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1. INTRODUCTION

Ternary Malcev algebras are a particular case of n-ary Malcev algebras, first
defined in Pozhidaev (2001), and these naturally arise from the classification of n-ary
vector cross product algebras (Brown and Gray, 1967). Indeed, the classification
theorem for the latter asserts that, in the case n = 2, the only possible algebras are
the simple 3-dimensional Lie algebra s/(2) and the simple 7-dimensional Malcev
algebra C,; in the case n > 3, those are the simple (n+ 1)-dimensional n-Lie
algebras (which, in turn, are a natural generalization of Lie algebras to the case of an
n-ary multiplication—See Filippov, 1985—, and nowadays called Filippov algebras)
with vector cross product, being analogs of s/(2), and also some exclusive ternary
algebras arising on composition algebras. Explicit formulas for this ternary vector
cross product (which is displayed in (4)) and for generalized vector cross products
can be found in Zvengrowski (1966), Brown and Gray (1967), and Massey (1983).
An interesting overview on the subject (also including an historical approach), can
be found in Eckmann (1991), while Ebbinghaus et al. (1969) underlines the relation
between vector cross products and composition algebras.

It has been proven Pozhidaev (2001) that these ternary algebras are ternary
central simple Malcev algebras, which are not 3-Lie algebras if the characteristic of
the ground field is different from 2 and 3 (more generally, the result states that every
n-ary vector cross product algebra is an n-ary central simple Malcev algebra).
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The class of n-ary Malcev algebras has also the following interesting
properties:

1. It is an extension of the class of n-Lie algebras, i.e., every n-Lie algebra is an
n-ary Malcev algebra (generalizing the fact that every Lie algebra is a Malcev
algebra);

2. Fixing an arbitrary component in the multiplication (i.e., defining a new reduced
operation on the vector space A of the n-ary Malcev algebra by the rule
(X150 Xut]e = [as x15 ... s X,1]), (reduced algebra) we obtain an (n — 1)-ary
Malcev algebra.

At the moment, the only known example of a simple n-ary Malcev algebra
which is not an n-Lie algebra is the above mentioned ternary central simple Malcev
algebra arising on an 8-dimensional composition algebra.

In this article we continue investigating the properties of this ternary simple
Malcev algebra M. We obtain some results on Der(M) and Innder(M), that is, its
derivation and inner derivation algebras (namely, concluding that these coincide)
and its associative and Lie algebras of multiplications. In the case of Malcev
algebras we know that the operators of the type [R,, R,] + R, are inner derivations.
We prove an analog of this theorem to the case of the ternary Malcev algebra M.
Namely, we prove that

Der(M) = ([R,,, R, ] + R, gl ¥ % Yol & M).

The purpose is to use these results in forthcoming investigations, in order to classify
the irreducible finite-dimensional representations of this ternary algebra. Further,
we describe the algebra of quasi-derivations of M.

Some of the results of this article were previously announced in Pojidaev and
Saraiva (2002) and published in Pojidaev and Saraiva (2003) as a preprint. However,
most of the proofs in Pojidaev and Saraiva (2003) about derivations, which were
based on direct and large computations, have been widely improved. Indeed, here
we suggest other proofs based on some symmetries of the canonical basis of a
composition algebra.

We start recalling some definitions. Let ® be an associative, commutative ring
with unity. An Q-algebra over ® is a unital module over ®, on which we define a
system of multilinear algebraic operations Q = {w; : |w;| = n; € N, i € I}, where ||
denotes the arity of w,. Henceforth, an (-algebra is sometimes briefly called an
algebra.

