2]A[1]). This Poisson bracket is sometimes called the big
bracket (see [5]).

Let us describe locally this Poisson algebra. Fix local coordinates xi, pi, ξ
a, θa,

i ∈ {1, . . . , n}, a ∈ {1, . . . , d}, on T ∗[2]A[1], where xi, ξa are local coordinates on
A[1] and pi, θa are their associated moment coordinates. In these local coordinates,
the Poisson bracket is given by

{pi, x
i} = {θa, ξ

a} = 1, i = 1, . . . , n, a = 1, . . . , d,

while all the remaining brackets vanish.
The Poisson algebra of functions F is endowed with an (N×N)-valued bidegree.

We define this bidegree (locally but it is well defined globally, see [12, 10]) as follows:
the coordinates on the base manifold M , xi, i ∈ {1, . . . , n}, have bidegree (0, 0),
while the coordinates on the fibres, ξa, a ∈ {1, . . . , d}, have bidegree (0, 1) and
their associated moment coordinates, pi and θa, have bidegrees (1, 1) and (1, 0),
respectively. We denote by Fk,l the C∞(M)-module of functions of bidegree (k, l)
and we verify that the big bracket has bidegree (−1,−1), i.e.,

{Fk1,l1 ,Fk2,l2} ⊂ Fk1+k2−1,l1+l2−1.

Let us recall that a Lie algebroid structure on a vector bundle A → M is a pair
(ρ, [., .]) where

• ρ : A −→ TM is a morphism of vector bundles, called the anchor,
• [., .] is a Lie bracket on the space of sections Γ(A)

satisfying the Leibniz rule

[X, fY ] = f [X,Y ] + (ρ(X) · f)Y,

for all f ∈ C∞(M) and X,Y ∈ Γ(A).

Theorem 2.1 ([9, 11]). There is a 1-1 correspondence between Lie algebroid struc-
tures on A → M and functions µ ∈ F1,2 such that {µ, µ} = 0.

The anchor and bracket associated to a given µ ∈ F1,2 are defined, for all
X,Y ∈ Γ(A) and f ∈ C∞(M), by the derived bracket expressions

(1) ρ(X) · f = {{X,µ}, f} and [X,Y ] = {{X,µ}, Y }.

Moreover, the differential of the Lie algebroid is given by d(σ) = {µ, σ}, for all
σ ∈ Γ(

∧

•

A∗).
When using the supergeometric formalism, we shall denote a Lie algebroid by

the pair (A, µ) instead of the triple (A, ρ, [., .]).
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2.2. Deformation of Lie algebroids. Let (A, ρ, [., .]) be a Lie algebroid and µ

the function in F1,2 corresponding to the Lie algebroid structure (ρ, [., .]) on A.
Let N ∈ Γ(A⊗A∗) be a (1, 1)-tensor seen as a vector bundle morphism N : A →

A. The deformation of the Lie bracket [., .] by N is defined, for all X,Y ∈ Γ(A), by

[X,Y ]N = [NX,Y ] + [X,NY ]−N [X,Y ].

The deformed structure (ρ ◦N, [., .]N ) is given, in supergeometric terms, by µN :=
{N,µ} ∈ F1,2. The deformation of µN by a (1, 1)-tensor S ∈ Γ(A⊗A∗) is denoted
by µN,S, i.e.

(2) µN,S = {S, {N,µ}},

while the deformed bracket associated to µN,S is denoted by [., .]N,S.
The Nijenhuis torsion of N , T N , is given, for all X,Y ∈ Γ(A), by

T N(X,Y ) = [NX,NY ]−N [X,Y ]N .

A vector bundle endomorphism N : A → A is a Nijenhuis tensor on a Lie
algebroid (A, µ) if its Nijenhuis torsion vanishes. In this case the deformed bracket
[., .]N is a Lie bracket and (A, µN ) is a Lie algebroid.

When N2 = −IdA (resp. N2 = IdA), N is said to be an almost complex structure
(resp. almost para-complex structure). If moreover T N = 0, then we can remove
the prefix “almost” and N is a complex structure (resp. para-complex structure1).

The deformation of the Lie bracket [., .] by a bivector π ∈ Γ(
∧2

A) is a bracket
on Γ(A∗) defined, for all α, β ∈ Γ(A∗), by

[α, β]π = Lπ♯(α)β − Lπ♯(β)α− d(π(α, β)),

where d is the differential of the Lie algebroid (A, µ), L is the Lie derivative deter-
mined by d and π♯ : Γ(A∗) → Γ(A) is defined by setting 〈β, π♯(α)〉 := π(α, β), for
all α, β ∈ Γ(A∗).

The deformed structure (ρ ◦π♯, [., .]π) corresponds to µπ := {π, µ} ∈ F1,2. Mo-
reover, if π is a Poisson bivector on A, [., .]π is a Lie bracket and (A∗, µπ) is a Lie
algebroid.

