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Abstract— Predictions made by using machine learning
classification models are recurrent in many reseatt fields for
a variety of reasons. In some cases, feature selentcan effi-
ciently improve the accuracy of classifications, wike reducing
the computational requirements. However, some predtive
studies are characterized by a high dimensionalitpr based on
small datasets.

In the present paper, we apply different feature dection
approaches to a small clinical dataset containinglb patients
with head-and-neck cancer treated at the Portugueskstitute
of Oncology of Coimbra (IPOCFG) with Intensity Modulated
Radiation Therapy (IMRT). Xerostomia is one of the most
frequent long term side-effects experienced by heaahd-neck
cancer patients undergoing radiation therapy, redumg drasti-
cally their quality-of-life. Being able to predict xerostomia at
early stages of the treatment would make it possiblto adjust
the treatment plan in order to minimize or avoid this compli-
cation. Different classification models to predictxerostomia
are considered along with different variable screeing meth-
odologies, and the quality of each classifier is ssssed by ap-
plying cross-validation procedures. The experimentaresults
show that different variables are selected when apying dif-
ferent variable selection techniques with differentlassification
models. Therefore, variable screening methods, bjpémselves,
are not enough for predictive analysis with small dtasets.
Their outcome should be complemented by the incorpation
of external knowledge in order to select a reducedumber of
both relevant and meaningful features.

Keywords— Feature selection, small databases, classifica-
tion, radiotherapy, xerostomia.

I. INTRODUCTION

Machine learning classification models are widebed
in several areas with the same purpose, the ach&veof
reliable inferences. For a myriad of reasons, beiblg to
make accurate predictions is a key factor in theisien
making process, whatever the study area. In aifitzgon
problem, a training dataset consistinghaflements is avail-
able. Each element is characterized byp-dimensional

to construct a decision or classification rule gakmown as
predictor, classifier or model) that will accuratgdredict
the class labels of elements for which only theitaite

vector is observed. Some classification analysesbased
on relatively small datasets. In such cases, tberforation
of external knowledge to the classification modahstruc-
tion is suggested [1]. Furthermore, some predicsittelies
are characterized by a high dimensionality. Indéedome
prediction problems, a large number of potentipiggnos-
tic variables is often available. In addition ofifge compu-
tationally cumbersome, some features may not besitike

predictors. Some features can be highly relevanth®
model, significantly improving the predictions iidluded
and affecting negatively if removed; other featuces be
totally useless, since its inclusion and/or exdnsdo not
affect the results; and others can completely siheilper-
formance of the model if they are picked [2]. Tliere, in

most studies, the selection of a limited numberetévant
predictors is a mandatory step. In some casesjreaelec-
tion can efficiently improve the accuracy of cldissition,

while reducing the computational requirements. et
more, data reduction is in concordance with theegan
scientific principle of parsimony, which impliesathsimple
models are more plausible descriptions of realigntmore
complex ones [1]. There are a myriad of variabkeeaing
techniques that can be applied to help in the Sefepro-

cess of the most relevant features characterizisgegific

dataset regarding the relationship with a givepoase [2,
3]. Nevertheless, the selection of relevant predicts par-
ticularly problematic and challenging in small cssts.

In this paper, we present a study of the performanfc
different feature selection methods, from the nates$sic to
more complex ones, applied to small datasets. Aicakd
case study was considered and different machirmaiten
classification algorithms to predict xerostomia iadidn-
induced complication for head-and-neck cancer pttie
irradiated with IMRT were used. Despite improvensent
obtained with IMRT in head-and-neck cancer patiespar-
ing of the salivary glands is still challenging, t@atially

attribute vectox, belonging to a suitable space, and a Clasf%ading to one of the most frequent long term siffects

label (also known as response0,1,...}. The objective is

experienced by head-and-neck cancer patients uvidgrg



radiation therapy — xerostomia. Therefore, beintg ab
predict xerostomia at early stages of the radiatieatment
can make it possible to adjust the treatment plaorder to
minimize or avoid such complication. In the presemork,
different feature selection processes and prediatiodels
were applied to predict the binary response “risk Xero-
stomia at 12 months of radiation treatments”. Aabase of
head-and-neck cancer patients treated at IPOCFGiseab

. METHODOLOGICAL APPROACH

A. Search Algorithms

The main objective of this paper is to illustrate prob-
lems of using variable screening methodologies wittall
datasets. We focused our attention on the most tesdd
nigues, which are briefly described below.

