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Abstract

In this paper initial boundary value problems, defined usjngsilinear diffusion equations of
\olterra type, are considered. These equations arise $teirice to describe diffusion processes in
viscoelastic media whose behaviour is represented by d-¥ailyin model or a Maxwell model.

A finite difference discretization defined on a general nafmum grid with second order con-
vergence order in space is proposed. The analysis doesliwt foe usual splitting of the global
error using the solution of an elliptic equation induced g integro-differential equation. The new
approach enables us to reduce the smoothness requiredhethetical solution when the usual split
technique is used. Non singular and singular kernels arsidered. Numerical simulation which
shows the effectiveness of the method are included.
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1 Introduction

When a fluid penetrates a viscoelastic material its tramsparot accurately described by a classical
diffusion-reaction equation. Brownian motion of fluid moldes should be connected by a term repre-
senting the stress response of the material to the defmmatithe incoming fluid ([11], [12], [13], [14]
and [38]). The fact that classical diffusion does not admlyadescribes transport phenomena is felt not
only in polymer sciences but also in other scientific domain®aterial sciences ([28], [32] and [36]) as
well as in life sciences ([19], [20], [25], [29] and [35]). Tmprove the mathematical description of such
phenomena we consider the class of quasilinear integfergliftial equations of Volterra type

g—f(x,t) = %(a(c(x,t))g—)c((x,t)) +/0t Ker (t —s)%((d(c(x, s))g—)c((x, s)) ds+ f
in (0,1) x (0,T], 1)

wherekg, is a kernel function. In (1§ represents a concentratiaic) stands for the diffusion coefficient,
d(c) for a viscoelastic diffusion coefficient arfdrepresents a reaction term. Equation (1) is completed
with Dirichlet boundary conditions

c(0,t) = cp, forte (0,T], 2
c(L,t) = cou, forte (0,T], (3)

*Dedicated to Rolf Dieter Grigorieff on occasion of his 75tttHday
ferreira@mat.uc.pt



and initial condition

c(x,0) = cp(x), x€ (0,1). 4)
Equation (1) is usually used to replace the classical ddfuseaction equation
Jdc 0 Jc .
=5 (a0F ) +fin (0.1 x(©T], (5)
when Fick’s law for the mass fludg,
Jdc
Jr (Xat) = —a(C(X,t))E((X,t) (6)

does not accurately describes transport.
In equation (1) the mass flux is split into a Fickian contribatand a non Fickian one that is

J=Jr +JF,

with Jg given by (6) and

t
Fe(ct) = — [ Helt—9d(c(x9) o (x 9 ds ™

Our aim is to generalize the results obtained in [5] and [4]tfie linear version of the quasilinear
equation (1) considered, for instance, in [1], [2], [10]2]2&and [23], avoiding the use of an elliptic
auxiliary problem induced by this equation. The paper i@nized as follows. In Section 2 we introduce
the spatial discretization using the piecewise lineardisiement method. Its convergence is analysed
in Section 3. In the main results of the paper, Theorems 1 ameedrove that a discrete? norm of
the spatial discretization error and of its discrete gnaidége of second order in space for non singular
kernels. The version of these results are also consideraslefakly singular kernels. We stress that the
kernel does not need to be of positive type as is often theinabe analysis presented for instance in
[33] and [34].

We point out that the convergence analysis presented her® mimt use the approach introduced
by Wheeler in [37] and largely followed in the literature. iFtapproach is essentially based on the
splitting of the spatial discretization error consideriag elliptic problem induced by (1). In Section
4 we study fully discrete implicit-explicit methods for neimgular and weakly singular kernels. The
same convergence orders are established. In Section 5 wenpr numerical illustration of our main
convergence results -Theorems 1 and 2. Finally, some csinoklare included in Section 6.

2 Finitedifference method

The finite difference method is introduced in what follows dpnsidering a variational problem asso-
ciated with the integro-differential equation (1). Withidass of generality we will consider homoge-
nous Dirichlet boundary conditions. By (0,1), H3(0,1) andws®(0,1), s= 0,1, we denote the usual
Sobolev spaces where we consider the usual ndjrfing|.||1 and||.||s, respectively, being the two first
norms induced by the usual inner produgts) and(.,.)1, respectively.

Letv: [0,1] x [0, T] — be given. Then we associate witlihe vector valued functiom that mapg0, T]
into the set of all mappings @0, 1] into R with [V(t)](X) = v(x,t). In what follow we will omit the tilde

to denote this function.



LetV be a Banach space. Fo= 0,1, by ¢5([0,T],V) we denote the space of functiomns [0,T] +— V
such thaw(® : [0,T] — V is continuous and

IV

#(oTv) = Max IV ()l < .

tE[ )

LetL?(0,T,V) be the space of Bochner-measurable functiong0, T) — V such that

)
Ml2or) = /0 VD)2t < oo.

By H5(0, T,V) we denote the space of functions L2(0, T,V) whose distributional time derivatives up
to ordersare also irL?(0,T,V). In this space we consider the following norm

IMIEso vy = i/oT H"(i)(t)H\z/ dt < oo .
s

We use the notationg°([0,T],V) = £([0,T],V) andH%(0,T,V) = L?(0,T,V). The space of essen-
tially bounded Bochner measurable functiong0,T) — V is denoted by-*(0,T,V). In this space we
consider the following norm

[IVllL=(o.7v) = €sS SUfiv(t)[v.