An n-Lie algebra (n > 3) (n-ary Filippov algebra) is an (-algebra L with one

n-ary operation [x;, ..., x,] satisfying the identities
[xl, iEmEs x,,] = sgn(o)[x,,(l), cees xg(n)]’ (1)
[[-xlw--’xn]’yz’-"’yn] = Z[xl’--"[xi’yb--"yn]’ "-’xn]’ (2)
i=1

where ¢ is a permutation in the symmetric group S,, with sign denoted by sgn(o).
The relation (1) is called the anticommutativity identity and (2) is the generalized
Jacobi identity (or Filippov identity).
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By an n-ary Jacobian, we mean the following function defined on an n-ary
algebra:

J(Xps ooy X3 Vs o e e s V)

ol |ETRRPIE N R UPPRNS 1 Lol M £ PRI b P DTN ) FOPRE A
i=1

Note that, in an n-Lie algebra, J(x;,...,x,;¥5,...,¥,) is skew-symmetric with
respect to xy, ..., x, and with respect to y,,...,y,, but not on all of its arguments.
It follows from the definition that A is an n-Lie algebra if and only if

J(xl,...,x,,;yz,...,y,,):O

for all x;,...,x,, ¥ ...,¥, € A.
An n-ary Malcev algebra (n > 3) is an (-algebra L with one anticommutative
n-ary operation [x,, ..., x,] satisfying the identity

n

Z[[z, Xy ooy Xuls Xos o ey [Xis Voo o vos Vnds o ovs X
=2

+3 2 X0 oo o (X Yoo oo s Vb s %)y Xgs oo X,
i

:[[[Z’xz’"-’xn]’xz’“"xn]’yz’-‘-’yn]

—[[zs Y25 e+ o5 Yuls Xas v vs X )s Xy o ooy X, ) (3)

In terms of right multiplications, this identity is equivalent to:
2 2
Rx(Zsz,m,x,»R} ,,,,,, x,,) *+ <ZR)(2 ,,,,, S — x”> x Rny - Rny’
=2 i=2

AAAAA X,

where R, =R, . and R, =R,  are right multiplication operators: zR, =
[z, x5, ..., x,]. Note also that we can rewrite (3) as

—J(ZR,, Xos o s X3 Voo e s V) = 2 Xy ooy X3 Vas o5 V)R,
A version of the ternary case of (3) can be written as follows:
[[x’ Y: Z], [y’ u, v]’ Z] + [[x’ Ys Z]7 Ys [Z’ u, U]] + [[x’ [y’ u, v]’ Z]’ Ys Z]
+ [[x, ¥, [z, w, v]], . 2] = [[[x, ¥, 2], y, 2], w, v] = [[[x, u, v], , 2], ¥, 2].

Henceforth, we assume that ® is a field of characteristic not equal to 2, 3 and
denote by A a composition algebra over ® with an involution ~ : a + a and unity 1.
The symmetric, bilinear form (x,y) = 1(xy + yx) defined on A is assumed to be
nonsingular and we can define the norm of each a € A by the rule n(a) = (a, a). If
A is equipped with a ternary multiplication [, -, -] by the rule

[x, ¥, z] = xyz — (¥, 2)x + {x, )Y — (%, )z, “4)
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then A becomes a ternary Malcev algebra (Pozhidaev, 2001) which will be denoted
by M(A). If dim A = 8 then M(A) is not a 3-Lie algebra and we denote it by Mg or
simply by M.
Although the properties about composition algebras appear in several places
(e.g., Brown and Gray, 1967; Pozhidaev, 2001; Shestakov et al., 1978), we now list
some for a complete comprehension of the present article. Being A a composition
algebra on the above conditions we have:
aab = a(ab) = n(a)b = baa = b(aa); aba = —n(a)b + 2{a, b)a;
abc + ach = 2(b, ¢)a; a(bc) + b(ac) = 2{a, b)c; (5)

{ab, ¢) = (b, ac) = {(a, cb); (a,b) = {(a, b), (a,b) = (a, b).

Further, if a, b, c € A are orthonormal, then

aba = —b, abc= —ath;  a(bc) = —b(ac). (6)

Finally, recall that (4) is anticommutative, since it is a ternary vector cross product
(Brown and Gray, 1967).

