A 3D model for mechanistic control of drug release
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Abstract

A 3D mathematical model for sorption/desorption by a cylindrical polymeric matrix with
dispersed drug is proposed. The model is based on a system of partial differential equations
coupled with boundary conditions over a moving boundary. We assume that the penetrant dif-
fuses into a swelling matrix and causes a deformation which induces a stress driven diffusion and
consequently a non-Fickian mass flux. A physically sound non linear dependence between strain
and penetrant concentration is considered and introduced in a Boltzmann integral with a kernel
computed from a Maxwell-Wiechert model. Numerical simulations show how the mechanistic
behavior can have a role in drug delivery design.

1 Introduction

In this paper we study a 3D model of diffusion of a solvent into a cylindrical polymeric matrix
containing drug and followed by the drug release. To describe drug release from a polymeric
matrix, several models have been proposed [11, 12, 13, 15, 18, 25, 27]. However to the best of our
knowledge, the influence of the mechanical properties of a swelling polymer in the sorption of a
solvent and in the desorption of drug has not yet been considered in the literature. We propose a
model where we combine non-Fickian sorption of the liquid agent, non-Fickian desorption coupled
with non-linear dissolution and polymer swelling.

It is well known that the diffusion of a liquid agent into a polymeric sample cannot be completely
described by Fick’s classical law. The liquid strains the polymeric matrix that while swelling exerts
a stress that acts as a barrier to the incoming fluid. To explain these phenomena several authors
[2, 4, 5, 11, 22, 23, 24] agree that a modified flux must be considered, that is

oC .

= = ~div(Jp(C) + Inp (o)) (1)
where C) stands for the concentration of the penetrant, Jp(C;) = —(D(C;)VC}) represents the
Fickian part of the flux, Jyp(o;) = —(Dy(Cy)Voy) represents the non-Fickian part of the flux

and o; stands for the stress. The functions D(Cj)and D, (C}) represent respectively the Fickian
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diffusion coefficient and a viscoelastic diffusion coefficient. Since equation (1) is coupled with a
stress evolution equation, the strain € is introduced as a third variable. Many different constitutive
relationships between stress and strain have been considered in the literature [2, 4, 3, 5, 16, 17].
In this paper we propose the use of a Boltzmann integral of type

o(t) = —/0 E(t—s)%(s)ds, )

where E(t) is the relaxation modulus corresponding to a Maxwell-Wiechert model [1, 19]. We
note that the minus sign in (2) means that as the penetrant solvent strains the polymeric matrix, a
stress of opposite sign is developed. When (2) is introduced in (1), the strain must be eliminated as
a variable. Therefore we consider a non-linear functional relation between strain and concentration

e=f(C), 3)

where f is established using physical arguments [7], as we will briefly describe in Section 2.

We assume that as the solvent penetrates the polymer the drug is present in two states (dissolved
and undissolved) and also that the drug release is controlled by both non-Fickian diffusion and a
non-linear dissolution. As the amount of dissolved drug does not induce, locally, any kind of
re-arrangement of the polymeric chains, the non-Fickian character of the diffusion equation that
describes the drug release is due to solvent uptake.

We track the moving front resulting from the swelling of the polymer by considering a volume
conservation equation [25]. As we assume the swelling to be independent in the radial and axial
directions we use this volume conservation equation to track separately both of the moving fronts
[9].

In Section 2 we establish a mathematical model to describe the absorbtion and drug release. In
Section 3 we introduce a volume conservation equation to describe the swelling of the polymeric
matrix. In Section 4 an Implicit-Explicit (IMEX) numerical scheme is used to numerically solve the
model. In Section 5 some plots are presented to illustrate the behavior of the numerical solutions.
Finally in Section 6 some conclusions are addressed.