}

We also consider the following space
7/(0,T)={geL?0,T,H(0,1)) : g € L*(0,T,H (0, 1))},

whereH~1(0,1) denotes the dual spaceldf(0,1).
Thus we replace the IBVP (1)-(4) by the following variatibpeoblem §/P): find c € #/(0,T) such
that

<%:(t),w> + (a(C(t))g—)C((t% %v) = —/Ot ker(t — ) (d(c(s))g—)c((s), %V) ds+ (f(t),w),
a. e.in(0,T), Ywe Hg(0,1), ®)
where
¢(0) = co, (9)

where< .,. > denotes the duality pairing betwekim(0,1) andH(0,1).

The existence and uniqueness of the variational problestabkshed in [26] for general kernekg
using the contraction mapping principle under appropgatelitions ora. andd, namely, the boundeness
of a,@,d andd’ and the existence of a lower positive bound &arFor the kernek, it is enough to
assumeker € L1(0,T). It should be pointed out that existence and uniqueness dfitigoof problems
of type (8) have been studied in the literature using diffetechniques under smoother assumptions on
the kerneke, (see [26]). Weaker conditions on the coefficients are cemsitlin [30] where coefficients

were allowed to grow uniformly in time.
N
Leth= (hy,..., hy), withh; >0, fori=1,..., N, be such tha§lhi = 1. We define il = [0,1] the
i=
nonuniform grid

|h:{Xi,i:O,...,N,Xi =X_1+h,i=21..., N, XQZO}
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and we use the notatioms= Ip — {0,1} anddl, = {0,1}.

By W}, we denote the space of grid functions definet} iand byR, the piecewise linear interpolation
operator defined ifW,. By Who we denote the subspace W, of the grid functions null o@1y. The
piecewise linear approximatiaty(t) = R,cn(t) for the concentratiom(t) is a solution of the following
equation

(%(t), Phwh) + (a(éh(t))%(t)’ %Hﬂ""h)
= [ ket (A 2 (S, 5 o) ds (F(0), Aywn), Y € Wi, (10)

with
€n(0) = PhRnCo, (11)
whereRy, denotes the restriction operat®y : ([0, 1]) — Wh, Ra@(X) = @(X), X € In, @ € F([0,1]).
Let hi+% = %(hi +hit1),i=1,..., N—1, %11 = %(Xiﬂzl +X;). To define the semi-discrete approxi-
mation we introduce the following definitions:

( 1 [x+ts _
Oh(X) = / gx)dx, i=1,..., N—1,
X

1
2

o) = - | % gx)dx (12)

and
thh(xi) - %(Vh(xi—l)+vh(xi))7 I :17"'7 N7 (13)
MhVh(Xo) = 0, Vh € Whp.
In Wh o we consider the discrete inner product
N-1
(Vh, Wh)h = Zl hy+ 1V (%)Wh(Xi), Vh, Wh € Wh, (14)
i=

and by||.||n we denote the norm induced by the previous discrete inneiugto
In what follows we use the notations

N
(Vh, Wh)h + = Zlhth(Xi)Wh(Xi), Vh, Wh € W,
i=

and Lo
Vhllh+ = (Vh, Vi) 2

In the spacéVy, we introduce the norr.| ,, defined by
2 2 2
[unl[2n = [Ivh [+ [1D—xvhllh 1 »

whereD_y represent the usual backward finite difference operator.
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The semi-discrete approximation for the solution of theateomal problem (10) and (11) is computed
using the following differential problem: find, : [0, T| — W o such that

(%—T (t),Wh)h =+ (a(MhCh(t))D_xCh(t), D_xWh)h +
_ /Ot Ker (t — 5) (d(MnCh(S))DxCn(S), D—xWh)n,  ds+ (n(t), Wh)n, (15)
for all wy € W, and
Ch(O) = RnCo, (16)

wherefy is defined by (12) withy replaced byf (t). This solution is absolutely continuous in time and if
fis continuous them, € €*([0, T],W). The time derivative then exists in the classical sense fapat
all t.

It is easy to show that; is solution of the initial value problem (15), (16) if and wril ¢, satisfies

do
E(t)
inly,

Ch(t) =0 ondlp,

— D} (a(Mncn(t))D_yCn(t)) = /o et — 9)D; (A(MhCh(8))D_xCh(8)) ds-+ flt) .

and (16).
In (17) D, denotes the following finite difference operator

Divn(x) = D =0 g Ny e W,

hi+%

The local existence and uniqueness of the solution of thialimalue problem (15), (16) or equiv-
alently (17), (16), can be stated using the results predemoe instance, in [3] or [31]. Ifa/,d’ are
continuous in a ball centered @j(0) andke, is bounded in a certain bounded time interval, then it can
be shown the local existence and uniqueness for the soloti¢k6), (17) (see [3]).

3 Error analysis

N
Let A be a sequence of vectdrs= (hy,...,hy),h >0,i=1 N h =1, andhmax_ max h — 0.

.....

Forh e A, let en(t) = Rac(t) — cn(t) be the semi-discretization error induced by (15) and (163q1mv-
alently (17) and (16). Wheeler introduced in [37] an apphotat is based on the following split of
en(t)

en(t) = pn(t) +6(1),

where pp(t) = Ryc(t) — Eq(t), O(t) = En(t) — cn(t) being cy(t) the solution of an elliptic problem
that depends om. In [5] this approach was followed for a linear version of @)d was proved
len(t)|ln = O(h2 o) and ||D_xen(t)|lns+ = O(h2,) under the following smoothness assumptiane
H(0,T,H3(0,1)) NL2(0,T,H3(0,1) NHZ (0, 1)).