2. ALGEBRAS OF MULTIPLICATIONS OF M1

Let A be the above mentioned composition algebra and assume that 1, a, b, ¢
are orthonormal vectors in A. Choose the following basis of M:

{e,=1,e,=a,e; =b,e, = ab, es = ¢, ¢, = ac, e; = be, eg = abc},

denoted by % and called the canonical basis of M. For each i € {2,...,8}, it is
possible to choose j, k, [, m, s, t, all depending on i, such that

e =e6 = ¢e;e = ee, = €€ (7)
and
€l = €. (8)
Definition. Any set of equations (7) which satisfies (8) is said to be a partition of
the basis €. The ordered set of natural numbers {i, j, k, I, m, s, t} which corresponds
to a given partition (7) of € is called the index of partition. The set of all indexes of
the partitions of %€ will be denoted by 2.

Note that if we have a partition (7), then

e, =ee; = e, =eje = ee,,

©)

€ =ee =ee, =¢ee =ee
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are partitions too. Moreover, we also have the following partitions:

e; =ee; = e, = e = ee,
€ = €16, = €,€; = ¢€,¢6, = €€,

€ =¢e1e =¢,¢6 = e, = e,

(10)
em = elem = e,-e, = e,ek = ejes,

e, =ee, = e =ee =e,e,

e, = ee, = eie, = ece, = ee;.

Let M = M(A) be the simple 8-dimensional ternary Malcev algebra over &
and % the vector space spanned by the right multiplications of M. Let Ass(%) and
Lie(%) denote, respectively, the associative and the Lie algebra generated by %. Let
Der(M) and Innder(M) be, respectively, the derivation and inner derivation algebras
of M. Recall that a derivation is called inner if it belongs to the Lie algebra Lie(%)
of transformations. In what follows, (w,; v € T) denotes the linear space over ®
spanned by a family of vectors {w,; v € T}.

Proposition 2.1. With the above notations:

L. Ass(R) = Mg 4(P) = (R*);
2. Lie(%) = D, and Lie(%) = R as vector spaces;
3. Der(M) = B;.

Proof. Let (7) be a partition of € and

¥ = (R,

ij

L j=1,...,8,i<j},

where R;; = R, .- We claim that & is linearly independent, that is,

Z(xinij =0, (11)
i<j
implies o;; = 0 for all i, j=1,...,8,i < j. Consider the following partition of &:
8
F=| &,

where for each ie{2,...,8}, & ={R,;, Ry, R;,, R,}. Fixing i€ {2,...,8} and
applying the left part of (11) to ¢;, we have:
=0y — Oy, — O = 0. (12)

m Ry

Indeed, it is easy to see that

eR;=0 and e R;=—¢ =¢R, =¢R,.
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Further, if i # i and we apply the right multiplications of &, to e, we never obtain
an element of (e;) (except zero, of course) as a consequence of the above partition.
Analogously, applying the left side of (11) to ¢;, we obtain

=0y — Oy — Oy = O’ (13)
since

eRy =0 and ¢R,;,=—¢, =¢;R, =¢R,

and also because no other right multiplication of & produces a vector of (e;)
when applied to e;. Analogously, proceeding and applying the left side of (11),
respectively, to ¢; and to e, we obtain

—oy; — oy — o, =0 (14)

st

and
—0y; — Oy — Oy = 0, (15)
respectively. So, from (12)—(15) we conclude that
oy = Oy = 0y, = 04, =0

and thus &, is linearly independent. Since the same reasoning can be applied for all
i€{2,...,8}, we conclude that & is linearly independent.

Consider Ry as a linear transformation of the space M with the basis €. It is
easy to see that

Rjk = Ail + Aml + Ats’ (16)
where A;; = ¢;; — e;; and ¢;; are the usual matrix units. Note that dim A = 28, where

A:<Aul,]:1,,8>¢

By (16), (¥) = & is a subspace of A, with dim % = 28. Hence,
R = A. (17)

Now, from the development of A;;A;; and after some simple computations, it
is possible to obtain each e, as a linear combination of elements A;;A,. This fact
and (17) easily lead to what is stated in item 1.