Sequential Forward Selection (SFS): SFS starts the
search with an empty variable subset. In each steghe
algorithm a new variable is selected. In the fgtp, all
variables are considered for selection and thesdgnfor
each variable inclusion is computed. The variahkt re-
sults in the best score is included in the varialeset and
excluded for the following selection steps [3]. T®cess
is repeated until no further improvements or agpeeified
number of variables have been included.

Sequential Backward Selection (SBS): Contrarily to SFS,
the SBS algorithm starts by considering all avddakaria-
bles and, in each iteration, a variable is disadrddore
precisely, for each possible variable removed ftbmdata
set, the fitness of the set encompassing the rémgaones
is calculated and the variable that results inktbst score is
really excluded from the variable subset.

Sequential Forward Floating Selection (SFFS): In SFS,
once a variable is included, it cannot be excluld¢er [3].
The crucial idea behind SFFS is that after theusioh of
one variable the algorithm starts a backtrackingsghof
variables’ exclusion, which is carried on until hetter
variables subset is found [3]. In that case, thgorithm
goes back to the inclusion phase that is againoad by
the backtracking exclusion phase.

Sequential Backward Floating Selection (SBFS): Analo-
gously to SFFS, the main idea is starting a backing
phase of variables inclusion after the exclusiowrmé vari-
able.

Genetic Algorithm (GA): A GA is a heuristic method to
search optimal solutions that mimics the processabdiral
evolution, by using techniques inspired on the dgseinetic
operators, such as inheritance, mutation, selectiod
crossover [2]. The GA works with populations ofiwidu-
als, and each individual represents a differerectiein of

| Paper ibekumentl

variables. In successive generations, the populaimlves
and generating individuals with higher fitness esl{asso-
ciated with higher evaluation scores).

B. Classical Approaches

We also applied some classical variable associajsn
proaches for comparative purposes, measuring theEcias
tion between each explanatory variable and thealbi
response. The Pearson correlation coefficient, contyn
represented by, is widely used in several fields to measure
the degree of linear dependence between two vasdalilis
obtained by the ratio between the covariance of tihe
variables and the product of their standard deonati Its
computation results in a value belonging to [-1ythere -1
means a perfect negative correlation, 0 no corosland 1
a perfect positive correlation. We also performacdaaaly-
sis of variance (anova) with-test to measure the associa-
tions of the dependent variable with each indepentet
numeric variable and a chi-squared ted} for categorical
variables. In this context, anova provides a stedistest to
analyze the differences among variable means anahh
squared test with 1 degree of freedom checks tthepend-
ence of two variables seen as two criteria of diaasion of
the qualitative data.

C. Classification Models

We have considered a total of six machine learipirgg
diction models as classifiers. In the following wal de-
scribe each methodology in detail.

Random Forests (RF): A RF consists in a collection of
tree-structured classifiers [4], where leaves regme class
labels and branches represent conjunctions of rfestilnat
lead to those class labels. The RF classifier waksan
ensemble of decision trees predictors, where egash it
constructed based on a random selection of obsengadf
the working/training dataset. The main essenceisfro-
cedure is to build multiple trees in randomly seddcsub-
spaces of the feature space, such that locallyraptdeci-
sions are made at each node. The split in eachisadade
according to the best feature among all possitdéufes on
the subspace. The classification of a new obsemwaibrre-
sponds to the class that is the mode of the classpsitted
by individual trees.

Support Vector Machines (SYM): SVM efficiently per-
form a non-linear classification implicitly mappinthe
observations into a high-dimensional feature speseg a
set of mathematical functions known as kernels. basic
idea behind SVM is the construction of a hyperplana
higher dimensional space defining a decision bopnda
separate the set of elements having different cfzmsber-



ships. The algorithm selects prototypes from tlaéning
data lying on the board between two classes inrotale
derive the classification rule for new data [5]. MVimple-

neighbors, being the sample assigned to the mastom
class amonyg itk closest training samples [8].
Logistic Regression (LR): The LR classifier (also known

mentations require the user to define some parasjeteas logit model) measures the relationship betweate-a

namely the kernel function and a cost parameted tse
penalize the classifier for incorrect classificagoof the
training data. The error of misclassifications dzn mini-
mized by an adequate choice of the kernel function.