Consider a (1, 1)-tensor N ∈ Γ(A⊗A∗) and a bivector π ∈ Γ(
∧2

A). The Magri-
Morosi concomitant Cπ,N of π and N [8] is the diference between the deformed
brackets on Γ(A∗), ([., .]π)N∗ and ([., .]N )π, where N∗ stands for the transpose of
N . More precisely, the concomitant Cπ,N is given, for all α, β ∈ Γ(A∗), by

Cπ,N (α, β) = ([α, β]N )π − ([α, β]π)N∗ ,

or, in terms of big bracket and functions on F ,

Cπ,N = {π, {N,µ}}+ {N, {π, µ}} = µN,π + µπ,N .

Notice that, when Cπ,N = 0, applying the Jacobi identity we get

(3) {π, {N,µ}} = −{N, {π, µ}} =
1

2
{{π,N} , µ} .

1In other works (including some of ours) these structures are called (almost) product instead of
(almost) para-complex. We use the prefix “para” to express the fact that some sign is switched in
comparison with the classical notion (without prefix). This change of terminology, when compared
to previous works, enables us to express in an unified way the properties that are satisfied by both
the classical structure and its para-version.
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2.3. Schouten-Nijenhuis bracket and Frölicher-Nijenhuis bracket. Let (A, µ)
be a Lie algebroid. The Schouten-Nijenhuis bracket is the natural extension, by
derivation, of the Lie bracket on Γ(A) to a bracket on Γ(

∧

•

A). Let P ∈ Γ(
∧p

A)
and Q ∈ Γ(

∧q
A) be two multivectors on A. The Schouten-Nijenhuis bracket of P

and Q is the (p+ q − 1)-vector on A defined, in terms of big bracket, by

(4) [P,Q]
SN

= {{P, µ} , Q} .

Notice that, in supergeometric terms, the Lie bracket [., .] and the Schouten-Nijenhuis
bracket [., .]

SN
are defined by the same2 derived bracket expression (compare (4)

and the second equation in (1)). Then, in order to simplify the notation and if
there is no risk of confusion, the Schouten-Nijenhuis bracket on Γ(

∧

•

A) will be
denoted by [., .], as the Lie bracket on Γ(A).

Let K ∈ Γ(
∧k

A∗⊗A) and L ∈ Γ(
∧l

A∗⊗A) be two A-valued forms. We denote

by iLK the section of
∧k+l−1

A∗ ⊗A defined by

iLK := αL ∧ (iXLαK)⊗XK ,

where K = αK ⊗ XK ∈ Γ(
∧k

A∗ ⊗ A) and L = αL ⊗ XL ∈ Γ(
∧l

A∗ ⊗ A). The
Frölicher-Nijenhuis bracket [3] of K and L, denoted by [K,L]

FN
, is the section of

∧k+l
A∗ ⊗A defined, in terms of big bracket, by the simple expression

(5) [K,L]
FN

= {{K,µ} , L}+ (−1)k(l+1) {iLK,µ} .

It is known that the Nijenhuis torsion of a vector bundle endomorphism N :
A → A is given by T N = − 1

2 [N,N ]
FN

. Thus, using formula (5) and the notation

introduced in (2), we get

T N =
1

2
(µN,N − µN2) ,

where N2 = N ◦N = iNN .

3. ε-hypersymplectic structures on Lie algebroids

In this section we define an ε-hypersymplectic structure on a Lie algebroid,
generalizing the definition of hypersymplectic triple given in [13] for manifolds. As
we will see, an ε-hypersymplectic structure induces some other structures on the
Lie algebroid. We study the main properties of these induced structures and the
relations between them.

Let A → M be a vector bundle endowed with a Lie algebroid structure (ρ, [., .]),
corresponding to a function µ ∈ F1,2.

Take three symplectic forms ω1, ω2 and ω3 ∈ Γ(∧2A∗) with inverse Poisson
bivectors π1, π2 and π3 ∈ Γ(∧2A), respectively. Then, for all i ∈ {1, 2, 3} we
have

ωi
♭
◦πi

♯ = IdA∗ and πi
♯
◦ωi

♭ = IdA,

where ω♭
i : Γ(A) → Γ(A∗) is defined by setting 〈ω♭

i (X), Y 〉 := ωi(X,Y ), for all
X,Y ∈ Γ(A).

Let us define the transition (1, 1)-tensors N1, N2, N3 : Γ(A) → Γ(A), by setting

(6) Ni := π
♯
i−1 ◦ω♭

i+1,

considering the indices in Z3.

2This was predictable because, for all Θ ∈ Fa,b, the operator {Θ, .} : F → F is a derivation of
degree a+ b− 2 of the algebra (F ,∧).
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Remark 3.1. We consider 1, 2 and 3 as the representative elements of the equiva-
lence classes of Z3, i.e., Z3 := {[1], [2], [3]}. In what follows, although we omit the
brackets, and write i instead of [i], all the indices (and corresponding computations)
must be thought in Z3.

Definition 3.2. The triple (ω1, ω2, ω3) is an ε-hypersymplectic structure on a Lie
algebroid (A, ρ, [·, ·]) if the transition (1, 1)-tensors satisfy

(7) Ni
2 = εiIdA, i = 1, 2, 3,

where the parameters εi = ±1 form the triple ε= (ε1, ε2, ε3).