On the other hand, we have

[A; Ayl = 5jkAi1 + 5j1Aki + 5ikA1j + 5ilAjk'

ij?

It is not difficult to obtain each A, as linear combination of products like [A;;, Ay].

Again recalling (17), we conclude that the vector spaces Lie(%) and % coincide.
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Further, it is known (see Humphreys, 1972) that the simple Lie algebra so(8, ®)—
which is spanned by {A;;:i,j=1,...,8,i < jl—is a realization of D,. Thus, the
Lie algebras Lie(%) and D, are isomorphic.

To prove that Der(M) = B; let D be a derivation of M. Then D is a linear
mapping of M such that

[x,y,z]D = [xD, y, z] + [x, yD, z] + [x, y, zD], (18)
for all x,y,ze M. Let D = [a,-j]%,. Fix i € {1, ..., 8} and consider the partition (7).

Taking x = ¢;,y = ¢; and z = ¢, in (18), we obtain

8
elD = Z(aip[e;ﬂ ej’ ek] -+ ajp[ei’ ep’ ek] f= akp[ei’ ej’ ep])’
p=1
which, due to (7) and (8), is equivalent to

8
Z a,e, = a;e, — a;e, + a;,e — a;e +a,e, — a;e;
p=1

+aje —aje, —aue +ae +a;e —a;e;

+ age, +aye,, — ae; — e, + aye; — ag e

(for example, [e;, ¢;, ¢,] = (e;e))e, = (eje;)e, = —e, e, = ere,, = e,). Thus, we have
ay =a;+a;+ay, a,=-—a,, peclijk}
Ay = Qi — Qjp — Gy (19)
Ay = —Qy — Qi+ dyy (20)
ay, = a,; + a;, +ay, (21)
ay = —aj =+ ajl — Qg - (22)
Since the index i can be arbitrarily chosen in {2, ..., 8}, by (9) we obtain

a,, =a for all p,q € {2,...,8}.

pp 44

Taking x =e;,y =e¢;, and z=¢ in (18) and proceeding analogously, we
obtain

8

esD = Z(aip[ep’ ej’ el] + ajp[el’ € ep] + a]p[ei’ ej’ e[)])’
p=1

which, after the development of each term, is equivalent to

8
Z aspep = _aitel + aikem - aimek + ailer + aiies - aisei
p=1

—a;,e, +aje,+ae —age +aje —ae;

+aye +aye, —aye, — aye, +ae; — ae,.
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It follows from here that a, =a; +a;+a, and a, = —a,, where p € {i, j, I}.
Again the possibility of choosing arbitrarily the index i, together with the relations
(9) and (10), allows us to conclude that

a a

pa = —Ggp> oy =0 (23)

for all p, g € {l,...,8}. Note that, as in the previous case, we obtain four other
relations, but these easily follow from (19)—(22) and from the arbitrary choice of
the partition of the basis. Moreover, (20)-(22) can be deduced from (19), (23), and
again by choosing arbitrarily the partition of the basis.

Next, considering the cases x = ¢,y =¢;,z=¢ and x =¢;,y =¢;, 2 =¢; in
(18), we see that we have not any new relation. It is easy to observe that applying
different partitions of the basis to the cases considered above, we obtain all possible
cases.