The approach that we follow here was introduced in [24] talgtinite difference schemes for the
linear version of (17). This approach allows the weakenirth@smoothness conditions usually required



when Wheeler’s technique is used, namely, the replacenfiert Bi1(0, T,H3(0,1))NL2(0, T,H3(0,1)N
H3(0,1)) by
ce HY(0,T,H?(0,1)) NL3(0,T,H3(0,1) N HE(0,1)). (18)

In the convergence analysis we require some smoothnesg sothitionc of(VP). We suppose that
verifies (18). We also use the continuous embedding g0, T,H?(0,1)) into L*(0, T,W%>(0, 1))
The discrete Poincaré-Friedrich’s inequality

VAl < ID-xVhllf 1, Vh € Who, (19)

will be used in the proof of Theorem 1. Bg(R) we represent the space of bounded continuous real
functions with bounded first order derivative.

In the convergence analysis the smoothness of the kernetidarke, has a central role. In fact
depending on such smoothness we get error estimates tlafonalifferent classes of problems. Based
on this fact and in order to see the influence of the regulafig, in the error estimates we separate the
error analysis into two cases: non singular and weakly smdgernels.

3.1 Squareintegrablekernels

In this section we assume thiat € L?(0,T). Lower smoothness will be imposed in the next section.
This assumption can be easily verified in several applinatié-or instance the mathematical models for
drug delivery from polymeric matrices that present a contstalaxation time are described by integro-

differential equations of type (1) where the kernlelsare of typeke(t) = ge*% (see [27]). Moreover,

equation (1) is also used to model diffusion in viscoelasiiterials where the relation between stress and
strain is described by a Maxwell fluid model, a three paramszitd (Voigt-Kelvin) model or Maxwell-
Wiechert generalized model (see [7]).

Theorem 1. Let ¢ be a solution of\(P), such that ¢ satisfigd8), and let g, be the approximation defined
by (15). Ifa,d € %Bl(]R), 0 < ap < a, and k; € L?(0,T), then there exist positive constants &d G
depending on the coefficient functions a, d and on the kegpslikh that

t 2 t
len(®)|2+ /0 ID_en(S)|2, ds< Cothpe™ H1lm oo ! /o Th(s)ds (20)

where
2

o = | G0

+(L+]Iet) [feo )16 [0,
H2(0,1)

(21)
t
HL+ e orwivoay) |, 16O Eaonds
Proof. From (15), it follows thaty,(t) satisfies
d dc
(G0, = (R (1) Wh),+ ((MACH(t))DxCh(t), Dxh)n s
t
+ A Ker(t — S)(d(Mncn(S))D—_xCn(S), D—_xWh)h + ds
—(fn(t),Wn)n , Wh € Who. (22)



We fix in (22)w, = en(t). We have

(.= (59,0 en<t>)h ( jx(a<c<t>>?x’<t>))h,aq<t>)h
23)
/kert 9)( )dc( 9))pdsen(t))y,

where((;(t:) 1), (:—X(a(c(t))g—)c((t)))h and(%(d(c(s))j—i(s)))h are defined by (12) wit replaced by

dc 17} Jc 17} Jc :
a(t), E((a(c(t))&(t)) and&(d(c(s))&(s)), respectively.

Using integration in the third and fourth terms of the righht side of (23), followed by summation by
parts, it is easy to show that

d Jc ~ ~ 0C

(5 (AC) 55 0)) (), = = (AMC(t) Ma- (1), Dxeén(t)), (24)
and 7} dc Jc
(55 (A(e(8)5,(9))) s &n(0), = = (A(MnC($))Mn—=(S), Dxen(t)),, (25)

whereMpg(x) = 9(x_3), i=1,...,N.
From (22) withwy = ey (t), (23)-(25) we deduce

1d
sl e =Talt) + T V) +zzp (26)

where

Ta(t) = (&(Mncn(t))D—xCn(t),D_xen(t))n+ — (&(Mnc(t))D—xRnc(t), D—xen(t) )n.+

Tt / Ker(t — ) (A(MnCh(S))D_xCn(S) — A(MhC(S))D_xRC(S), D_xen(t)n+ ds

220 = R (®) - (59, 0. en(1),

Zo(t) = (a(Mnc(t))D_yRac(t) _a(MhC(t))Mhz_)c(:(t)’D*Xeﬂ(t))h,-i-’

and
= [ ket 3) (AMrc())DRiclS) — clt) My 2 (9.0 en(D),,, .

We estimate separately the previous terms.

1. Estimate for T(t):

We have
Ta(t) = (a&(MnCn(t))D_xen(t), D_xen(t))n+

+((a(Mnen(t)) — a(Mne(t)))D—xRac(t), D—xen(t) )n.+

consequently, ag > ap > 0, we obtain



(ah)?

Ta(t) < —ao|[D_xen(t) |l + 262
0

ID-xRucllf ¢ llen(t)[7 + &5lID-xen(t)IIf

where|d| < & in R andgy # 0 is an arbitrary constant.
From (27) we conclude

(ah)?