Neural Networks (NN): A NN is an interconnected group
of nodes. This structure was inspired in the cémiavous
system and explored for addressing an array of lenab
[6]. Formally, a NN is an information processingaudigm
composed by a large number of highly interconnegpted
cessing elements (known as neurons), organizecysrd
and working in unison to solve specific problematténs
are presented to the network via the input layéenjciv
communicates to one or more hidden layers wheradhe
al processing is done via a system of weighted ections.
The hidden layers then link to an output layer wehtre
answer is finally yielded. Within each hidden laysuron
there is a sigmoidal activation function that pes net-
work activity, as a function of a weighted sum tsfinputs,
and helps it to stabilize by modifying the weigluthe
connections according to the input patterns to ebes® the
differences between the NN outputs and the truputsitof
the training data. NN analysis often requires gdarumber
of individual runs to obtain the best solution.

Model-based Clustering (MbC): In MbC, it is assumed
that all elements of the original dataset are echdiy a
mixture of components, each described by a deffigitg-
tion and having an associated probability or “wéigi the
mixture. The class of a new element will corresptmdhe
group defined by the mixture component that mdetlyi
created it [7]. We can adopt any probability mofdelcom-
ponents, but typically it is assumed the Gaussiatefmix-
ture model, where each component is modeled byglesi
Gaussian term with the same covariance structurengm
classes. This procedure is well-known as Eigenvéee
composition Discriminant Analysis (EDDA). Furtherrap
the covariance matrix can assume several parameaienis,
which leads to different models with different irgeeta-
tions.

K-Nearest Neighbor (k-NN): Thek-NN prediction rule is
one of the simplest machine learning classificatadgo-
rithms, being the sample neighbors taken from aoteb-
jects, for which the class is known, akda user-defined
integer meaning the number of closest samplestraiang
phase of the algorithm consists only of storing fib&ture
vectors and class labels of the training samplespredict
the class of a new instance, one first finds khieaining
samples closest to that new sample in the variapéze.
Then, the new sample is classified by a majoritievaf its

pendent variable (also called response) and onmare
independent variables, by using probability scomesthe
predicted values of the dependent variable. Thbabhitities
are modeled as a function of the explanatory vésmaby
using a logistic function [9].

D. Performance Evaluation Measures

One way of dealing with small datasets is to uset-bo
strapping to create the training set to be useterclassifi-
cation models. This set is higher or equal in sizthe orig-
inal dataset generated by random selection witlacepent
[10]. In this study we have applied all classifievgh and
without bootstrapping, in the latter case considgrsets
with 500 observations.

The evaluation score used was the Area Under the Re
ceiver Operating Characteristic (ROC) Curve (AUE)r a
binary outcome, ROC and AUC are the most commonly
recommended and used performance measures to fluelge
discriminative ability of a model between the olvs¢ions
with and without the characteristic [11]. Severalthmrs
claim that the Area Under the Precision-Recall @urv
(AUPRC) is more suitable for unbalanced datasefd.[1
Therefore, this measure was also considered as§itfunc-
tion in the experiments.

The original dataset composed by 115 observaticas w
split into 2 subsets, a validation set wNiobservations and
a training and testing set with the remaining INBbserva-
tions, which was used for variable screening byiyapg the
cross-validation technique incorporating or not tsbap
samples [12]. Cross-validation involves the pantiing of
the available data sample into complementary sapbget-
forming the analysis on one subset (training sed) testing
the analysis on the other subset (testing set).algparithm
was run 100 times for each variable screening ambrand
classification model. For those runs resulting in
AUC/AUPRC of the validation set equal or greatertl®.5,
the proportion of the times that each explanatasiable
was selected by the algorithm was determined.

