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Abstract— Predictions made by using machine learning 
classification models are recurrent in many research fields for 
a variety of reasons. In some cases, feature selection can effi-
ciently improve the accuracy of classifications, while reducing 
the computational requirements. However, some predictive 
studies are characterized by a high dimensionality or based on 
small datasets.  

In the present paper, we apply different feature selection 
approaches to a small clinical dataset containing 115 patients 
with head-and-neck cancer treated at the Portuguese Institute 
of Oncology of Coimbra (IPOCFG) with Intensity Modulated 
Radiation Therapy (IMRT). Xerostomia is one of the most 
frequent long term side-effects experienced by head-and-neck 
cancer patients undergoing radiation therapy, reducing drasti-
cally their quality-of-life. Being able to predict xerostomia at 
early stages of the treatment would make it possible to adjust 
the treatment plan in order to minimize or avoid this compli-
cation. Different classification models to predict xerostomia 
are considered along with different variable screening meth-
odologies, and the quality of each classifier is assessed by ap-
plying cross-validation procedures. The experimental results 
show that different variables are selected when applying dif-
ferent variable selection techniques with different classification 
models. Therefore, variable screening methods, by themselves, 
are not enough for predictive analysis with small datasets. 
Their outcome should be complemented by the incorporation 
of external knowledge in order to select a reduced number of 
both relevant and meaningful features. 

Keywords— Feature selection, small databases, classifica-
tion, radiotherapy, xerostomia. 

I. INTRODUCTION  

Machine learning classification models are widely used 
in several areas with the same purpose, the achievement of 
reliable inferences. For a myriad of reasons, being able to 
make accurate predictions is a key factor in the decision 
making process, whatever the study area. In a classification 
problem, a training dataset consisting of n elements is avail-
able. Each element is characterized by a p-dimensional 
attribute vector x, belonging to a suitable space, and a class 
label (also known as response) yϵ{0,1,…}. The objective is 

to construct a decision or classification rule (also known as 
predictor, classifier or model) that will accurately predict 
the class labels of elements for which only the attribute 
vector is observed. Some classification analyses are based 
on relatively small datasets. In such cases, the incorporation 
of external knowledge to the classification model construc-
tion is suggested [1]. Furthermore, some predictive studies 
are characterized by a high dimensionality. Indeed, in some 
prediction problems, a large number of potentially prognos-
tic variables is often available. In addition of being compu-
tationally cumbersome, some features may not be plausible 
predictors. Some features can be highly relevant to the 
model, significantly improving the predictions if included 
and affecting negatively if removed; other features can be 
totally useless, since its inclusion and/or exclusion do not 
affect the results; and others can completely spoil the per-
formance of the model if they are picked [2]. Therefore, in 
most studies, the selection of a limited number of relevant 
predictors is a mandatory step. In some cases, feature selec-
tion can efficiently improve the accuracy of classification, 
while reducing the computational requirements. Further-
more, data reduction is in concordance with the general 
scientific principle of parsimony, which implies that simple 
models are more plausible descriptions of reality than more 
complex ones [1]. There are a myriad of variable screening 
techniques that can be applied to help in the selection pro-
cess of the most relevant features characterizing a specific 
dataset regarding the relationship with a given response [2, 
3]. Nevertheless, the selection of relevant predictors is par-
ticularly problematic and challenging in small datasets. 

In this paper, we present a study of the performance of 
different feature selection methods, from the most classic to 
more complex ones, applied to small datasets. A medical 
case study was considered and different machine learning 
classification algorithms to predict xerostomia radiation-
induced complication for head-and-neck cancer patients 
irradiated with IMRT were used. Despite improvements 
obtained with IMRT in head-and-neck cancer patients, spar-
ing of the salivary glands is still challenging, potentially 
leading to one of the most frequent long term side-effects 
experienced by head-and-neck cancer patients undergoing 
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radiation therapy – xerostomia. Therefore, being able to 
predict xerostomia at early stages of the radiation treatment 
can make it possible to adjust the treatment plan in order to 
minimize or avoid such complication. In the present work, 
different feature selection processes and predictive models 
were applied to predict the binary response “risk for xero-
stomia at 12 months of radiation treatments”. A database of 
head-and-neck cancer patients treated at IPOCFG was used. 