Remark 3.3. Condition (7) can be written using only the symplectic forms and
their inverse Poisson bivectors as, for example, in the following formula where the
indices are treated as belonging to Z3,

(8) ω♭
i+1 ◦π

♯
i−1 = εi ω

♭
i−1 ◦π

♯
i+1.

Proposition 3.4. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on (A, µ). The
transition (1, 1)-tensors satisfy, for all i ∈ {1, 2, 3},

(a) (Ni)
−1 = εiNi,

(b) N3N2N1 = IdA and N1N2N3 = ε1ε2ε3 IdA.

Notice that, using the symplectic forms and their inverse Poisson bivectors, the
condition (a) in Proposition 3.4 is given by

(9) π
♯
i+1 ◦ω♭

i−1 = εi π
♯
i−1 ◦ω♭

i+1.

Definition 3.5. We define g ∈
⊗2

A∗ by setting, for all X,Y ∈ Γ(A),

g(X,Y ) := 〈g♭X,Y 〉,

where g♭ : A −→ A∗ is given by

(10) g♭ := ε3ε2 ω3
♭
◦π1

♯
◦ω2

♭.

In the next proposition we show that the definition of g♭ is not affected by a
circular permutation of the indices in equation (10) and that g is symmetric or
skew-symmetric, depending on the sign of ε1ε2ε3.

Proposition 3.6. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on (A, µ). The
morphism g♭ defined in (10) satisfies:

(a) g♭ = εi−1εi+1 ωi−1
♭
◦πi

♯
◦ωi+1

♭, for all i ∈ Z3;
(b) εi−1g

♭ = ω♭
i ◦Ni, for all i ∈ Z3;

(c) (g♭)∗ = −ε1ε2ε3 g♭.

Proof. (a) Starting from the definition of g♭, applying formula (9) and then
formula (8), we have:

g♭ = ε3ε2 ω3
♭
◦π1

♯
◦ω2

♭ = ε2 ω3
♭
◦π2

♯
◦ω1

♭ = ε1ε2 ω2
♭
◦π3

♯
◦ω1

♭.

This last equality is obtained from (10), after a circular permutation of the
indices. We can continue permuting the indices, using formulae (9) and (8),
to get:

g♭ = ε1ε2 ω2
♭
◦π3

♯
◦ω1

♭ = ε1 ω2
♭
◦π1

♯
◦ω3

♭ = ε1ε2 ω1
♭
◦π2

♯
◦ω3

♭.

Therefore, for any i ∈ Z3, g
♭ = εi−1εi+1 ωi−1

♭
◦πi

♯
◦ωi+1

♭.
(b) Using (a) and then (8), we have

εi−1g
♭ = εi+1 ωi−1

♭
◦πi

♯
◦ωi+1

♭ = ωi
♭
◦πi−1

♯
◦ωi+1

♭.

Now, from the definition of Ni, given by (6), we get εi−1g
♭ = ω♭

i ◦Ni.
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(c) Using (a) and the fact that both ωi and πi, i = 1, 2, 3, are skew-symmetric,
we obtain

(g♭)∗ = −εi−1εi+1 ωi+1
♭
◦πi

♯
◦ωi−1

♭

= −εi−1 ωi+1
♭
◦πi−1

♯
◦ωi

♭,

where we used formula (9). Since, from (a), g♭ = εi+1εi ωi+1
♭
◦πi−1

♯
◦ωi

♭,
we get

(g♭)∗ = −ε1ε2ε3 g♭.

�

We define the inverse of g, g−1 ∈
⊗2

A, by setting

g−1(α, β) := 〈(g♭)−1(α), β〉,

for all α, β ∈ Γ(A∗). As a direct consequence of this definition, we have (g−1)♯ = (g♭)−1.

Proposition 3.7. The morphisms g♭, ωi
♭ and Ni satisfy the following:

(a) ω♭
i ◦Ni = ε1ε2ε3Ni

∗

◦ω♭
i = εi−1g

♭,

(b) π
♯
i ◦Ni

∗ = ε1ε2ε3Ni ◦π
♯
i = εi+1(g

−1)♯,

(c) g♭ ◦Ni = ε1ε2ε3Ni
∗

◦g♭ = εiεi−1ω
♭
i ,

for all indices in Z3.

Proof. (a) Using (6), (9) and Proposition 3.4, we have

ω♭
i ◦Ni = ωi ◦π

♯
i−1 ◦ω♭

i+1 = εiωi ◦π
♯
i+1 ◦ω♭

i−1 = εi−1g
♭.

The remaining part of the statement can be proved using Proposition 3.6(c)
and then Proposition 3.6(b). Indeed,

ω♭
i ◦Ni = εi−1g

♭ = −εiεi+1(g
♭)∗ = −εiεi+1(εi−1ω

♭
i ◦Ni)

∗ = ε1ε2ε3 Ni
∗

◦ω♭
i .

Statements (b) and (c) can be proved directly, by the same kind of argu-
ments, or using (a).