. ExPERIMENTS

A. Database

The clinical data of each patient, comprising a hanof
patient features and medical registrations (suclpaagent
and tumor characteristics, treatment details arteemare-



sponse to radiation therapy registered during dfievi-up
medical consultations), were exported from the tedeic
health information system RESPONSE [13]. Only twe s
verity classes were considered: “1” if the patiprésented
xerostomia, whatever the severity; “0” otherwise. dur

Tablel Classical measures.

feature values and the development of xerostondaced
by radiation (Table 1).

dataset, 72 patients presented xerostomia, belgrgiolass
“1”, and 43 belong to class “0”, being complicatifvae.

The aim behind this study concerned the identificabf
the attributes expected to be highly associated wlie
posterior development of xerostomia induced by atialh
treatments. Given that the main purpose is to He ab
predicting xerostomia for new patients, the onfpimation
that can be used for variable screening is thekosvn at
the beginning of the treatment or, at most, dutimg first
weeks of treatment. The attributes considered instudy
concern: the patient’s data, the treatments apblefdre or
concomitantly with the radiotherapy, the treatmésth-
nigue, the overall planned treatment time, the sgvef
xerostomia prior to radiotherapy and the plannedmuose
on the tumor and organs at risk. The features seatet
scribed with detail in [14].

B. Results and Discussion

The results obtained by the most classical appesmels
well as the most widely used search algorithms eoyad
to the same conclusions.

The Pearson correlations depicted on Table 1 tegeth
with the statistical significances show that noeipendent
variable is highly correlated with the developmehixero-
stomia. The only correlations statistically sigréfint at the
0.05 level are witlfGender andtreatment technique diIMRT
variables. However, the correspondingalues revealed a
clearly weak association between those attributeks the
development of xerostomia induced by radiation.

. Pearson Correlations Anova X
Explanatory variables
R p-value F Q

Xerostomia at baseline (X1) -0.071 0.449 0.444
Physical Mean Dose

Primary Tumor 0.117 0.211 1.582

Salivary Glands 0.097 0.302 1.077

Parotids 0.141 0.134 2.277

Oral Cavity 0.041 0.666 0.188

Submandibular Glands -0.009 0.923] 0.009
Corrected Mean Dose for a
fractionation of 2 Gy

GTV-T1 0.081 0.387 0.076

Salivary Glands 0.070 0.46 0.550

Parotids 0.107 0.255 1.309

Oral Cavity 0.026 0.784 0.075

Submandibular Glands -0.009 0.921] 0.010
Number Sub. Glands -0.072 0.445 - 0.440
Age 0.021 0.827 0.049 -
Gender 0.221 0.018 0.018
Treatment Technique

IMRT (TP1) 0.102 0.279 0.275

dIMRT (TP2) -0.191  0.041 0.041
Type of Chemotherapy

Chemotherapy (CT1) -0.060 0.527 0.522

Cisplatina (CT2) 0.160 0.089 0.087

Cetuximab (CT3) -0.100 0.289 0.285
Type of Radiotherapy -0.120 0.202 0.199
Surgery (Yes/No) -0.168 0.072 - 0.071
Overall Treatment Time 0.041 0.667 0.186

The Anova analyses performed for continuous vagmbl _
show that the values taken by each explanatoryabkerido
not differ significantly between patients with amdthout
xerostomia (Table 1). The hypotheses for this sttaél test
were H: n; =, and H: at least one of the means is differ-
ent. If theF value produced by anova was greater than th
critical F-test value (equal to 3.925), the null hypothesis
was rejected; otherwise (as happened), we are bietta

between features. The hypotheses for the chi-tesg \:
variables are independent and: Mariables are dependent.
If the Q value produced by’ test is equal or greater than
the Q-test value with 1 degree of freedom (equal to 3.841)
the null hypothesis is rejected; otherwise (as kapg), we
are not able of rejectinggthind so, we cannot say that there
is a relationship between features. The chi-testébegori-
cal variables did not evidence thus a dependenctheof
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Statistical significant at the 0.05 level.