II.  METHODOLOGICAL APPROACH 

A. Search Algorithms 

The main objective of this paper is to illustrate the prob-
lems of using variable screening methodologies with small 
datasets. We focused our attention on the most used tech-
niques, which are briefly described below. 

Sequential Forward Selection (SFS): SFS starts the 
search with an empty variable subset. In each step of the 
algorithm a new variable is selected. In the first step, all 
variables are considered for selection and the fitness for 
each variable inclusion is computed. The variable that re-
sults in the best score is included in the variable subset and 
excluded for the following selection steps [3]. The process 
is repeated until no further improvements or a pre-specified 
number of variables have been included. 

Sequential Backward Selection (SBS): Contrarily to SFS, 
the SBS algorithm starts by considering all available varia-
bles and, in each iteration, a variable is discarded. More 
precisely, for each possible variable removed from the data 
set, the fitness of the set encompassing the remaining ones 
is calculated and the variable that results in the best score is 
really excluded from the variable subset. 

Sequential Forward Floating Selection (SFFS): In SFS, 
once a variable is included, it cannot be excluded later [3]. 
The crucial idea behind SFFS is that after the inclusion of 
one variable the algorithm starts a backtracking phase of 
variables’ exclusion, which is carried on until no better 
variables subset is found [3]. In that case, the algorithm 
goes back to the inclusion phase that is again followed by 
the backtracking exclusion phase. 

Sequential Backward Floating Selection (SBFS): Analo-
gously to SFFS, the main idea is starting a backtracking 
phase of variables inclusion after the exclusion of one vari-
able. 

Genetic Algorithm (GA): A GA is a heuristic method to 
search optimal solutions that mimics the process of natural 
evolution, by using techniques inspired on the basic genetic 
operators, such as inheritance, mutation, selection and 
crossover [2]. The GA works with populations of individu-
als, and each individual represents a different selection of 

variables. In successive generations, the population evolves 
and generating individuals with higher fitness values (asso-
ciated with higher evaluation scores). 

B. Classical Approaches 

We also applied some classical variable association ap-
proaches for comparative purposes, measuring the associa-
tion between each explanatory variable and the variable 
response. The Pearson correlation coefficient, commonly 
represented by r, is widely used in several fields to measure 
the degree of linear dependence between two variables. It is 
obtained by the ratio between the covariance of the two 
variables and the product of their standard deviations. Its 
computation results in a value belonging to [-1,1], where -1 
means a perfect negative correlation, 0 no correlation and 1 
a perfect positive correlation. We also performed an analy-
sis of variance (anova) with F-test to measure the associa-
tions of the dependent variable with each independent but 
numeric variable and a chi-squared test (χ

2) for categorical 
variables. In this context, anova provides a statistical test to 
analyze the differences among variable means and the chi-
squared test with 1 degree of freedom checks the independ-
ence of two variables seen as two criteria of classification of 
the qualitative data.  

C. Classification Models 

We have considered a total of six machine learning pre-
diction models as classifiers. In the following we will de-
scribe each methodology in detail.  

Random Forests (RF): A RF consists in a collection of 
tree-structured classifiers [4], where leaves represent class 
labels and branches represent conjunctions of features that 
lead to those class labels. The RF classifier works as an 
ensemble of decision trees predictors, where each tree is 
constructed based on a random selection of observations of 
the working/training dataset. The main essence of this pro-
cedure is to build multiple trees in randomly selected sub-
spaces of the feature space, such that locally-optimal deci-
sions are made at each node. The split in each node is made 
according to the best feature among all possible features on 
the subspace. The classification of a new observation corre-
sponds to the class that is the mode of the classes outputted 
by individual trees. 

Support Vector Machines (SVM): SVM efficiently per-
form a non-linear classification implicitly mapping the 
observations into a high-dimensional feature space using a 
set of mathematical functions known as kernels. The basic 
idea behind SVM is the construction of a hyperplane in a 
higher dimensional space defining a decision boundary to 
separate the set of elements having different class member-
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ships. The algorithm selects prototypes from the training 
data lying on the board between two classes in order to 
derive the classification rule for new data [5]. SVM imple-
mentations require the user to define some parameters, 
namely the kernel function and a cost parameter used to 
penalize the classifier for incorrect classifications of the 
training data. The error of misclassifications can be mini-
mized by an adequate choice of the kernel function. 