�

Proposition 3.8. For all sections X,Y ∈ Γ(A) and for all indices in Z3,

g(NiX,NiY ) = εi−1εi+1 g(X,Y ).

Proof. Let X and Y be sections of A. We have

g(NiX,NiY ) = 〈g♭(NiX), NiY 〉 = ε1ε2ε3〈Ni
∗(g♭X), NiY 〉

= ε1ε2ε3〈g
♭X, (Ni)

2(Y )〉 = εi−1εi+1〈g
♭X,Y 〉

= εi−1εi+1 g(X,Y ),

where we used Proposition 3.7(c) in the second equality. �

The next proposition is the continuation of Proposition 3.7, in the cases where
the indices are different.

Proposition 3.9. The morphisms induced by an ε-hypersymplectic structure (ω1, ω2, ω3)
satisfy the following relations, for all indices i, k ∈ Z3, i 6= k,

(a) ω♭
i ◦Nk = Nk

∗

◦ω♭
i =

{

ω♭
i−1 , k = i+ 1

εi−1ω
♭
i+1 , k = i− 1;

(b) π
♯
i ◦Nk

∗ = Nk ◦π
♯
i =

{

εi+1π
♯
i−1 , k = i+ 1

π
♯
i+1 , k = i− 1;

(c) Ni ◦Nk = ε1ε2ε3Nk ◦Ni =

{

εiεi+1Ni−1 , k = i+ 1
εi+1Ni+1 , k = i− 1.
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Proof. The proofs of all statements are done by direct computations. We prove (a)
to illustrate the kind of computations we use.

(a) If k = i+ 1,

ω♭
i ◦Nk = ω♭

i ◦Ni+1 = ω♭
i ◦π

♯
i ◦ω♭

i−1 = ω♭
i−1.

On the other hand, if k = i− 1,

ω♭
i ◦Nk = ω♭

i ◦Ni−1 = ω♭
i ◦π

♯
i+1 ◦ω♭

i

= εi−1ω
♭
i ◦π

♯
i ◦ω♭

i+1 = εi−1ω
♭
i+1,

where we used (9) in the third equality. In both cases, ω♭
i ◦Nk is skew-

symmetric, so that ω♭
i ◦Nk = −(ω♭

i ◦Nk)
∗, i.e.,

ω♭
i ◦Nk = Nk

∗

◦ω♭
i .

�

The next diagram shows all the relations between the morphisms induced by an
ε-hypersymplectic structure on a Lie algebroid, recorded in Proposition 3.9.

>

<
<

< >

<

>

>

<

N1

N
2N

3

ω1
♭ω1

♭

ω 2
♭

ω 2
♭

ω
3 ♭

ω
3 ♭

<

>

>

<

<

<

>

>

<

>

<

>

ε
1N

2

ε
3 N

1

ε2N
3

ε1N
3
∗

ε
3
ε
1
ω
1
♭

ε
1ω

2 ♭

ε2ω
3
♭

ε
2
N

1
∗

ε
1ε

2ω
2 ♭

ε2ε
3ω

3
♭

ε
3
ω
1
♭

ε
3N

2 ∗

D

D

D
A

B C

Figure 1.

This is to be understood as the pattern for a tetrahedron ABCD, where the
vertices A, B and C are labeling the Lie algebroid, while the vertex D labels the
dual of the Lie algebroid. The morphism g♭ does not appear in Figure 1 but, as
shown in Figure 2, g♭ is the altitude of the tetrahedron ABCD.
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g♭ >>>

D

A

B

C

Figure 2.

The next proposition is a collection of already proved relations between ωi
♭, πi

♯, Nk

and g. The novelty is that we write these relations using the big bracket and functi-
ons on F .

Proposition 3.10. For all indices i, k in Z3,

(a) {ωi, πk} =







IdA , k = i

Ni−1 , k = i+ 1
εi+1Ni+1 , k = i− 1;

(b) {Nk, Nk+1} = −{Nk+1, Nk} = εk−1 (1− ε1ε2ε3)Nk−1;

(c) {Nk, ωi} =







εi−1 (1 + ε1ε2ε3) g , k = i

2ωi−1 , k = i+ 1
2 εi−1ωi+1 , k = i− 1;

(d) {Nk, πi} =







−εi+1 (1 + ε1ε2ε3) g
−1 , k = i

−2 εi+1πi−1 , k = i+ 1
−2 πi+1 , k = i− 1.

Proof. Let us prove (c) to exemplify how the already proved results translate in
terms of big bracket and functions on F . For a better understanding of these
computations, see [9, 1].

(c) We can identify the function {Nk, ωi} ∈ F with a 2-form on A such that

{Nk, ωi}
♭
= ω♭

i ◦Nk+N∗

k ◦ω♭
i . Then, using Proposition 3.7(a) and Proposition 3.9(a),

we have:

{Nk, ωi}
♭ = ω♭

i ◦Nk +N∗

k ◦ω♭
i

=

{

(1 + ε1ε2ε3)ω
♭
i ◦Ni , k = i

2ω♭
i ◦Nk , k 6= i

=







εi−1(1 + ε1ε2ε3) g
♭ , k = i

2ω♭
i−1 , k = i+ 1

2 εi−1ω
♭
i+1 , k = i− 1.