2 Mathematical model

Let us consider a cylindrical polymeric matrix, with initial solid drug loading C?. As the solvent
penetrates the polymeric matrix, solid drug dissolves and dissolved drug diffuses out. The following
assumptions are made in the model: (a) swelling is homogeneous and independent in the radial and
axial directions; (b) the transport of liquid within the polymer occurs by non-Fickian diffusion; (c)
the transport of drug out of the polymer occurs by non-Fickian diffusion associated with solvent up-
take and non-linear dissolution; (d) the positions of the polymer swelling front and dissolution front
coincide; and (e) a perfect sink condition is maintained for the drug and equilibrium concentrations
are maintained for the liquid.

To describe the viscoelastic behavior of the polymer, we consider a generalized Maxwell-Wiechert
model [1, 19] with m+1 arms in parallel as shown in figure 1. Consequently the relaxation modulus
E(t) is represented by

m
;t
E(t)=> Ee™ + Ey (4)
k=1



where the E}s are the Young modulus of the spring elements, the p)s represent the viscosity,
TR = g—’; are the relaxation times associated to each of the m Maxwell fluid arms and Ej stands for
the Young modulus of the free spring.
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Figure 1: Generalized Maxwell-Wiechert model Figure 2: Cylindrical domain

Let C; denote the concentration of the liquid solvent. The functional relation between C; and

the strain e, is defined by

G
C) = . 5

i@y =G (5)

where p; denotes the density of the liquid [7]. Then from (2), (4) and (5) we conclude that the
stress associated to solvent uptake and exerted by the polymer is defined as

m t m B, _t-s
i (m) e [ (R
k=0 k=1

The evolution of solvent penetration, drug diffusion and dissolution are described by the fol-
lowing equations on the domain Q C R3 and for t > 0,

) Vfi(s)ds . (6)

oC,

ot V- (=Jr(C1) = Inp(o1) = V - (Di(C)VCy + Dy(C)Vor) (7)
%1~ vV uanes + ki (Eo %) . ®
- m(%g)a .

where Cy, Cs denote the concentration of dissolved and solid drug respectively, D;, Dy the diffu-
sion coefficients of the liquid solvent and the dissolved drug respectively, K, denotes the constant
dissolution rate of the drug and v is defined as

v(C)) = Dy(Cy)—— .
Equation (7) states that liquid solvent transport is due to Fickian (Jr) and non-Fickian (JyF)

diffusion. At the same time, equation (8) states that the local concentration of dissolved drug
depends on Fickian diffusion (D4(C;)VCy), convection (v(C)) and on solid drug dissolution. While



solid drug dissolution can take place provided that C; > 0, the velocity field v is due to the stress
induced by the solvent income. Indeed, we have that v = Jyp/C).

To establish a functional relation for the viscoelastic diffusion coefficient D,, we follow [7]. We
begin by assuming the existence of a stress gradient Vo;, that implies the existence of a velocity
field v. Then the non-Fickian flux Jyp can be interpreted as a convective field of form

J NF = I/Cl . (10)
If we compute the velocity field v using the Hagen-Poiseuille equation, we have

R2
8

V= —

Vp, (11)

where R stands for the radius of a virtual cross section of the polymeric sample available for the
convective flux, p is the pressure drop and fi represents the viscosity of a polymer-solvent solution
characterized by a liquid (or solvent) concentration equal to C; (local solvent concentration). Thus
from (10) and (11) and identifying the pressure p with the viscoelastic stress o;, we conclude that

R2C,
8

D,(C)) = (12)

Let m; and V; represent the mass and volume of the solvent respectively. If p; represents its
density, then m; = p;V; and C; = VomTlVl’ where Vj is the volume of the polymeric matrix in the dry
state. We conclude then that

C
Vi = Vo,
Ta-a
and as Vy = AxoS, we have
Vi @
— = S . 13
Arg  p—C (13)

The first member in (13) can be interpreted as a virtual cross section S, available for convective
flow. As S, = 7R? and S = WR% where Ry is the radius of the dry sample, we deduce the form of
the viscoelastic coeflicient D,,

R2C?
D,(C) = —9"L 14
() 8ii(p1 — C1) (14
A Fujita-type [10] exponential dependence for D;(C;) and D4(C}) is assumed with
G
Di(C1) = Degexp(=A(l — 5c)) (15)
l
G
D(C) = Degyern(~Ba(l = 51)) (16)
!

where Dy, Dy, denote respectively the diffusion coefficients of the liquid solvent and the dissolved
drug in the fully swollen sample and ;, 84 dimensionless positive constants.