Neural Networks (NN): A NN is an interconnected group 
of nodes. This structure was inspired in the central nervous 
system and explored for addressing an array of problems 
[6]. Formally, a NN is an information processing paradigm 
composed by a large number of highly interconnected pro-
cessing elements (known as neurons), organized by layers 
and working in unison to solve specific problems. Patterns 
are presented to the network via the input layer, which 
communicates to one or more hidden layers where the actu-
al processing is done via a system of weighted connections. 
The hidden layers then link to an output layer where the 
answer is finally yielded. Within each hidden layer neuron 
there is a sigmoidal activation function that polarizes net-
work activity, as a function of a weighted sum of its inputs, 
and helps it to stabilize by modifying the weights of the 
connections according to the input patterns to decrease the 
differences between the NN outputs and the true outputs of 
the training data. NN analysis often requires a large number 
of individual runs to obtain the best solution. 

Model-based Clustering (MbC): In MbC, it is assumed 
that all elements of the original dataset are created by a 
mixture of components, each described by a density func-
tion and having an associated probability or “weight” in the 
mixture. The class of a new element will correspond to the 
group defined by the mixture component that most likely 
created it [7]. We can adopt any probability model for com-
ponents, but typically it is assumed the Gaussian finite mix-
ture model, where each component is modeled by a single 
Gaussian term with the same covariance structure among 
classes. This procedure is well-known as Eigenvalue De-
composition Discriminant Analysis (EDDA). Furthermore, 
the covariance matrix can assume several parameterizations, 
which leads to different models with different interpreta-
tions. 

K-Nearest Neighbor (k-NN): The k-NN prediction rule is 
one of the simplest machine learning classification algo-
rithms, being the sample neighbors taken from a set of ob-
jects, for which the class is known, and k a user-defined 
integer meaning the number of closest samples. The training 
phase of the algorithm consists only of storing the feature 
vectors and class labels of the training samples. To predict 
the class of a new instance, one first finds the k training 
samples closest to that new sample in the variable space. 
Then, the new sample is classified by a majority vote of its 

neighbors, being the sample assigned to the most common 
class among its k closest training samples [8]. 

Logistic Regression (LR): The LR classifier (also known 
as logit model) measures the relationship between a de-
pendent variable (also called response) and one or more 
independent variables, by using probability scores as the 
predicted values of the dependent variable. The probabilities 
are modeled as a function of the explanatory variables by 
using a logistic function [9]. 

D. Performance Evaluation Measures 

One way of dealing with small datasets is to use boot-
strapping to create the training set to be used in the classifi-
cation models. This set is higher or equal in size to the orig-
inal dataset generated by random selection with replacement 
[10]. In this study we have applied all classifiers with and 
without bootstrapping, in the latter case considering sets 
with 500 observations. 

The evaluation score used was the Area Under the Re-
ceiver Operating Characteristic (ROC) Curve (AUC). For a 
binary outcome, ROC and AUC are the most commonly 
recommended and used performance measures to judge the 
discriminative ability of a model between the observations 
with and without the characteristic [11]. Several authors 
claim that the Area Under the Precision-Recall Curve 
(AUPRC) is more suitable for unbalanced datasets [11]. 
Therefore, this measure was also considered as fitness func-
tion in the experiments. 

The original dataset composed by 115 observations was 
split into 2 subsets, a validation set with N observations and 
a training and testing set with the remaining 115–N observa-
tions, which was used for variable screening by applying the 
cross-validation technique incorporating or not bootstrap 
samples [12]. Cross-validation involves the partitioning of 
the available data sample into complementary subsets, per-
forming the analysis on one subset (training set) and testing 
the analysis on the other subset (testing set). The algorithm 
was run 100 times for each variable screening approach and 
classification model. For those runs resulting in an 
AUC/AUPRC of the validation set equal or greater than 0.5, 
the proportion of the times that each explanatory variable 
was selected by the algorithm was determined. 

III.  EXPERIMENTS 

A. Database 

The clinical data of each patient, comprising a number of 
patient features and medical registrations (such as patient 
and tumor characteristics, treatment details and patient re-
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sponse to radiation therapy registered during the follow-up 
medical consultations), were exported from the electronic 
health information system RESPONSE [13]. Only two se-
verity classes were considered:  “1” if the patient presented 
xerostomia, whatever the severity; “0” otherwise. In our 
dataset, 72 patients presented xerostomia, belonging to class 
“1”, and 43 belong to class “0”, being complication-free. 