Thus, relations (19) and (23) exhaust all possible relations imposed to the
elements of the matrix of D (note that the indexes in (19) are a consequence of the
arbitrary choice of the index of the partition). Therefore,

Der(M) = (Ay, — Ay Ay — Ay, Ay — Ags iy jo ko L, s, £ € ). (24)

mi?» jto

It is now easy to exhibit a basis of Der(M), e.g.:
B = {A23 — A Apy + Az, Ags — Agg, Agg + Ags, Ay + Ag, Ay — Ayy,
Azy — Ay, Ags — Ayg, Az — Agg, Agg + Ays, Agg + Ajg, Ays — Ay,
Ay + A1y, Ayy — Ayg, Agg + Ays, Asg — App, Ay — Ay, Asg — Ay,
Ag+ Ay, Ag — A, Ay + A} (25)

Further, is is possible to show that the 21-dimensional Lie algebra Der(M) is simple.
Taking into account this fact together with the dimension of Der(M), we may
conclude that Der(M) = B;. O

From the proof of Proposition 2.1. we may explicitly describe all derivations
of M in the basis €.

Proposition 2.2. The derivation algebra Der(M) is spanned over ® by %, as
described in (25).

Theorem 2.3. All derivations of M are inner.

Proof. By Proposition 2.1, % = A = Lie(%). By Proposition 2.2, we have that
every D € Der(M) belongs to Lie(#) and thus D is an inner derivation of M. [

The following lemma states some relations in the Lie algebra Lie(%).
Lemma 2.4. Let € be the canonical basis of M. Then,

[[R Rx,z]’ Ry,z] =0

X,y

forany x,y,z € €.
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Proof. In order to prove that the lemma is true, it is enough to show that

IR, R, ], R,

Y.z

1=0

X,y

for all x,y, z, t € €. This identity is equivalent to

[[[I’ X, y]’ X, Z]’ Y, Z] - [[[t’ X, Z]’ X, y]’ Y, Z]
—[[l#. v, 2. x, y]. x, 2] + [[[#. v, 2], %, 2], x, y] = 0. (26)

Denoting the left-hand side of (26) by f{(z, x, y, z), it is clear that f is symmetric on
v, z. If two of the arguments are equal, then (26) is satisfied. Indeed, the cases x =y,
x =z and y = z are trivial. Suppose now that r = x. By using some of the properties
listed in (5) and (6), if ¢z, y, z are distinct in %, then:

flt.t.y.2) = —[[[t. . 2. . Y], t. 2]+ [[[e. y. 2], . 2] £, )]
=[z,t,z]+ [y, t,y] =0.

If t =y, then f(¢,x, ¢t 2) = —[[[t, x, z], x, t], t, z]. Since ¢, x, z are distinct in &, we
have [z, x, z], x, ] = z, and thus f(z, x, 1, z) = —[z, t, z] = 0. By the symmetry of f
on y, z, the case t = z follows from the previous case.

Finally, assume that all arguments of f are distinct in €. Again applying (5)
and (6), each summand of f{(z, x, y, z) is easily computable, and we obtain:

[[[2, x, 3], x, 2], 3, 2] = £+ (13, x2)[x, v, 2] = [[[1, ¥, 2], x, ¥] x, 25
[[[2, x, 2], x, ], 3, 2] = =1 = (3, x2)[x, y, 2] = [[[£, ¥, 2], x, 2], x, ¥].

Replacing in (26), we have f(z, x, y, z) = 0, which concludes the proof. O

3. INNER DERIVATIONS OF u

Let A be a ternary algebra, a € A and D € Der(A) such that D(a) = 0. It is
easy to see that D is a derivation of the reduced algebra A,,. It is also easy to observe
that, even in the case when A = M, there exists D € Der(M) such that D(a) # 0 for
all a e M, a+# 0. Take for instance D = (A, — Ay;) + (Asg + Agg).