We consider a cylindrical domain Q C R? with initial radius Ry and height Hy (Figure 2). Due
to the symmetry in 6 direction, the three dimensional problem is reduced to a two dimensional



case. Therefore equations (7)-(9) can be rewritten in cylindrical coordinates as

5;6! - i; ( Dd(Cl)%C;}l +m(cl)cd> + gz (Dd(Cz)%(“} +v(Cz)Cd>
K, <Cgcd> Cr, (18)

where 0 < 7 < R(t), 0 < z < H(t) and t > 0. Equations (17)-(19) are completed with initial
conditions

C=CP, Cy=0,Cy=C% : fort=0, 0<r <Ry, 0<2z<Hy, (20)
where C?, C? € R are positive constants. At the cylinder surface the boundary conditions are
Cr=C;, Cg=0: fort>0, r=R(t), 0<z<H(t)and z=H(t), 0<r < R(t), (21)

where C7 € R is a positive constant representing the concentration of the liquid agent in the exterior
of the cylinder. Symmetry conditions are applied at the center of the matrix, hence we also have
that

oC;  0Cy

_— = — = : = < <

5, 52 0 fort >0, r=0, 0<z<H(t)

oC;  0Cy

5 5 0 fort >0, z=0, 0<r < R(t) (22)

The model (17)-(22) is based on a new interpretation of the non-Fickian flux and the estab-
lishment of non-linear functional relations for the strain ¢ and the diffusion coefficient D,. The
rationale underlying the approach to non-Fickian diffusion used in this paper is described in [6]
and [7]. Although many authors have dealt in the past with the description of drug diffusion in
a (polymeric) matrix system [20], at our knowledge, our model is one of the most complete if we
neglect possible re-crystallization effect upon dissolution [12]. In addition, the main advantage of
our model is that it allows the incorporation of experimental rheological information about the
polymer-solvent system. This makes the model appropriate for both data fitting and quantitative
prediction.

3 Tracking of the swelling fronts

In order to track the moving fronts due to swelling, we consider the following conservation equation,
where the total volume of the matrix is the sum of water, dissolved and undissolved drug volumes.
We have

HEO (RO T . mo
7TR2(t)H(t) = / / 2mr {Cl(r, z,t) + — (Cy(r, z,t) + Cs(r, 2, t)) | dr dz+ — ,  (23)
0 0 Pl Pd Pp



where p, and pg denote the density of the polymer and the drug respectively, mg represent the
initial mass of the dry polymeric matrix.

Since we assume the swelling to be independent in the two directions, by taking time derivatives
in (23), the moving fronts in the radial and axial direction can be separately tracked.

To track the moving front in the radial direction we begin by fixing H(t) = H and taking time
derivative in (23) to obtain

R(t)
R()H / / [; a(il )—l—plg(Cd(rzt)—i-C(rzt)) dr dz
OR(®) (Cf | Cilrw) ;.
+/0 R <p1+ pd )d. (24)

As we have that

/ / r aCl , 2, t)dr dz

_ ) oC,
- [ m( (CHR(), 2, 0) G R 200) + DCURD. 2. 0) G R0, 2.0)) (29

TR b re), ) 28

o pd Ee (R(t), z,t)dz ,(26)

/ / Tﬁa (Ca(r,z,t) + Cs(r, 2z, t)) dr dz =

it follows from (24)-(26) that

¢ Cslrw)\ ,0RM)  ["]1 acl N

+p1 Dy(Cf )a;d(R(t),z,t)] dz . (27)

To track the moving front in the axial direction, we fix R(t) = R and proceeding as before we
deduce

Cf Cslup OH(t) R oC; Joy
(1- G- o) B0 o [T (yep S 0.0 + DucH G2 0.0

D) A H), )} rdr (28)

We note that if no mechanistic effects are taken into account and the drug is considered to exist
only in the dissolved state then (27) and (28) reduce to the moving boundary conditions in [9].