Ta(t) < (—a0+ ) |Den(t) B + o
0

lle(t) [ lwae(o.1) len(®) [If-

. Estimate for i (t):
Asd € %3 (R), following the procedure used to deduce (28), it can be stban

[Tint (1)] < Olb/ot [Ker(t — S)[[|D—xen(S) I+ dSD—xen(t) |[n+

4 [ er(t = 911D RS - [en(S)nISID (0 -

and then, using the discrete Poincaré-Friedrichs ind@gLale establish

1 1
T < 7K+ (@Ielnormnnos) | Ip-sen(s)I, ds

+2e7[Dxen() 17

wherek = er"”EZ(O,T)’ |d'| <d inR ande; # 0 is an arbitrary constant.

. Estimate for Z(t):
It can be shown that faf; holds

dc

|Z1(t)] < Czhfax E(t)

ID—xen(t)]|n+
H2(0,1)

whereCz, is a positive constant (see [4]). Consequently we have

1 2

|Zl (t) | < 4—822C§1 hﬁnax

dc
a(t)

+&5|D_xen(t) 17+
H2(0,1)

whereg, # 0 is an arbitrary constant.

. Estimate for Z(t):
For Z, holds the representation

with

(27)

(28)

(29)

(30)

(31)



and
Z22(t) = ((a(Mnc(t)) — a(MnC(t)))D_xRC(t), D_xen(t) Jn -
To estimateZ, 1 (t) we remak that
Z54(t) = (a(Mhc(t))A (@), D-xen(t))n

with (&) = (-1 + &h;,t) and

Applying the Bramble-Hilbert lemma ([6]) to estimaiég) we obtain

23
A @] < Crpahi] 55 (O] )

whereCyz, , is a positive constant. The last estimate leads to

1Z24(t)] < @6Cz,,; M C(t) 13 (0.1) D -x@n(t) I+ (32)
which implies
aﬁC%z‘l 4 2 2 2
Z21(t)] < = 7 Mihad®) o 00) €3 ID@n (V)7 (33)
3

wherea < a, in R ande&s # 0 is an arbitrary constant.
To estimateZ, »(t) we consider
1 1
A(9) = 5(9(2) +9(0)) —9(5),
with g(&) = c(x—1 + &hi,t). Applying the Bramble-Hilbert lemma to estimatég) we obtain

d%c
M@ < Czoohi| 57 (0] sy, x)

whereCz,, is a positive constant. Then

1Z22(t)] < 8,Cz, e D-xRAC(t) I+ [6(t) 1z 0.1 D0t I+ (34)
which implies
(a)°CZ
Z22(0)] < 75 Mol C(0) 10,1 CV) o) + EZIDxe (DI - (35)
4

where|d| < &, in R andes # 0 is an arbitrary constant.
Then from (33) and (35), there exists a positive constansuch that

2 ( /)2
1Z2(t)] < CZzhﬁwax(% lle®)1s0.1) + % 1e(t) 20,1, llet) HaZ(o,l)) (36)
+(e5 + &) |ID-x&hlI7 +
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5. Estimate for 4(t):
Following the steps used to estim&gt) it can be shown that

|Z3(t) / | Ker (t — 9)|dbCazs s WraxlC(S) [13(0,1)dSID - x€A (1) I+
(37)
+ /O | ker (t — 9)[d,Czs s raxC(S) [12(0,1) D —xRhC(S) I+ AS|D _x€n(t) [+
where|d| < dp and|d’| < df in R.
As ker € L?(0,T), from (37) we get
4 1 2 1\2 2 t 2
Ze0)] < oy kCe (B + (b2l 0mwiv(oy) [, o) Fior ds o
38

+262 | D_xen(t)lIf
whereegs # 0 is an arbitrary constant.

Considering in (28)-(38% = ¢, i =0,..., 5, and taking in (26) these upper bounds we obtain

(3%
Sllen()IF +2(30—82)IDsen(t) Iy < 22 10(t) e o (D)

1

t
z—gzk(d§+(dlla)z”CHEW(O,T,WLW(OJ)))/O ID—xen(t)[lf+ ds (39)

_l’_

+hﬁ1aX212CTTh( t),
whereTy(t) is defined by (21) an@r is given by
Cr = max{CZ,,8Cz,, (a,)°Cz,,kdiCz,, k(d})*Cz, }.
Inequality (39) leads to

Jen)17 21208 [ 1D ()13 ds< L ("ot o e

22k(db+<db> Il 0 wize(o1) / 1D en(pl . duds (40)

max2 ZCT/ Th(s

that implies

t (@) 2llCllEa o 1 wie
2 2 < L= (0,T,W 01)/ 2
len®) 1§+ [ 1Den(9)lfs d< gzt | lenslids
1
+2£2m|n{1’2(ao_8£2)}k(db+ dlt)) HCHL‘>o 0TW1°°01 )// HD—XQ'] H dl"lds (41)
CT/ Th(s)ds
0

hy .
maxs ez min{1,2(ag — 8¢2)}
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whene is fixed by
ag— 82 > 0. (42)

From (41) we conclude that there exist positive const@ntandC, depending on the coefficients func-
tionsa andd and on the kernel functioks, such that

1
len®IF + [ ID-en(s)f , ds<
t s
C1(1+||CHE°°(07T,W1-°°(0,1)))/0 (H9r1(5)\|ﬁ+/0 ID_xen(1) |7 dut)ds (43)
1
+Coh? / To(s)ds
0

Finally the application of the Gronwall lemma leads to (20).
O

In the upper bound (20), we have an exponential amplificafamtor € where © = Ci(1+
Ic]|2. (0T WL (0, 1))) In certain situations this amplification factor can be reztlito the unity by con-
S|der|ng more strict conditions on the coefficients.