Let A = M and a € A such that the quotient algebra A,/{a) is a simple Malcev
algebra (we know Saraiva, 2003, that this happens when a is an element of the
canonical basis, for example). Let D € Der(M) (') and D(a) # 0. Since D is a
derivation of the reduced simple Malcev algebra M,, and every derivation of such
algebra is inner (i.e., it belongs to ([R,, R ] + R,,)), we have

D= Z([R‘Lxli’ Ra,xé] + Ra.[xll.a,xé])'

Despite being Der(M) = Innder(M) (which justifies the title of this section), we will rather use
the notation Der(M) instead of Innder(M).
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We know that in the general case a derivation of the type
[Rx’ R\] + RXOR), ’

Where X = (.X'z, SART- -xn) = LX(nil)’ y= (yZ’ ey yn) = Lx(nil) and
n

xoR =>(xy,....5R,.....x,) € L"),
i=2

is not a derivation of an n-ary Malcev algebra L. Therefore, a natural question
arises: Are the operators [R, ., R, ]+ R, |, ., derivations of the ternary Malcev
algebra M? The answer is given by the following result.

Theorem 3.1. Let M(A) be a ternary Malcev algebra. For any x,y,z € A
[Rz.x’ z,y] + Rz.[x.z,y] € DCI'(M(A))

Proof. Linearizing the operator [R,,, R, ] + R, |, ., by z, we obtain

[Ru,x’ Rv,y] + [Rv,x’ RLL}'] + Ru,[x,v,y] + Rv,[x,u.y]'

In order to prove the theorem, it is enough to show that the last operator is a
derivation for any x, y, u, v € €. To do this we need some auxiliary results.

Lemma 3.2. For any distinct x, y, u, v € €\{e,},

[R,,, R,,] € Der(M).
Proof. Fix i€ {2,...,8} and consider the partition (7) of the basis. Note that it
is enough to prove the assertion in the case x = ¢;, y = e;, since the other cases will
follow from this by using different partitions of €. Recalling that each R, , can be
denoted by R,,, it is possible to deduce that

R = Rij = Akl + Atm + AIS

by a suitable adjustment of indexes in (16). Doing the same for the other
needed right multiplications, simple computations allow us to obtain the following
expressions:

[R, Ryl = —[R, Ay + A +A4,]1 = (A +Ay) + (A +4y),
[R’ Rks] = _[R’ An + Aim + Arj] = (An' - Au) + (Amj - Alk)’
[R, ka] = [R’ Atl =+ Asi + Ajl] = (Alm - Ail) *+ (Atk - Ajs)’
[R, Rl = [R, Ay + Ay + 8] = (A +4y) + (A, +4y),
[R, Ry ] = [R, Ay + Ay + Al = (A + Ay) + (A + Ap),
[R,R;] =[R, Ay +4;+4,]=0,
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[R, Rn] = [R’ Ajl =} Ams =} Aik] = (Ajk o Ats) -+ (An + Aml)’
[R, R,s] = [R, Ajy + Ay + Ayl = (Ap +4,) + (A +4,),
[R,R,;] =[R, Ay +A; +A,] =0,

[R, Ry ] = [R, Ay + Ay + Al = (A +A,) + (A + Ay).

Using the description (24), (7), and (10), it is easy to see that all of these
commutators belong to Der(M). O

Lemma 3.3. For any distinct x, y, u, v € €,

[R, . R,,] € Der(M).

X,y Ftu,v

Proof. Taking into account Lemma 3.2 and since the partition of the basis is
arbitrary, it is enough to prove that

([Ry;, Rjk]’ [R;, le]’ [R;, ij]’ [Ry;s Ry, [Ry;» Ry, ]) S Der(M).

We have
Ry = Akj + Ay + Ay Rjk =47 +A4A,,+A4,
le = _(Atl e Asi = Amk)’ ij = _(Asl s Akl W Ait)’
Ry=—(Ag+A;+4;), Ry, =4A;+A;+A

From here and (24) the lemma follows. d

Remark. The condition that the elements are distinct is essential. For example,
we have [Ry;, R;] = A; + 24, + 24, & Der(M) (in the opposite case Ay € Der M,
which is impossible).