4 Numerical scheme

In this section we propose a coupled Implicit-Explicit (IMEX) method to solve the initial-boundary
value problem (17)-(22) and (27), (28).

In [0,7T] we consider a grid P = {t,,n=0,1,..., M} with tg =0, tpy =T and t, — t,—1 = At.
We denote by D_; the usual backward finite difference operator with respect to the time variable.



As the spatial boundary is changing in time, we consider in the initial interval [0, Ry] a uniform
grid I(to) = {ri, i=0,1,..,N(to)} with 79 = 0, rn(,) = Ro and r; — r;—1 = Ar. Then in each
interval [0, R(t,)] we consider a non-uniform grid I(t,) = {ri, i=0,1,..,N(t,)} with o = 0,
TN(tn) = R(t,) and r; — r;—1 = Ar;. We denote by D_, and D, the usual backward and forward
finite difference operator with respect to the space variable r.

Analogously in the initial interval [0, Hy] we consider a uniform grid J(t9) = {2;, j =0,1,.., N(to)}
with 20 = 0, 2x(4,) = Ho and z; — z;_1 = Az. Then in each interval [0, H(¢,)] we consider a non-
uniform grid J(t,) = {z;, j =0,1,.., K(t,)} with 20 = 0, zg ;) = H(t,) and z; — z;_1 = Az;. We
denote by D_, and D, the usual backward and forward finite difference operator with respect to
the space variable z.

Let Mj, and My, be defined as

Mhruh(riazj) = *(Uh(m—hzj)—i—uh(?”z‘,zj)),

— N =

My up(ri, zj) = 5(“h(7'i7zj—1>+“h(7”iazj))a

then we introduce the following notations

IMy (73, 2, tn) Dy(Mp, C(ri, 2))) D CJ: (i, 25)
IM; (i, 25,tn) = Dl(MthlZ_l(n,z]))D_ZC’ZZ(n,zj),
EX10(riszjstn—1) = Dy(My, CL 71 (ri, 25)) Dyop ™ (ri, 25)
EX . (ri,2j,th—1) = DU(MhZCZ;_l(n,zj))D_ZUZ’Z_l(ri,zj).
and
IMg,(ri, zj,tn) = Dd(MhTCZ;(m,zj))D_TC’d (riy25)
IMg . (ri,zj,tn) = Da(Mp,Cp (14, 25))D-.Cq, (14, 25)
EXqy(ri,zj tn-1) = Dv(MhrCﬂ(TiaZj))W D_yoy, (C]) (i 25))
1, C (rz,zj) g
My, C’gh(n,zj)

EXq.(riszj,tn-1) = Dyo(Mp,C] (14, 25)) D_.o,(Cp (ris 25))

My, CP (i, ;)

where we have used IM and EX to underline the implicit and the explicit character of the dis-
cretization respectively.
The IMEX method for (17)-(19) is defined by

1
-t Ty 25 = — LUy hTi l,r 7’7,,22], he T4 1,r\Tis 25, ln—1
D C’Z( ) rlD ((Mp,r)IM; .( n) + (Mp, i) EXy . ( tn—1))
A
+D, (IM (i, 2, tn) + EX 2 (74, 25, th-1)) (29)
1
D_tcgh(ri,zj) = ;Dr ((Mp,ri)IMg (15, 25, tn) + (Mp, 1) EXqp (13, 25, tn—1))
A