The aim behind this study concerned the identification of 
the attributes expected to be highly associated with the 
posterior development of xerostomia induced by radiation 
treatments. Given that the main purpose is to be able of 
predicting xerostomia for new patients, the only information 
that can be used for variable screening is the one known at 
the beginning of the treatment or, at most, during the first 
weeks of treatment. The attributes considered in our study 
concern: the patient’s data, the treatments applied before or 
concomitantly with the radiotherapy, the treatment tech-
nique, the overall planned treatment time, the severity of 
xerostomia prior to radiotherapy and the planned mean dose 
on the tumor and organs at risk. The features set is de-
scribed with detail in [14]. 

B. Results and Discussion 

The results obtained by the most classical approaches as 
well as the most widely used search algorithms converged 
to the same conclusions.  

The Pearson correlations depicted on Table 1 together 
with the statistical significances show that no independent 
variable is highly correlated with the development of xero-
stomia. The only correlations statistically significant at the 
0.05 level are with Gender and treatment technique dIMRT 
variables. However, the corresponding r values revealed a 
clearly weak association between those attributes and the 
development of xerostomia induced by radiation.  

The Anova analyses performed for continuous variables 
show that the values taken by each explanatory variable do 
not differ significantly between patients with and without 
xerostomia (Table 1). The hypotheses for this statistical test 
were H0: µ1 = µ2 and H1: at least one of the means is differ-
ent. If the F value produced by anova was greater than the 
critical F-test value (equal to 3.925), the null hypothesis 
was rejected; otherwise (as happened), we are not able to 
reject H0 and so we cannot say that there is a relationship 
between features. The hypotheses for the chi-test were H0: 
variables are independent and H1: variables are dependent. 
If the Q value produced by χ2 test is equal or greater than 
the Q-test value with 1 degree of freedom (equal to 3.841), 
the null hypothesis is rejected; otherwise (as happened), we 
are not able of rejecting H0 and so, we cannot say that there 
is a relationship between features. The chi-test for categori-
cal variables did not evidence thus a dependence of the 

feature values and the development of xerostomia induced 
by radiation (Table 1). 

Table 1 Classical measures. 

Explanatory variables 
Pearson Correlations Anova χ

2 

R p-value F Q 

Xerostomia at baseline (X1) -0.071 0.449 - 0.444 

Physical Mean Dose     

Primary Tumor 0.117 0.211 1.582 - 

Salivary Glands 0.097 0.302 1.077 - 

Parotids 0.141 0.134 2.277 - 

Oral Cavity 0.041 0.666 0.188 - 

Submandibular Glands -0.009 0.923 0.009 - 

Corrected Mean Dose for a 
fractionation of 2 Gy 

 
 

GTV-T1 0.081 0.387 0.076 - 

Salivary Glands 0.070 0.46 0.550 - 

Parotids 0.107 0.255 1.309 - 

Oral Cavity 0.026 0.784 0.075 - 

Submandibular Glands -0.009 0.921 0.010 - 

Number Sub. Glands -0.072 0.445   - 0.440 

Age 0.021 0.827 0.049 - 

Gender 0.221 0.018*    - 0.018 

Treatment Technique    - 

IMRT (TP1) 0.102 0.279 - 0.275 

dIMRT (TP2) -0.191 0.041* - 0.041 

Type of Chemotherapy     

Chemotherapy (CT1) -0.060 0.527 - 0.522 

Cisplatina (CT2) 0.160 0.089 - 0.087 

Cetuximab (CT3) -0.100 0.289 - 0.285 

Type of Radiotherapy -0.120 0.202 - 0.199 

Surgery (Yes/No) -0.168 0.072 - 0.071 

Overall Treatment Time 0.041 0.667 0.186 - 
* Statistical significant at the 0.05 level. 