�

We recall an useful lemma from [7].
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Lemma 3.11. A bivector π, a 2-form ω and a (1, 1)-tensor N on a Lie algebroid
(A, µ), related by N = π♯

◦ω♭, satisfy the relation
(11)
{{[π, π] , ω} , ω} = {{{π, dω} , π} , ω} − {{π,N} , dω}+ 2 {π, {ω, {N,µ}}}+ 4TN.

The next theorem, which is the main result of this section, shows that the tran-
sition tensors of an ε-hypersymplectic structure are Nijenhuis tensors.

Theorem 3.12. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie al-
gebroid (A, µ). The transition (1, 1)-tensors are Nijenhuis tensors, i.e., for all
i ∈ {1, 2, 3},

T Ni = 0.

Proof. By definition, Ni = π
♯
i−1 ◦ω♭

i+1 and, using the fact that ωi+1 is closed and
πi−1 is a Poisson bivector, the formula (11) reduces to

T Ni = −
1

2
{πi−1, {ωi+1, {Ni, µ}}} .

Now, using the Jacobi identity, Proposition 3.10(c) and the fact that ωi−1 is closed,
we have

{ωi+1, {Ni, µ}} = {{ωi+1, Ni} , µ} = {−2 εiωi−1, µ} = 0.

Therefore,

T Ni = 0.

�

Notice that the fact that the 2-forms ωi, i = 1, 2, 3, are closed is crucial in
the proof of Theorem 3.12. All the other proofs in this section don’t need this
assumption.

4. Induced compatible structures

In this section we show that an ε-hypersymplectic structure induces many pairs
of compatible structures such as, amongst others, pairs of compatible Poisson bi-
vectors and Poisson-Nijenhuis structures.

Let (A, µ) be a Lie algebroid. Recall that a pair (π,N), where π is a bivector
and N is a (1, 1)-tensor on A is a Poisson-Nijenhuis structure (PN structure, for
short) on (A, µ) if

(12) [π, π] = 0, T N = 0, N ◦π♯ = π♯
◦N∗ and Cπ,N = 0.

A pair (ω,N) formed by a 2-form ω and a (1, 1)-tensor N on A is an ΩNstructure
on (A, µ) if

(13) dω = 0, T N = 0, ω♭
◦N = N∗

◦ω♭ and d(ωN ) = 0,

where ωN (., .) = ω(N., .) or, equivalently, ω♭
N = ω♭

◦N .
A pair (π, ω) formed by a bivector π and a 2-form ω on A is a PΩ structure on

(A, µ) if

(14) [π, π] = 0, dω = 0 and d(ωN ) = 0,

where N is the (1, 1)-tensor on A defined by N = π♯
◦ω♭.

Proposition 4.1. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie al-
gebroid (A, µ). For all i ∈ Z3,

(a) (πi+1, ωi) is a PΩ structure,
(b) (πi−1, ωi) is a PΩ structure.
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Proof. (a) We only need to prove that d
(

(ωi)πi+1 ◦ωi

)

= 0. Equation (6) gives

πi+1 ◦ωi = Ni−1 and from Proposition 3.9 (a), we get ω♭
i ◦Ni−1 = εi−1ω

♭
i+1.

Then, d
(

(ωi)πi+1 ◦ωi

)

= d (εi−1ωi+1) = 0. Therefore, (πi+1, ωi) is a PΩ
structure.

(b) Analogously, (πi−1, ωi) is a PΩ structure. In fact,

d
(

(ωi)πi−1 ◦ωi

)

= d
(

εi(ωi)Ni+1

)

= d(εi ωi−1) = 0.

�

Recall the following result from [7, 1]:

Proposition 4.2. Let (π, ω) be a PΩ structure on a Lie algebroid (A, µ) and define
N := π♯

◦ω♭. Then,

(a) (π,N) is a PN structure on A,
(b) (ω,N) is an ΩN structure on A.

Then, Proposition 4.1 has an immediate corollary.

Corollary 4.3. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie alge-
broid (A, µ). For all i, k ∈ {1, 2, 3}, with i 6= k,

(a) (πi, Nk) is a PN structure,
(b) (ωi, Nk) is an ΩN structure.

Notice that, in general, an ε-hypersymplectic structure induces 6 PN structures.
In fact, contrary to what is claimed in [2], the pairs (πi, Ni), i = 1, 2, 3, are PN

structures only when ε1ε2ε3 = 1, as we will see in the next section.
The remaining results of this section deal with compatibility between two bi-

vectors or two (1, 1)-tensors induced by an ε-hypersymplectic structure on a Lie
algebroid (A, µ). First we recall a result on PN structures.

Proposition 4.4 ([6]). Let (π,N) be a PN structure on a Lie algebroid (A, µ).
Then π is a Poisson bivector on the Lie algebroid (A, µN ).

Proposition 4.5. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie alge-
broid (A, µ). For all i, j ∈ {1, 2, 3}, the Poisson bivectors πi and πj are compatible
in the sense that πi + πj is a Poisson bivector.