+Dz (IMd,z(ria 25, tn) + EXd,z(riv 25, tn—l))
Cnil(n‘, Zj) — C’g_l(ri, Zj)
+K *h h Cl(ri, z5) 30
; ( T ) (30)
Co (i, 2) — CF (ri, 25)

Cghil (rh Z])

_thh(Ti,Zj) = —Kd ( )C’ﬁb(ri,zj) s (31)

7



with initial conditions

) =CP, 0 =0, Cy, =C : fort=0, 0<7r; <Ry, 0< 2 < Hy, (32)
boundary conditions on the cylinder surface
Cy, =Cf, Cgq, =0 : forn>0, r;=R(ty), 0<2; < H(t,) and z; = H(t,), 0 <r; < R(t,) ,(33)
and boundary conditions at the symmetric axes

D_.C;, =D_,C4, =0 : forn>0,1r,=0,0<z; <H(t)
D_.C,, =D_,Cq, =0 : forn>0, 25=0, 0<r; <R(t,) . (34)

The moving front defined by (27) and (28) is tracked with the following equations

Ct Cslpn) &) 1
(1 —~ 75 - pd> H(ty)D_R(tn1) = Az Y pe (Du(CF)D—rC; (R(tn), 2;)
j=1

+Dy(Cf)D—raj, (R(tn), 7))
1
+%Dd(Cf)D—rC&‘h (R(tn), 2 , (35)

and

N(tn)

>R2(tn)D_tH(tn+1) = 2Ar Y %(DZ(Cf)D_Tcg(ri,H(tn))
=1

+Dy(CF) Dy, (ri, H(tn)))
+%Dd(Cf)D_TC§”h (ri, H(tn)) - (36)

<1 - g _ CS|H(tn)
Pl Pd

We compute the concentration profiles at time step ¢, using the known concentration profiles
at t,—1 with boundary conditions (33) and (34). Then we use (35) and (36) to obtain the new front
position for the next time step.

The stability and convergence of the method (29)-(36) when the boundary is fixed and no
dispersed drug is present was introduced in [6] for the one-dimensional case. The authors showed
that it is second order convergent in space and first order convergent in time. A new approach,
that does not follow the usual splitting of the global error using the solution of an elliptic equation
induced by the integro-differential equation, introduced by Wheeler in[26] and largely followed in
the literature, was considered.

In the case of a free boundary problem the analysis of stability and convergence results for the
method (29)-(36) is a very difficult problem, and cannot be studied with the approach followed in
[6] nor with classical numerical analysis approaches. Nonetheless we exhibit in the next section
some numerical results that show clear evidence of a physically sound behavior of the model.



5 Numerical Results

In what follows we exhibit some numerical results for the initial-boundary value problem (17)-(22)
and (27), (28) using the method (29)-(36). In (4) we consider m = 1, that is a Maxwell fluid arm
in parallel with a free spring. The following values for the parameters have been considered,

Ry
De(]l
pI

M1
Ky

1x1072 m, Arpmaz =5 %109 m, Hy=1x10"2 m, Azpee =5 x 107° m,

3.74 x 107" m?/s, Doy, = 2.72 x 10719 m? /s, ;= 0.8, B4 = 0.5, 1 =20 x 10° Pas,
1000 kg/m?>, p, = 1175 kg/m3, pg = 1400 kg/m?®, E; =9 x 10* Pa, Ey =1 x 10* Pa,
225 x 10* Pas, Cf =755 Kg/m®, CY =0 Kg/m?3, C° =4.5 Kg/m3,

1x1072 57! and At = 0.01 s.