Classical approaches suggested the use of alternative 
methodologies since no feature revealed a strong associa-
tion with the development of xerostomia radiation side-
effect. Hence, we applied different variable screening ap-
proaches in order to select those features really representa-
tives of the data and directly allied to the development of 
xerostomia. Several experiments have been done, but the 
same conclusions were reached. The results evidenced a 
lack of clarity and certainty to extract a variable set highly 
associated with the development of xerostomia 12 months 
after the beginning of radiation treatments. We used the 
packages and commands of R software to create the predic-
tor models and write the feature selection approaches. We 
run the different search algorithms incorporating different 
prediction models over different combinations of assump-
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tions: with and without bootstrapping samples; considering 
the original small and unbalanced dataset and also balancing 
the original dataset before applying any technique; dealing 
or not with dummy variables. Dummy variables are used as 
devices to sort data into mutually exclusive categories. They 
are boolean indicators, taking the values 0 and 1 to indicate 
the absence and presence of some categorical effect. This 
way, multinomial variables can be converted into a set of 
binomial attributes allowing for getting additional infor-
mation provided by their different and independent catego-
ries. However, none approach converged for the same group 
of variables. Moreover, different features sets were reached 
for different runs of the experiments. Since the results ob-
tained for the different experiments are similar, we will 
display one figure for each experiment type. 

Figures 1 and 2 show the results obtained by the applica-
tion of stepwise algorithms (with and without a backtrack-
ing phase – SFS and SFFS, respectively) to the different 
classifiers, splitting the original small and unbalanced da-
taset according to N=15, incorporating bootstrapping sam-
ples and considering (Fig. 2) or not (Fig. 1) dummy varia-
bles. The results correspond to the proportion of selections 
of each feature in the 100 runs that result in AUC of the 
validation sets equal or greater than 0.5. We chose to use 
the leave-one-out cross-validation (LOOCV) procedure in 
the variable screening phase. LOOCV uses one sample of 
the dataset as test data and the remaining ones as training 
data, such that all samples with exception of one are used to 
train the model that is then used to predict the class for the 
remaining single sample. This procedure is repeated until 
each element in the dataset is used once as test data. Inde-
pendently of the type of variables considered, these graphs 
show that the stepwise algorithms are not able of produce 
congruent results for the different classifiers. The applica-
tion of the different stepwise selection algorithms to a spe-
cific classification model, assuming N=15 and applying a 
LOOCV procedure, is shown in Fig. 3. As we can see, the 
stepwise search approaches do not converge for the same 
set of features, even considering the same prediction model. 
Figures 4 and 5 illustrate the proportion of the selections of 
each variable when running the GA algorithm during 100 
runs, considering the original dataset with N=25 or balanc-
ing the original dataset with N=21, respectively, and also 
assuming bootstrapping samples. In order to avoid the ex-
haustive and time-consuming cross-validation procedure, in 
the variable screening we chose to use 20% of the data as 
test set and the remaining 80% as training set. Once again, 
independently of the adopted strategy, the search algorithm 
was not able of circumvent the discrepancy in the selected 
features for the different classification approaches. Consid-
ering AUPRC as fitness function, the same landscape was 
observed (Fig. 6). In spite of several authors considering the 

AUPRC more suitable for unbalanced datasets, the variable 
screening algorithm is still unable to define a set of features 
related with the development of xerostomia after radiation. 

Fig. 1 SFS algorithm applied to the original dataset. 

 

Fig. 2 SFFS algorithm by using dummy variables. 

 

Fig. 3 Stepwise algorithms applied to the 3-NN model. 

 

In general, the different figures (and so the different ex-
periments) basically exhibit the same pattern. The search 
algorithms do not converge for the same set of features, 
neither considering the same prediction model with differ-
ent variable screening approaches nor applying the same 
variable selection method to different classifiers.  
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IV.  CONCLUSIONS 

The smaller the dataset, the greater the difficulty in de-
scribing satisfactorily the patterns of the data. Consequent-
ly, different variable screening approaches will result in 
different variable sets whatever the machine learning pre-
diction model used. Also, different training data sets will 
result in different selected attributes, and subsequently dif-
ferent performances, due to the small set size. The size of 
the dataset is undoubtedly the determinant factor in the 
feature selection process and consequently in predictive 
analyses. A small size highly affects the quality of the anal-
yses and consequently does not produce reliable results. 

Fig. 4 GA applied to the original small and unbalanced dataset. 

 

Fig. 5 GA balancing the original dataset. 

 

Fig. 6 GA with AUPRC as fitness function. 

 

In conclusion, studies implemented on small datasets 
should incorporate as much as possible strategies alternative 
to the classical approaches and search algorithms for feature 
selection in order to guarantee reliable predictions. Moreo-
ver, their outcome should be complemented by the incorpo-
ration of external knowledge in order to select a reduced 
number of both relevant and meaningful features. 
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