Lemma 3.4. For any distinct x, y, z € %,

[R. . R..]+ R, .. € Der(M).

x,y°

Proof. Due to the arbitrariness of the partition of €, the following six cases
exhaust all possibilities.

l. x=e,y=¢,z2=¢; In this case

[Rli! le] = [Akj + Aml + Ats’ A, + Aik + Alt] = Aji + 2Asz + 2Amt’

ms

Rl,[i,l,j] =Ry = Aji - Asl —A

mt

(if there is no ambiguity we denote e; by i). Thus, [Ry;, R;] + Ry ;5 =24, + A, +
A,,.» which, by (24), is a derivation of M.
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2. x=¢,y=c¢;,z=e¢. We have

[R Rik] = _[Akl + Atm + Als’ Ajl + Ams + Alt] = Akj - 2Ats - 2Aml’

Rijin=—Ri=R;=47A;+A,+A,

ij°

Thus, [R;;, Ry] + R, ;i = =24, + A, +4,,, which is a derivation of M by (24).

3. x=e¢,y=c¢;,z=-¢. We have

[Rijs Ryl = =284, — 281, + Ay, Ry = —Ris = Ay + Ay + Ay

ij
Summarizing, we see that the lemma is true in this case.

4. x=e¢,y=c¢;,z=c¢e,. We have

[R Rim] = _[Am = Arm +- Als’ An + Ask + Atj] = _2Alk - 2A15 +A
Rijjim =Ry =40+ A, + A4,

ij? mj?

Summarizing, we obtain —A, — A, + 2A,,;, which is a derivation of M by (24).

mj>

5. x=¢,y=e¢e,z=e¢e. We have

[Rik’ Ril] = _[Ajl i Ams -+ A/n Aml *+ Akr + Asj] = _Q’Amj - 2A15 + Alk’
Riin=Ry =47, +Ar+ A,

Summarizing, we obtain —A,; — A, +2A,, which is a derivation of M by (24).
6. x=¢,y=¢,2=ce, Wehave
[Rik’ Rim] = _[Ajl K& Ams i Alt’ All o+ Ask -+ Atj] = ZAIj + 2A1x - Akm’

Ri,[k,i,m] =R, = _Alz - Ak - Alj-

Summarizing, we obtain A, + A;; — 2A,,,, which is a derivation of M by (24). O
Lemma 3.5. For any distinct x, y, u, v € %,

f(M, X, U, y) = Ru,[x,v,y] + Rv,[x.u,y] € Der(M)

Proof. Fix u € €. Note that if f(u, x,v,y) € Der(M), for any distinct x, v,y €
E\{u}, then

{f(v’ X, U, y)’ f(x’ u, v, y)’ f(x’ v, Yy, Lt)} - Der(M)

for any distinct x, v, y € E\{u}. By the symmetry on u and v and the skewsymmetry
on x and y, it is enough to prove this for f(x, u, v, y). We have

f(-x’ u, v, y) = Rx,[u.v,y] + Rv,[u,x,y]
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_(Rx,[v,u.y] o Ru,[v,x,y]) - (Ru,[x,v,y] + Rv.[x,u.y])
—f(x, v, u, ¥) — f(u, x, v, y) € Der(M).

Fix i€ {2,...,8}. First, consider the case when u =¢,. Using (10), the
arbitrariness of partition of the basis and the skewsymmetry on x and y, we may
suppose that x =¢; and y = e;. Denote f(p, w,z, h) by f,,.,. Thus, we have the
following five cases:

L. fiy=—Riy—Ry=—-Ay—Ay—A;, +A,+A,+A,, € Der(M).

In what follows we will use the obtained inclusion R, + R,; € Der(M) (see
case 1) and the arbitrariness of the partition of the basis without mentioning it.