In Figures 3 we plotted the behavior of the concentration of the liquid solvent as it diffuses
into the polymeric cylinder at ¢t = 1s, t = 8s, t = 15s and t = 25s. A quarter of the cylinder
cross section was modeled due to symmetries. The axes z and r correspond to the inner part of
the cylinder where symmetry conditions (22) were considered. The outer parts correspond to the
expansion fronts where the constant source of concentration C7 is assumed. We observe a smooth
solution that develops from low levels of concentration to high levels of concentration as expected,
since the liquid penetration occurs from the outermost regions of the plot toward the axes.

t=1s t=38s

Figure 3: Concentration of solvent C, for different ¢

In Figures 4 we present plots of the concentration of dissolved drug at t = 1s,t = 8s,t = 15s and
t = 25s. As before, the axes z and r correspond to the inner part of the cylinder where symmetry
conditions (22) were considered. The outermost part of the plots correspond to the expansion fronts
where a perfect sink condition is assumed. We observe that regions where the concentration of the
liquid solvent is high, correspond to regions where the concentration of dissolved drug is also high.



Figure 4: Concentration of dissolved drug Cy, for different ¢

In Figures 5 we show plots of the concentration of solid drug at t = 1s, t = 8s, t = 155 and
t = 25s. We observe that as the concentration of dissolved drug increases, the concentration of
solid drug decreases smoothly towards the moving fronts. On the contrary to what is observed in
the plots of dissolved drug, the regions of highest solid drug concentration correspond to regions of
lowest liquid agent concentration.

t=1s t=28s

Figure 5: Concentration of undissolved drug Cs, for different ¢

In Figures 6 and 7 we plotted the movement in time of the dimensionless swelling fronts in
both axial and radial directions. We observe that in both cases, the initial uptake of the solvent
produces an initial rapid growth of the swelling followed by an equilibrium state of the fronts.

According to Flory theory [8] there is a link between Ey and Cf, more precisely, at equilibrium

10



Figure 6: Swelling in the radial direction Figure 7: Swelling in the axial direction

we have

In(1—¢p)+ ¢p+ X(;ﬁ% + p.V1 (¢,§ - 0.5¢p> =0, (37)

where ¢, represent the polymer volume fraction, V; the solvent molar volume, p; is the crosslink
density and x is the Flory interaction parameter. As p, can be computed with the formula

Ey

=2 38
AT (38)

Px
where R, is the universal gas constant and 7' the absolute temperature. Assuming that x = 0.6,
T = 298.15 K and V; = 18.064 x 1076 m?/mol, then once Ej is fixed, ¢p can be calculated with
(37) and the corresponding C} can be obtained from

Cr=p(1—dy) . (39)

In Figures 8 and 9 we present the dimensionless swelling fronts as functions of the parameter
Ey and its corresponding C7. In both cases we observe that the fronts are decreasing functions
of Fy. We note that this behavior is physically sound, since an increase in Ey corresponds to an
increase in the resistance of the polymer to swelling.

e i 3 _7EE T
By —10, Cf —755.74 — =10, C¢ =T55.74

wlio =500, GF =755.72 i By =500, Cf =755.72

we Ly =1000, CF =755.7 1o - By —1000, Cf —755.7

L L L , L L
10 20 30 40 50 60 10 20 30 40 50

i(s) t(s)

Figure 8: Radial swelling, R(t)/Ry as a function of Ey  Figure 9: Axial swelling, H(t)/Hy as a function of Ey

By Mg/Mg,(t), where My is the total mass of drug released at time ¢ and My, is the initial
mass loaded in the polymeric matrix, we represent the dimensionless total mass of drug released at

11



time ¢ defined as

R(t)
Mg/Mg,(t) =1 — R2H000 / / (ryz,t) + Cq(r, z,t)) dr dz . (40)

and by M;/Ms(t) the mass of the liquid solvent inside of the matrix at time ¢, defined as

Mg /My (t) = R2 H o / / rCy(r,z,t)dr dz , (41)

where R., and H., are the values of R(t) and H(t) at equilibrium, respectively.