3.2 General weakly singular kernels

In what follows we replace the smoothness assumpdipa L?(0, T) by the following weaker condition
ker € L1(0,T). However, as will see, such a replacement implies a resmidti the class of problems
that allow us to obtain the accuracy of the semi-discreteagamationcy(t) stated in Theorem 1.
In the proof of Theorem 1, the assumptikg < L?(0,T) was used in the establishment of the upper
bounds forTi, (t) and and forZs(t), respectively, (30) and (38). In what follows we get newreates
for these two terms assumitkg € L1(0,T).
e Estimate for F(t):
From (29) we obtain
1
[ Tint ()] < @k(d€+(db) lellEa o7 wee(01) )/ [ker(t — 8)|[[D-xen(3)[I7. ds
1 (44)
+2e2|D_xen()|2

wherek = er,HLl oT)"
e Estimate for 3(t):

It can be shown that faZz(t) holds the following

|23(t)| < hﬁwax4 zkczs(db+(db) ||CH|_°° 0,T,Wl=(0,1)) / |ker t_ )|HC( )HH3 0,1) ds
(45)

+2552H D_xen(t) ||ﬁ,+a

wheregs # 0 is an arbitrary constant.
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Following the proof of Theorem 1, we obtain

Jen)1f +2020 -8 [ 1D ()13 ds< L [ et o s

1
gk 0l qrwneony) |, [ Therls— WD en(m)[R, duds (46

HiamsCr [ Ts
that replaces (40). In (48} (s) is defined now by
dc . |I? 2 2
a(t) + (A {le) e 0.0 1E®) 3 0.1)
H2(0,1) (47)
t
L+ e orwieoy) | Terlt—9)c(S)Ea s

As inequality (46) is equivalent to

Th(t) = ‘

Jen(1f +2(e0 - 8%) [ 1D IR ds< 2L [ jo(s) ey len(s s

1
ek @I gruna) |, [ Kerls= D @R . dsck

max2 ZCT/ Th

we get

t 1 t
@Ol +2(a0—8¢%) | D-sen(9)IR , A< MhaesCr [ T(s)ds

(48)
t
oy (1R + (K(H)?) + (3)7) el orier0y ) | ID-en(H) IR .
Under the following condition
2(a0 - 86%) — 57 (PR + (KC(c))?) + (8)?) 2 )>0 (49)
g2 b b ap L= (0,T,W1=(0,1))

we conclude that .
len(®If + [ 1D-sen(9)13. ds< Cho [ Tafs

for some positive constaq

4 AnIMEX method

4.1 Non singular kernels

To integrate in time an IMEX (implicit-explicit) method Wibe used. In[0,T] we consider a time
grid Jat = {t,, n=0,1,2,...,M} with tp = 0, ty = T andt, —t,_1 = At. We use the rectangular rule
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to approximate the integral in (1) and the backward finifeedénce operatob_; to approximate the
first partial derivative with respect to Then the fully discrete approximation forat (xj,t), ch(X;), iS
defined by the following set of equations

Dch(x)) = D (aMnch *(x)))Dxch(Xj)) + f(x},tn)

n-1
HOL Kerlta )05 (d(Mich())D-1ch(%) )
=0

j=1,...,N—1, (50)
with boundary conditions
(%) =ci(xy) =0, forn=1,..., M, (51)
and the initial condition
cP(xj) = Raco(x;), for j=1,..., N—1, (52)

To compute the fully discrete solution at time lewg) ¢, we need to solve a linear system
An(ch~ 1)l = B, whereAn(ch 1) is a tridiagonal matrix. Since the coefficiemis positive, ther,(ch )
is strictly diagonal dominant and consequemh(cﬂfl) is a M-matrix.
We remark that the previous fully discrete space-time seheam be written in the following equivalent
form

(D&, Wh)h = — (&M YD _xCh, D_xWh)n+ + (fr(tn), Wh)n

n-1
—At ; ker(tn - te)(d(MhCﬁ)D—XCﬁv D—XWh)h,-i-’ n= 17 [RRN} M7 (53)
=0

for all w, € Wh, o, with the initial condition (52).

Let c be a solution of (1), (2), (3) and lef = Ryc(ty) — ¢, n=0,...,M, be the global error. As the
integral term was discretized using the rectangular gnidyrder to obtain an estimate fgt we need to
replace the assumptidg, € L?(0,T) by the following one

ker € HY(0,T). (54)

Theorem 2. Let ce €([0,T],H3(0,1) NH(0,1)) n€1([0,T],H?(0,1)) be the solution of(P) and let
cp be its approximation defined {$0). If a,d € %a(R), 0 < ap < a, and k, satisfies(54), then there
exists positive constantiGhat does not depend ont neither ¢ such that for the fully discrete error
€] = Rqc(tn) — ¢ holds the following

n max{® + 2¢2, W}
2 AMS |DoE R, < T— .
Il +0t Y 1Dl < exi(T o ey

(55)
1 012 2 012 A
L A28 2~ 157)) (eI +2(a0 — 1252)t]| D &R . + A ;lTh),
where T is given by
1
Ty = CT@<hﬁ1ax(HC||<251([0,T],H2(071)) + (g + (ap)?lc (215’([07T]7W1-°°(0,1)))HCH?&([O,T],H?’(OJ))
+(dE+ (dp)?llc ‘Z«K([O,T],Wlw(o,l))) HC||EZ(O,T,H3(O,1))) (56)