Proof. We prove that, for all i ∈ Z3, the Poisson bivectors πi−1 and πi+1 are
compatible. Since they are both Poisson bivectors, it is equivalent to prove that
[πi−1, πi+1] = 0. From Corollary 4.3, for any i ∈ Z3, (πi+1, Ni) is a PN structure.
Then, from Proposition 4.4, πi+1 is a Poisson bivector on (A, µNi) which means
that [πi+1, πi+1]Ni = 0, or equivalently,

{πi+1, {πi+1, {Ni, µ}}} = 0.

The pairs (πi+1, Ni), i ∈ Z3, being PN structures, the concomitants Cπi+1,Ni vanish
and, using (3), we obtain

{

πi+1,
1

2
{{πi+1, Ni} , µ}

}

= 0.

Applying Proposition 3.10(d) we get

{πi+1, {πi−1, µ}} = 0,

which is equivalent to [πi−1, πi+1] = 0. �

Theorem 4.6. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie algebroid
(A, µ), such that ε1ε2ε3 = −1. The Nijenhuis tensors Ni and Nj are compatible,
for all i, j ∈ {1, 2, 3}, in the sense that Ni +Nj is a Nijenhuis tensor.
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Proof. We know, from Theorem 3.12, that the transition (1, 1)-tensors Ni, i =
1, 2, 3, are Nijenhuis tensors. We only need to prove that Ni and Ni+1 are com-
patible, for all i ∈ Z3. Since T N = − 1

2 [N,N ]
FN

, for all N ∈ Γ(A ⊗ A∗), the

Nijenhuis tensors Ni and Ni+1 are compatible if and only if [Ni, Ni+1]
FN

= 0.

Using formula (5), we have

[Ni, Ni+1]
FN

= {{Ni, µ} , Ni+1}+
{

iNi+1
Ni, µ

}

= εi+1 {{Ni, µ} , {ωi, πi−1}}+ εiεi+1 {Ni−1, µ} ,(15)

where we used Proposition 3.10(a) and Proposition 3.9(c). If we apply the Jacobi
identity in the first term of the right hand side of (15), we get
(16)
[Ni, Ni+1]

FN
= εi+1 {{{Ni, µ} , ωi} , πi−1}+εi+1 {ωi, {{Ni, µ} , πi−1}}+εiεi+1µNi−1

.

Applying the Jacobi identity in the first term of the right hand side of (16) and
taking into account the fact that ωi is closed, we get
(17)
[Ni, Ni+1]

FN
= εi+1 {{{Ni, ωi} , µ} , πi−1}−εi+1 {ωi, {πi−1, {Ni, µ}}}+εiεi+1µNi−1

.

Let us do some computations on the second term of the right hand side of (17).
Using (3), Proposition 3.10 and the closeness of ωi, we have

εi+1 {ωi, {πi−1, {Ni, µ}}} = εi+1

{

ωi,
1

2
{{πi−1, Ni} , µ}

}

= εi+1 {ωi, {εiπi+1, µ}} = εiεi+1 {{ωi, πi+1} , µ}

= εiεi+1 {Ni−1, µ} = εiεi+1µNi−1
.(18)

Replacing (18) in (17), we get

(19) [Ni, Ni+1]
FN

= εi+1 {{{Ni, ωi} , µ} , πi−1} .

From Proposition 3.10(c), since ε1ε2ε3 = −1, {Ni, ωi} = 0 and the proof is com-
plete. �

5. Case ε1ε2ε3 = 1: more compatible structures

When ε1ε2ε3 = 1, from Proposition 3.6(b) we deduce that g is a 2-form on A,
i.e., g ∈ Γ(∧2A∗), and g−1 ∈ Γ(∧2A) is a bivector on A. In the next theorem,
the bivector g−1 is induced by a PN structure. Recall that, given a bivector

π ∈ Γ(
∧2

A) and a morphism ϕ : A∗ → A∗, we define the bivector iϕπ by setting

iϕπ(α, β) = π(ϕα, β) − π(ϕβ, α),

for all α, β ∈ Γ(A∗).

Theorem 5.1. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie algebroid
(A, µ), such that ε1ε2ε3 = 1. The pair (πi, Ni) is a PN structure and iN∗

i
πi =

2εi+1g
−1, for all i ∈ {1, 2, 3}.

The proof of Theorem 5.1 uses the following lemma:

Lemma 5.2. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie algebroid
(A, µ). For all i ∈ Z3,

(a) {πi, {Ni, µ}} = −εi {Ni+1, {πi+1, µ}},
(b) {Ni, {πi, µ}} = −εi {πi+1, {Ni+1, µ}}.

Proof. (a) From Proposition 3.10(a), we have

{πi, {Ni, µ}} = εi {πi, {{ωi−1, πi+1} , µ}} .
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Applying twice the Jacobi identity and using the facts that ωi−1 is closed
and [πi, πi+1] = 0, we get

{πi, {Ni, µ}} = εi {πi, {ωi−1, {πi+1, µ}}}

= εi {{πi, ωi−1} , {πi+1, µ}} .