In order the study the effects of swelling in drug release we plotted M;/My, as a function of
Ey in Figures 10 and 11. In Figure 10 we assume that the polymer does not swell and in Figure
11 a moving boundary due to swelling is considered. When we say that no swelling is present we
mean that L(t) = Lo for all t. We observe in Figure 10 that M;/M, is a decreasing function of
Ey. Conversely in Figure 11 we observe that My/Mg, is an increasing function of Ey. As shown in
Figures 8 and 9, an Fy decrease implies a swelling increase and, therefore, the dissolved drug has
to travel a larger distance to the moving front. Consequently, less dissolved drug accumulates at
the front where the perfect sink condition is assumed and the mass of drug released decreases as
the swelling increases.

— Iy =10, Cf =T755.74

o I8 =300, CF =755.72

e Bg =500, CF =755.72

=== By =1000, Cf =755.7 o1 -- Ey =1000, Cf =755.7

L L L L L
49 50 51 52 53 54 55 56 75 20 % 40 50

Figure 10: Mass of drug released, Mg/Mg, as a function Figure 11: Mass of drug released, My/M,, as a function
of EO with L(t) = L() of E()

In Figures 12 and 13 we show plots of My/M., and My/My, respectively as a function of y;.
Figure 12 shows that M;/My is a decreasing function of p; and Figure 13 that My/My, is an
increasing function of p;. In Figure 12 we did a a 5th degree polynomial fitting in order to avoid
the jumps that appear as a consequence of the moving of the boundary.

Finally in Figure 14 we plotted R(t)/H(t) for different initial values of Ry/Hy. As proved by
Tanaka in [21], we observe that upon swelling R(t)/H(t) is constant and approximately equal to
Ry/Hy.

6 Conclusions

In this paper a 3D mathematical model to describe the drug release from a cylindrical polymeric
matrix is presented. We assume that a solvent diffuses into the matrix creating a stress driven

12
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Sogf 5 — L5 =10, Cf =755.74 22510

My/Ma,

;
oak /S e dsg =500, CF =755.72 e gy =225 10
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o e B =1000, Cf =755.7 o s fig =225% 107
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10 20 30 40 50 60 ] 10 20 30 40 50 60
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Figure 12: Mass of solvent, M,;/My, as a function of Figure 13: Mass of drug released, My/My, as a function

the viscosity pq of the viscosity 1
R o
0.9 i
5 e
S RofHo =1
E/U.% === Ry/Hy =0.8
Ro/Hy =05
0.6 —— —
ot B

Figure 14: R(t)/H(t) as a function of Ry/H

diffusion, thus a non-Fickian mass flux. To describe this phenomena, we consider a modified flux
equation that is the sum of a Fickian flux Jr and a non-Fickian flux Jyr. The viscoelastic behavior
of the polymer is described by considering a mechanistic system of dampers and springs known as
the generalized Maxwell-Wiechert model and by introducing concentration dependent functional
relations for the strain and the viscoelastic diffusion coefficient. For the drug release, as we assume
that the drug is present in two states dissolved and undissolved, the process is described by Fickian
diffusion associated to solvent uptake coupled with non-linear dissolution. To describe the swelling
of the polymeric cylinder we consider a volume conservation equation to track the movement of the
fronts in both radial and axial directions. To solve the initial-boundary value problem associated to
the system of equations we use an Implicit-Explicit (IMEX) method to obtain numerical solutions.
We exhibit several plots to illustrate the behavior of the solutions and the influence that the
parameters associated to the model have over the drug release.

The great advantage of the proposed model consists in the possibility of easily and directly in-
corporating experimental rheological information about polymer-solvent matrix system (knowledge
of Ey and py). Indeed, once the mechanical spectrum referring to a particular polymer-solvent
matrix is experimentally determined by rheological tests (frequency sweep), the Maxwell-Wiechert
model (also called generalized Maxwell model by rheologists) can be fitted to experimental data for
the determination of Ej and py [14]. Of course, our model could be also implemented considering

13



the dependence of Ey and uy on local solvent concentration. Again, this information can be exper-
imentally deduced by determining the mechanical spectrum referring to matrices characterized by
an increasing polymer concentration. Finally it is worth mentioning that all the parameters of the
model can be measured or estimated according to well-known theories.
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