2 2 2 2
+0(|[Recllfregy,_y gm0, + (@) *IRClE ¢, g v 1C1Z (o 2 0.2)))
AR (zdg\|c||a1(O7T,Wl,w(o,l)) +(dp)?llc

2 2
Z(oTiwr=01) IRnCllGz 0wy ) )
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€ is such that

ap—12e2>0
andAt is fixed by

1—At2e? > 0.
In (55), ® and ¥ are defined by

b= (a{))z HC 2
— g2 Ml (oTwi=(01))
K 2 2( |12
W= ) (d5 + (db)“lIellZ o1y wae(o.1)))

respectively, and k- T ||Ker[[§ .-

Proof. Following the semi-discrete error analysis, it can be shthvan

3
D_teh én=Ta' +Tinea + > Zp,
p=1

whereT], T, 4,Zp, P=1,2,3, are given by

T = (a (MhCn Hpo xCh, eﬂ a(Mnc(th-1))D_xRnc(tn), xeﬂ Jh+
int.d :Atzz ker(tn—tf)((d(MhCh xCh, D_x&h.+ — (d(Mnc(tr))D_xRnc(tr),
=
27 = (D Ruclo) - (jf) (). )y
Z3 = (A(Mnc(th-1))D—xRaC(tn) — a(MhC(tn))th D),

and

23 —At; ker n—1U ( (MhC(tg)) XRhC tg Xeﬂ
[ rltn = 9@ Vhnc(9) VM 255, D el

We estimate in what follows the introduced quantities:

e Estimate for T': Following the proof of estimate (28) it can be shown that

(a())

1
T2 < (—a0+&)|ID &l + + 5 OT]W1°°01 leh 13,

wheregg # 0.

e Estimate for [, ;- Analogously to (44) we have

|ntd|< At4 k(db+(db)
l

+2¢7||D-xehllf

(O TIW(01)) /ZJHD xehllf ¢

whereg; # 0.
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(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)



Estimate for Z: As Z7 admits the representation

7~ (DRt -RG &) + (R (57) tneh)
we easily get

1((0.T]H2(0, 1))) +€hllA

1
4s ZAtHRhCHH2 (tn—1,tn, Wh)+4 zhﬁnax‘
+&5|D_ XQQ||h+,

whereeg,, g3 # 0.

1
28] <Ca (

Estimate for 2 : We splitZ; into Z; = 23, +Z7 , where

23, = (@(MhG(t))D_xRoclte) — a(Nc(tn) N 3 (1), D)

and
Z32 = ((a(MnC(th-1)) — a(MnC(tn)))D—xRnC(tn), D_x€{)n+
If follows from (36) that 1‘orzg’l holds the following

3 1ol
281 < el (555 2 o0+
4

+(&%+ &5)|ID-xehlf 4

whereegy, &5 # 0.

c

(a)? H
4e 2

(zg ([0,T]W2=(0,1)) HC”% 0.1, H2(Ol))>

ForZ3, it can be shown that

()
282l < A5 IR ) 101 om0 + EBIDEE 1
6

wheregg # 0.

Estimate for Z : We remark thaZ; admits the decomposition
Z3=23,+23,

with

c

281 = [ Kerltn— 5)(dMhc(9)D (Ru6(S) — (AMG(9)Nhn 2 (),D e ds

and
n-1

232 = At[z ke,— —tg)(d(MhC(tg)) XRhC tg Xeﬂ
ker( $)(d(Mnc(s))D-xRnc(s), D_x€)n + ds
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(67)

(68)

(69)

(70)

(71)

(72)



Following the proof of the estimate (38), it can be shown fbatzgl we have
1

1258,] < hmaxCZs 252 (db+ (dp)? OT]W1°° 0.1) )”CHLZ 0,T,H3(0,1))
! (73)

+2¢7||D-xehllf

with &7 # 0.

To obtain an estimate faZz, we remark that this term represents the error of the rectangu
rule.Then

.
28] < tdh | Ketn =) () w0 1D+

T dc

a1 [ et~ 91 [Re9)] 109 01Dl
T dc

M0y [ flerlta =91 S5O 1Dl
0 t lwie(0,1)

that leads to
|25,| < Atzk

+(d

db ( ||CHL2 (0,TWL=(0,1)) + |l (0T Wi=(01)))

2

4gg
2

b)? (zg ([0.T]WE=(0,1)) IRncll;s OTWh)) + 3¢g/|Dxehllf +

wheregg # 0.
Considering in (61) the obtained estimates veith- €,i =0,...,8, we deduce
leflls  +2(a0 — 1262)t | D_xehf+ < (1+t®)|[eh 7+ 2eAt |l el

n—1
74
AW D+ AT, 7
=0

where® andW are defined by (59) and (60), respectively, &ids given by (56).
From inequality (74) we deduce

(1-2e0t)eflf  +2(a0— 1267 Atz ID-_xellIf+ < lleRlla+ (P +2¢° AtZ)IlehHh

n
+APW Z;}HD xehllf+ +At; To,

that can be rewritten in the following equivalent form

quh""At[%”D—xeﬁHh—i-

max{®+2¢2 Wiat Nl
min{1— At2&2,2( ao 12¢2)}

(I1ehz+a ;}no R ) (75)

IeQII?.. +2(a0 — 1232)AtHD_Xeth++At;Th>

1=

Jrmln{l At2£2 2(ap — 12¢2 }(
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forn=1,...,M, provided that (57) and (58) hold.
Applying a discrete Gronwall lemma, we obtain (55).
O

We remark that conditions (42) and (58) define un upper boandtfthat depends on the inverse of
the lower boundhg for the diffusion coefficient.
As a corollary of Theorem 2 we have the next convergencetresul

Corollary 1. Letce ([0, T],H3(0,1) nH2(0,1)) n€*([0,T],H?(0,1)) be the solution of\(P) and let
cp be its approximation defined i§§0). Under the conditions of Theorem 2, there exists positivestzmt
Cer that does not depend on/t neither ¢ such that = Ruc(t,) —c,n=0,...,M, satisfies

n
||q2||ﬁ+At[ZDIIDfxq’éllﬁ,+ < Cor(Mpax+At7), (76)
provided thatAt satisfies (58).