Finally, using Proposition 3.10(a), we obtain

{πi, {Ni, µ}} = −εi {Ni+1, {πi+1, µ}} .

(b) The proof is similar to the proof of (a).
�

The proof of Theorem 5.1 is now straightforward.

Proof. We already know from Proposition 3.7 that, when ε1ε2ε3 = 1,

π
♯
i ◦Ni

∗ = Ni ◦π
♯
i = εi+1(g

−1)♯,

so that

iN∗

i
πi = 2εi+1g

−1.

It only remains to prove that Cπi,Ni = 0. Using alternately Lemma 5.2(a) and
Lemma 5.2(b), we obtain

{πi, {Ni, µ}} = −εi {Ni+1, {πi+1, µ}}

= εiεi+1 {πi−1, {Ni−1, µ}}

= −εiεi+1εi−1 {Ni, {πi, µ}} .

Since ε1ε2ε3 = 1, we get

{πi, {Ni, µ}}+ {Ni, {πi, µ}} = 0,

i.e.,
Cπi,Ni = 0.

Therefore, (πi, Ni) is a PN structure. �

Recall the following result.

Proposition 5.3 ([6]). If (π,N) is a PN structure on a Lie algebroid (A, µ), then
iN∗π is a Poisson bivector.

As a direct consequence, from Theorem 5.1, we have:

Corollary 5.4. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie alge-
broid (A, µ), such that ε1ε2ε3 = 1. The bivector g−1 is a Poisson bivector. Equiva-
lently, the 2-form g is symplectic.

Using Corollary 5.4, we can give a general version of Theorem 4.6 that includes
both cases ε1ε2ε3 = −1 and ε1ε2ε3 = 1.

Theorem 5.5. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie algebroid
(A, µ). The Nijenhuis tensors Ni and Nj are compatible, for all i, j ∈ {1, 2, 3}, in
the sense that Ni +Nj is a Nijenhuis tensor.

Proof. The case ε1ε2ε3 = −1 was treated in Theorem 4.6, where we proved, without
using any assumption on the sign of ε1ε2ε3, equation (19):

[Ni, Ni+1]
FN

= εi+1 {{{Ni, ωi} , µ} , πi−1} .

If ε1ε2ε3 = 1, we may use Proposition 3.10(c) to get

[Ni, Ni+1]
FN

= 2εi+1εi−1 {{g, µ} , πi−1} = 0,

because g is a closed 2-form . �
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When ε1ε2ε3 = 1, taking into account the fact that g is a symplectic form and
g−1 is a Poisson bivector, we can add 6 new (and non-trivial) PΩ structures to the
ones of Proposition 4.1.

Proposition 5.6. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie al-
gebroid (A, µ), such that ε1ε2ε3 = 1. Then, for all i ∈ {1, 2, 3}, the pairs (πi, g)
and (g−1, ωi) are PΩ structures.

Proof. We only need to show that d
(

gπ♯
i ◦ g♭

)

= 0 and d
(

(ωi)(g−1)♯ ◦ω♭
i

)

= 0. From

Proposition 3.7(a), we deduce that π♯
i ◦g♭ = εi−1Ni and we have

gπ♯
i ◦ g♭ = εi−1gNi

= εiωi,

where we used Proposition 3.7(c) in the last equality. The form ωi being closed, we
conclude that

d
(

gπ♯
i ◦ g♭

)

= 0.

In a similar way, we have

d
(

(ωi)(g−1)♯ ◦ω♭
i

)

= d
(

εi+1(ωi)Ni

)

= d(εi+1εi−1g) = 0.

�

From Proposition 4.2, the 6 PΩ structures of Proposition 5.6 induce 6 PN

structures and 6 ΩN structures as stated in the following two corollaries. Notice
that for 3 of these induced PN structures we proved it directly in Theorem 5.1.

Corollary 5.7. For all i ∈ {1, 2, 3}, the pairs (πi, Ni) and (g−1, Ni) are PN struc-
tures.

Corollary 5.8. For all i ∈ {1, 2, 3}, the pairs (ωi, Ni) and (g,Ni) are ΩN struc-
tures.

In the last result of this section we prove that, when ε1ε2ε3 = 1, the new Poisson
bivector, g−1, is compatible with any πi, i = 1, 2, 3.

Proposition 5.9. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie al-
gebroid (A, µ), such that ε1ε2ε3 = 1. For all i ∈ {1, 2, 3}, the Poisson bivectors πi

and g−1 are compatible.

Proof. Using Proposition 3.10(d), we have

[πi, g
−1] =

{

{πi, µ} , g
−1

}

= −
1

2
εi+1 {{πi, µ} , {Ni, πi}} .

Applying the Jacobi identity and using the fact that πi is a Poisson bivector, i.e.,
{{πi, µ} , πi} = 0, we get

[πi, g
−1] = −

1

2
εi+1 ({{{πi, µ} , Ni} , πi}+ {Ni, {{πi, µ} , πi}})

=
1

2
εi+1 {{Ni, {πi, µ}} , πi} .