Classical approaches suggested the use of alteznati
methodologies since no feature revealed a stroegces

gon with the development of xerostomia radiatiddes
effect. Hence, we applied different variable sciegrap-
proaches in order to select those features reaflyesenta-
reject H and so we cannot say that there is a relationshiEJVes of the data and d|rec_tIy allied to the depetent of
erostomia. Several experiments have been donethieut
same conclusions were reached. The results evideace
lack of clarity and certainty to extract a varialkkt highly
associated with the development of xerostomia 12ths
after the beginning of radiation treatments. Wedutiee
packages and commandsREoftware to create the predic-
tor models and write the feature selection appreschive
run the different search algorithms incorporatinfjedent
prediction models over different combinations o$wasap-



tions: with and without bootstrapping samples; adersng

the original small and unbalanced dataset andbamcing
the original dataset before applying any techniglesgling
or not with dummy variables. Dummy variables areduas
devices to sort data into mutually exclusive catiego They
are boolean indicators, taking the values 0 anal ibdicate
the absence and presence of some categorical.€effeist
way, multinomial variables can be converted inteeh of
binomial attributes allowing for getting additionaifor-

mation provided by their different and independestiego-
ries. However, none approach converged for the same
of variables. Moreover, different features setseneached
for different runs of the experiments. Since thsutes ob-
tained for the different experiments are similae will

display one figure for each experiment type.

Figures 1 and 2 show the results obtained by tpécap
tion of stepwise algorithms (with and without a ktaack-
ing phase — SFS and SFFS, respectively) to therdit
classifiers, splitting the original small and urdrated da-

taset according ttN=15, incorporating bootstrapping sam-

ples and considering (Fig. 2) or not (Fig. 1) dumvayia-
bles. The results correspond to the proportionetéctions
of each feature in the 100 runs that result in AbfGhe
validation sets equal or greater than 0.5. We chosase
the leave-one-out cross-validation (LOOCV) procedir

the variable screening phase. LOOCV uses one saafiple

the dataset as test data and the remaining ontsiaisig
data, such that all samples with exception of areuaed to
train the model that is then used to predict tles<ifor the
remaining single sample. This procedure is repeatad
each element in the dataset is used once as tastidde-
pendently of the type of variables considered, ghg®mphs
show that the stepwise algorithms are not ablero@iyce
congruent results for the different classifierseTdpplica-
tion of the different stepwise selection algorithtosa spe-
cific classification model, assuming=15 and applying a
LOOCYV procedure, is shown in Fig. 3. As we can ske,
stepwise search approaches do not converge fosaime
set of features, even considering the same predictiodel.
Figures 4 and 5 illustrate the proportion of thiest®ons of
each variable when running the GA algorithm durir@y
runs, considering the original dataset with25 or balanc-
ing the original dataset withi=21, respectively, and also
assuming bootstrapping samples. In order to avwédetx-
haustive and time-consuming cross-validation prapedin
the variable screening we chose to use 20% of thee @&
test set and the remaining 80% as training set. @ga@,
independently of the adopted strategy, the sedggritam
was not able of circumvent the discrepancy in #leced
features for the different classification approacheonsid-
ering AUPRC as fitness function, the same landscepe
observed (Fig. 6). In spite of several authors iamgg the

AUPRC more suitable for unbalanced datasets, thabla
screening algorithm is still unable to define adefieatures
related with the development of xerostomia afteliation.

Fig. 1 SFS algorithm applied to the original dataset
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Fig. 2 SFFS algorithm by using dummy variables.
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Fig. 3 Stepwise algorithms applied to the 3-NN model
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In general, the different figures (and so the dédfe ex-
periments) basically exhibit the same pattern. $karch
algorithms do not converge for the same set ofufeat
neither considering the same prediction model wliffer-
ent variable screening approaches nor applyingstdraee
variable selection method to different classifiers.



Iv. CONCLUSIONS

The smaller the dataset, the greater the difficirtge-
scribing satisfactorily the patterns of the datan§equent-
ly, different variable screening approaches wilsule in
different variable sets whatever the machine |egyrpre-
diction model used. Also, different training dattsswill

In conclusion, studies implemented on small dasaset
should incorporate as much as possible stratefi@sative
to the classical approaches and search algoritbnfedture
selection in order to guarantee reliable predigtidvioreo-
ver, their outcome should be complemented by therpo-
ration of external knowledge in order to selecteduced
number of both relevant and meaningful features.

result in different selected attributes, and subsatly dif-
ferent performances, due to the small set size. site of
the dataset is undoubtedly the determinant faatothie
feature selection process and consequently in gireeli
analyses. A small size highly affects the qualityhe anal-
yses and consequently does not produce reliablétses
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