2. fiuj = —Ry + Ry =0;
3. flimj = er + Rmk;

4. fii; = R+ Ry

5. fij = —Rim + Ry

Suppose now that u = e,. Using the arbitrariness of the partition of the basis,
we may assume that v = ¢;. We have:

Jij = Rim + Ry Sieim = —Ry + Rj; Siejs = Rip — Ry

Juje = —Riy — Rys Jupe = =Ry — Rj3 Sitjm = Ry — Rjy;

fujs = Ry — Ry; Jije = Ry + Ry Simpe = Ry — Ryq;

Simp = —Ry + Ry Jimis = Ra + Rjs Simpp = —Ryi + R;j;
Jisie = =Ry + R, Jisi = —Ri + R;j3 Sisim = =Ry — Ry
Sisit = R — Rj1; S = Ris + Ry Jujg = =Ry — Ry
Jitim = Ris — Ryj3 Jirs = —Ry + Ry

Using (24), it is easy to see that all these operators belong to Der(M). O

Finally, the conclusion of Theorem 3.1 follows from Lemmas 3.2-3.5.
The theorem is proven. O

Let &% be the set of all distinct 4-tuples (x, y, u, v) € €.
Corollary 1. Der(M) = ([R, ,.R, ] (x,y,u,v) € E}).
Proof. Let
Dy =A; —Au, Dy =A;; — Ay, Dy = Ay — Ay,
From the proof of Lemma 3.2 we have

[R

ij

R,] = =D, + D, + D; € ([%, Z]),



POJIDAEV AND SARAIVA
where

([R, R]) = (R, R, ,] : (x,y,u,v) € €.

x,y°

Using (9), we also obtain

—Dy+D,+ D, e{[R,R]) and  —D,+ D3+ D, € {[R, R]),
from where the conclusion follows. O
Corollary 2. Der(M) =([R,,, R, ]+ R, [y : X, ¥,z € M).
Proof. 1t follows from the proof of Lemma 3.4. O

Corollary 3. For any distinct x, y, u, v € €,

Ru,[v,x,y] + Rv,[u,x,y] € Der(M)’
Ru,[x,y,v] + Rv,[x,y,u] € Der(M)'

Proof. 1t follows from the proof of Lemma 3.5. O

4. QUASI-DERIVATIONS OF M1

In this section we describe the algebra of quasi-derivations of M. According
to Block (1969), a linear operator D : A —> A is called a quasi-derivation of a ring
A, if it satisfies

[D, T] € T(A), for all T € T(A),
where T(A) stands for the Lie ring generated by the right and left multiplications by
elements of A.

In the case of n-ary algebras we have the following definition.

Definition. Let A be an n-ary anticommutative algebra with multiplication
[,...,-]. Let & be the vector space spanned by the right multiplications

ay,...,a, € A,

and let Ass(%) and Lie(%) be, respectively, the associative and the Lie algebra
generated by %. Every operator D : A —> A such that

[D,R,] € Lie(%), for all R, € Lie(%), (27)

is said to be a quasi-derivation of A. The set of all quasi-derivations of the algebra
A is denoted by Q Der(A).

Consider the simple 8-dimensional ternary Malcev algebra M over @ and
let &, Ass(%), and L = Lie(%) stand with the above described meaning (with M
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instead of A). Under these assumptions, the following result describes the quasi-
derivations of M.

Theorem 4.1. QDer(M) = (Id)4, & L.

Proof. Let D = [d,]. € Mg, 5(®) be a linear transformation considered in the basis
% of Proposition 2.1. By (27) and Proposition 2.1, D € Q Der(M) if and only if
[D,A;] €A, i, j=1,...,8,i < j)g.

We have

8 8 8 8 8
[ > dyeys e — eji:| = dye;— Y dyey— Y dije + ) dyey,
=1 =1 k=1 =1

k,1=1

which may be equivalently written in the matrix form as

Vi Vi
O R _dlj O dli O
[D.A] = —dj —d;—d; - dy _ d; - —dg o
0 i : 0
dil cee —d” o dii ce dji -+ dij diS -
0 _dSJ 0 dSl 0

Therefore,

[D, A;j] € Lie(%) <

Since char ® # 2, the last two identities imply d; = d;; and d;; = —d;;. Finally,
recalling that i, j=1,...,8, i < j, the theorem is proven. O
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