From Theorem 5.1, we know that Cπi,Ni = 0 or, equivalentely, {Ni, {πi, µ}} =
−{πi, {Ni, µ}} and so the last equality becomes

[πi, g
−1] = −

1

2
εi+1 {{πi, {Ni, µ}} , πi} = −

1

2
εi+1[πi, πi]Ni = 0,

where we used, in the last equality, Proposition 4.4 and the fact that (πi, Ni) is a
PN structure. Therefore, πi and g−1 are compatible Poisson bivectors. �
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6. Case ε1ε2ε3 = −1: (para)-hyperkähler structures

In this section we consider ε-hypersymplectic structures with ε1ε2ε3 = −1. As
we will see, these structures are in 1-1 correspondence with (para-)hyperkähler
structures, a notion we will define later. First, let us consider two different cases of
an ε-hypersymplectic structure with ε1ε2ε3 = −1.

Definition 6.1. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure on a Lie alge-
broid (A, µ), such that ε1ε2ε3 = −1.

• If ε1 = ε2 = ε3 = −1, then (ω1, ω2, ω3) is said to be a hypersymplectic
structure on A.

• Otherwise, (ω1, ω2, ω3) is said to be a para-hypersymplectic structure on A.

It is clear that all para-hypersymplectic structures satisfy, eventually after a
cyclic permutation of the indices, ε1 = ε2 = 1 and ε3 = −1. In the sequel, every
para-hypersymplectic structures will be considered in such form.

Definition 6.2. Let (A, µ) be a Lie algebroid. A pseudo-metric on A → M is a
symmetric and non-degenerate C∞(M)-linear map g : Γ(A) → Γ(A∗). Further-
more, if g is positive definite, i.e., if g satisfies

〈g(X), X〉 > 0,

for all non vanishing sections X ∈ Γ(A), then g is a metric on A.

Because ε1ε2ε3 = −1, the proof of the next result is a consequence of Proposi-
tion 3.6.

Proposition 6.3. Let (ω1, ω2, ω3) be a (para-)hypersymplectic structure on a Lie
algebroid (A, µ). The morphism g♭ defined in (10) is a pseudo-metric on A.

Note. In the sequel, we do not require the metric to be positive definite. However,
in order to simplify the terminology we will omit the “pseudo” prefix.

Definition 6.4. A (para-)hermitian structure is a pair (g, I) where g is a metric
and I is a (para-)complex tensor such that, for all X,Y ∈ Γ(A),

〈g(IX), IY 〉 = −〈g(X), I2(Y )〉.

Notice that the condition above may be written simply as g ◦I + I∗ ◦g = 0.

Definition 6.5. A (para-)hyperkähler structure on a Lie algebroid (A, µ) is a qua-
druple (g, I1, I2, I3), where the pairs (g, Ij)j=1,2 are both (para-)hermitian structu-

res on A, the morphisms I1 and I2 anti-commute, I3 = I1I2, and ωi
♭ := g ◦Ii are

closed 2-forms, for i = 1, 2, 3.

The main result of this section is a direct consequence of Proposition 6.3, Pro-
position 3.8 and Proposition 3.9.

Theorem 6.6. Let (A, µ) be a Lie algebroid. The triple (ω1, ω2, ω3) is a (para-
)hypersymplectic structure on A if and only if (g,N1, N2, N3) is a (para-)hyperkähler
structure on A.

Note. The 1-1 correspondence in Theorem 6.6 concerns pseudo (para-)hyperkähler
structures. We may restrict ourselves to the more usual (para-)hyperkähler struc-
tures (g,N1, N2, N3), with a positive definite metric g. These are in 1-1 correspon-
dence with (para-)hypersymplectic structures (ω1, ω2, ω3), such that g (defined by
(10)) is positive definite.

To conclude, we address a simple example in TR4 which provide many (para-
)hypersymplectic structures.
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Example 6.7. Consider the coordinates (x, y, p, q) on R
4 and the following six

2-forms

ω1 = dx ∧ dp+ dy ∧ dq; ω4 = dx ∧ dp− dy ∧ dq;

ω2 = dx ∧ dq + dp ∧ dy; ω5 = dx ∧ dq − dp ∧ dy;

ω3 = dx ∧ dy − dp ∧ dq; ω6 = dx ∧ dy + dp ∧ dq.

The 2-forms ωi ∈ Γ(
∧2

(T ∗
R

4)), i = 1, . . . , 6, are symplectic forms on R
4. For

all pairwise different indices i, j, k ∈ {1, . . . , 6}, the triple (ωi, ωj , ωk) is a (para-
)hypersymplectic structure on the Lie algebroid TR4. More precisely:

(1) The triples (ω1, ω2, ω3) and (ω4, ω5, ω6) are hypersymplectic structures.
(2) The 9 triples (ωi, ωj, ωk) where 1 ≤ i < j ≤ 3 and k ∈ {4, 5, 6} are para-

hypersymplectic structures.
(3) The 9 triples (ωi, ωj, ωk) where 4 ≤ i < j ≤ 6 and k ∈ {1, 2, 3} are para-

hypersymplectic structures.
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