4.2 Weakly singular kernels

In the previous section the convergence analysis of the IMiethod (50) (or (53)) was established in
Corollary 1 under the assumptions (54) for the ketel As in the semi-discrete case, in what follows
we establish a new error estimates considering weaker tiomslionke,. In order to do that we replace
(50) by

D_tch(xj) = Dy (a(Mncy (x}))D_xch(x})) + f(Xj,tn)

n-1 to+1 / /
£3 [ Kerltn — S)aisDy (d(Mnch (1)) D-xch(x)))
/=0l
j=1...,N—-1, (77)
that is equivalent to

(D_tch,Wh)h = —(&(Mncfi H)D_xch, D_xWh )+ + (fr(tn), Wh)n
n—1 rtog
=3 | kel — 9)dS(d(Mnch)D_xCh, D_sWh)h+,N = 1,..., M, (78)

= 4

for all wy € Who.
In the convergence analysis of method (50) (or (51)) it wasiaed conditions (54) for the kernel

ker. Following the proof of Theorem 2, f@) = Ruc(tn) —cp,n=0,...,M, holds (61) wherd;}; ; andZ3
are given by

n _
Tint,d -

n-1 o1

Ker (tn — s)ds((d(thﬁ)D,ch D&+ — (A(MnC(te))D_RuC(ty), D,Xq';)h,+> ,

=0/l

n—1 rtyg ~ ~
2-5 [ et~ 9)((A(MC(t))D_Roclt) — d(Vhc() N 2 (5). D). ) s
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andT},Z] andZj}, are given by (62), (63) and (64), respectively. FgrZ7 the estimates (65) and (67),
hold, respectively. The error terf is decomposed intd} , +Z;, whereZ3; andZj, are defined by
(68) and (69), respectively. It can be shown thatZ@g andZ22 the estimates (67) and (71) hold. We

estimate nowfy, 4 andZ3.

e Estimate for T, ;: It can be shown that

1
| Tint.al < @k(ngr(dé)z
1

2 n-1 o1 5
‘rf([O,T],WlW(O,l))) [;/Q |Ker(th — s)|d5;||D,XeﬁHh7+

(79)
+2e2| D2,
whereg; # 0 andk = |[ker||L1(o.1)-
e Estimate for : LetZ3, be defined by (72) ang3, be defined by
Z3,=
n-1 to1
| Ker(th — )(d(MnC{te))D—xRiC(te) — d(MnC(s))DxRec(S), D—xeh)n+ ds
4
We haveZ3 = 73, + Z3 , where
Czk 5
12341 < hmax4 2 (d5 + (d)?llcll Z([0.T]WL=(0,1)) / [Ker(th — S)[ dsl|cl % o.11He(0.0))
(80)
+2¢7(|D_xeflff -
with &7 #£ 0 and
i< s [ o 915621 gm0 R
(81)
+d€||cual([w,wl‘%(),l))) +2e3| D3,
with &g # 0.
As in the proof of Theorem 2, it can be shown tegsatisfies
(1—2€2At)| D)2 +2(ap — 11€?) AtZHD wElI2 . < ||&D|I2+ (®+ 2¢2 Atzonehuh
(82)

+sz/%/ Ker(t —s\daro_xeﬁuh++AtzT%
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where® and¥ are defined by (59) and (60), respectively, Wtk ||ker[| 1(0.1) andT, is given now by

i 1
ThJ :CT@ (At<HRhCHH2tJ 1,tj,Wh) +ab||RhC||Hl (tj—1.tj,Wh) HC

% ([0.T]WL=(0,1))

+k[Z/ |Ker (t; |dS(db||CHH1 .ty 42 W= (0,2))

(83)
db) HC Al OT]W1°° 0,1))HRhCHal([%tHl]-,Wh)))
+hi ( %((0.T],H2(0,1)) (ab+ a)? [OT]W1°°(01)) c ‘Z«K([O,T],H3(O,1))
+k? (db +(d)llellZ o wie)) ) 1€15 (0T H30 1))))
n -1l rtes
As for A= Z;/t |ker(tj—s)|ds1|D,Xef,||ﬁ+ we have successively the following
j=10=0""
n-1 n o1 2
>3 | et
=0 j=r+17U
55 [ kedslasio
_ Ker(S)|dS|D_
2, jgﬂ (i--nat eniny
< ¢ D_xéh||2
< errHLl(O’T)zZ)H —x&hllf4
from (82) we deduce
2 L j (12 2 n 112
(1-2e?At)[leflf+  (2(a0 - 11e )—kW)NZ)HD—x%’th,+ < (P +2e7)At ZOHquHh
= no N (84)
+|€ 17 +2(20 — 11e?)At[D_xeR[f - +AL S Ty
=1
If € andAt are such that (58) holds and
2(ag— 11£%) — kW > 0, (85)

then

n .
el +at 5 1D <

= 86

e(®+2e)T 012 , o1 n j (86)
- 2(ap—11e°)At||D_ A TH).
1270 e 17—y (1 + 20— 10D+t 5 )

The upper bound (86) is established under the condkigre L*(0,T). This upper bound allows us
to conclude that for the the erref induced by the method (78) estimate (76) holds. While theéler
function presents lower smoothness, the set of conditionhe time step size (58) and (85) are more
severe than those imposed for non singular kernels.
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5 Numerical Simulations

The aim of this section is to illustrate the convergenceltesitained in the paper. We start by consider-
ing the IMEX method (50) (or (53)) wheky, is a smooth function in the sense that it satisfies condition
(54).

Let us consider in (1)-(4)

alc) =1+c, d(c) = 10c, ker = € 2, (87)
andf, the initial and boundary conditions selected such thatlB\V/P has the following solution
c(x,t) = e ' (1—x)(arctar{a (x— X)) + arctariax)), x € [0,1], t € [0, T], (88)

wherex € (0,1). For large values ofr, ¢ has an interior-layer in the neighborhoodxct x (see [8]).
The numerical approximatiomy, was obtained with the method (50)-(52) when we consider

_ 1 . . S . . . . - .
X=5,0= 80, with nonuniform grids in the spatial domain and with arfanm grid in the time do-

main withT = 0.1 andAt = 1 x 10~7. The initial spatial grid,, was arbitrary and the following grids
were obtained introducing ifx;, Xj+1] the midpoint.
In Table 1 we present the error

1
2

Ep:mnaX<HQ1(tn)Hﬁp+At§lHaw(S)Hihp> ; (89)
and the ratdR, defined by
o i) o0
Np | Ppra Ep Rp
34 | 42514x 1072 | 2.4837x 102 -
68 | 21257x 1072 | 6.5927x 1072 | 1.9136
136 | 1.0628x 1072 | 1.6906x 10~3 | 1.9633
272 | 5.3142x 1073 | 4.2602x 10~* | 1.9886
544 | 2.6571x 103 | 1.0610x 10~ | 2.0055
1088 | 1.3286x 102 | 2.6492x 107° | 2.0017
2176 | 6.6428x 10 | 6.6132x 10°% | 2.0021
4352 | 3.3214x 1074 | 1.6449x 107 | 2.0074

Table 1: Convergence order non singular kernels.

We note that the numerical results presented in Table 1 agtee¢he theoretical results presented in
Theorem 1 and Corollary 1 that, = O(hZ.,).
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Let us consider now the IMEX method (77) (or (78)) studied wkg < L1(0,T). In (1)-(4) we
consider

1
a(c)=10+c, d(c)=2 = — 91
( ) + ) ( ) J ker \/f’ ( )
andf, the initial and boundary conditions selected such thatlB\V/P has the following solution
c(x,t) =t?(1—x)(arctar{a (x— X)) + arctarfax)), x € [0,1], t € [0,T], (92)

wherex € (0,1).
Let a = 80 andx = 3, in Table 2 we present the errdly, and the convergence raRy, defined
respectively by (89) and (90). We observe that in agreeméht(®6) we have thak, = O(h2,2)-

Np | Mo Ep Rp

48 | 3.2407x 1072 | 1.6811x 1072 -

96 | 1.6204x 1072 | 4.8871x 1073 | 1.7823
192 | 8.1019x 1072 | 1.2970x 103 | 1.9138
384 | 4.0509x 1073 | 3.3723x 1074 | 1.9434
768 | 2.0255x 1073 | 8.4680x 10°° | 1.9936
1536 | 1.0127x 1073 | 2.1257x 107° | 1.9941
3072 | 5.0637x 10 | 5.2172x 1075 | 2.0266

Table 2: Convergence order weakly singular kernels.

6 Conclusions

In this paper we propose a finite difference method to solvearically the IBVP defined by the quasi-
linear integro-differential equation (1) of Volterra typéath Dirichlet boundary conditions. We point
out that the non Fickian equation (1) can be used, as prdyiousntioned, to model a large number
of physical situations where Fick’s law is not appropriateléscribe the mass flux and a delay effect is
needed. The finite difference method (17) can be seen asyalfatirete in space piecewise linear finite
element method. Methods of this class were studied fortigllgniuations for instance in [4] , [15], [16]
and [21].

In the main theorems of this paper - Theorem 1 and Theorem e that a discrete? norm
of the spatial discretization error and of its discrete gmdare second order convergent with respect to
space step size while the spatial truncation error is onliiref order with respect to infinity norm for
non singular kernels that satisfy conditions (54). Theiversf these results for kernekg, € L1(0,T)
are also established. The approach used to prove thesesn@aslintroduced in [24] for a linear version
of (17) and differs from the one usually followed in the lgarre and which was introduced by Wheeler
in [37]. Our approach allows, for the semi-discrete andyfdliscrete approximations the weakening
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of the smoothness conditions usually required when Whedlerhnique is used. In fact, for instance
for the semi-discrete approximation we replace H(0, T,H3(0,1)) NL2(0,T,H3(0,1) NnHE(0,1)) by
ce HY(0,T,H?(0,1)) NL?(0,T,H3(0,1) NHE(0,1)).

For the sake of simplicity only the one dimensional case wadied, but the techniques here pre-
sented can be used to extend the analysis for two dimengioolalems.
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