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Semi-supervised self-training approaches in small and unbalanced datasets: 
Application to Xerostomia radiation side-effect 

Abstract— Supervised learning algorithms have been widely 
used as predictors and applied in a myriad of studies. The 
accuracy of the classification algorithms is strongly dependent 
on the existence of large and balanced training sets. The exist-
ence of a reduced number of labeled data can deeply affect the 
use of supervised approaches. In these cases, semi-supervised 
learning algorithms can be a way to circumvent the problem. 

In the present study, we apply several semi-supervised 
learning methodologies to a small clinical dataset with 222 (138 
labeled and 84 unlabeled) head-and-neck cancer patients 
treated at the Portuguese Institute of Oncology of Coimbra 
(IPOCFG) with Intensity Modulated Radiation Therapy 
(IMRT). In order to predict the aptness for xerostomia in-
duced by radiation treatments, we considered random forest 
classifiers. Xerostomia is one of the most frequent long term 
side-effects experienced by head-and-neck cancer patients 
undergoing radiation therapy, reducing drastically their quali-
ty-of-life. Therefore, being able to predict xerostomia at early 
stages of the treatment would make it possible to adjust the 
treatment plan in order to minimize or avoid this complication  

The quality of the semi-supervised classification rule was 
validated by using different subsets of patients. Our experi-
ments evidenced an improved performance of the classifier as 
the size of the training labeled dataset increased. 
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I. INTRODUCTION  

In many research fields, the present challenge is not to 
obtain structured data but to develop machine learning algo-
rithms capable of retrieving knowledge from the existing 
data. One of the most used applications is the development 
of classifiers. Classifiers can be trained using supervised 
learning (SL) algorithms, by considering a set of labeled 
samples and a set of explanatory attributes. Each sample is 
defined by a p-dimensional attribute vector and a class la-
bel, also known as response. The goal of the algorithms is 
the construction of a model (predictor or classifier), that 
allows to accurately predict the class labels of samples for 
which only the attribute vector is known [1]. In spite of SL 
being a very efficient technique, the production of accurate 
classifiers depends on the quality and quantity of labeled 
data. SL approaches require large labeled datasets in order 
to produce more useful and accurate classification rules [2]. 
When the working dataset is of reduced size, and there is a 
lack of labeled data, the application of supervised machine 
learning algorithms can thus be jeopardized. In many do-
mains, obtaining labeled data is a particularly problematic 
task. One of the most appealing ways of circumventing the 

problem of the limited number of labeled samples is 
through automated semi-supervised learning (SSL) [2-5]. 
SSL uses both labeled and unlabeled data to construct a 
decision rule in order to improve a classifier trained only on 
the labeled pool. Classically, SSL uses large amounts of 
unlabeled data and small volumes of labeled data. Ideally, 
the training dataset should be sufficiently large and bal-
anced in order to produce a classification model that outper-
forms a random decision rule [2]. To assure that the inclu-
sion of unlabeled data will not worsen the performance of 
the classifier, it is crucial to consider rules that will define 
whether or not a given sample should be considered in the 
training process. 

SSL methods can deal with the lack of labeled samples, 
but if there is a significant unbalance in the available da-
taset, this can lead to a biased learning. In fact, a non-
uniform classes’ distribution can lead to a partial learning, 
i.e., a model trained on an unbalanced dataset can tend to 
ignore the minority class, predicting samples as belonging 
to the majority one [4]. Therefore, in non-balanced class 
datasets, alternative solutions have been incorporated in 
both SL and SSL algorithms, either at data level, such as 
under and over sampling, or algorithm level, like cost-
sensitive, active learning or even ensemble methods [2-8]. 

In the current paper, a medical application has been con-
sidered with the objective of predicting radiation-induced 
complications in the salivary glands for head-and-neck 
cancer patients treated with IMRT. The available dataset is 
both small and unbalanced. 

Radiotherapy is one of the main treatments used against 
cancer, since cancer cells are less capable of repairing them-
selves than healthy cells if damaged by radiation. IMRT is 
one technique of radiation treatment that allows the 
achievement of a high degree of conformity between the 
area to be treated and the dose absorbed by healthy tissues 
[9]. The planning of a radiotherapy treatment is patient 
dependent, resulting in a trial and error procedure until a 
treatment complying as most as possible with the medical 
prescription is found. In spite of improvements gained with 
IMRT technique in head-and-neck cancer patients compared 
to old radiation therapy techniques, sparing of the salivary 
glands is still very challenging and the irradiation of such 
organs at risk can result in salivary dysfunction. Xerosto-
mia, characterized by the feeling of dry mouth due to the 
lack of saliva, reducing drastically the quality-of-life of 
patients due to the difficulties in swallowing and in feeding, 
is one of the most frequent long term side-effects experi-
enced by head-and-neck cancer patients undergoing radia-
tion therapy [10]. Therefore, being able to predict xerosto-
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mia prior to the radiation treatment can make it possible to 
optimize the treatment plan in order to minimize or avoid 
such complication. We have developed a xerostomia predic-
tion model based on a labeled dataset of 138 patients with 
head-and-neck cancer treated at IPOCFG with IMRT, using 
random forest predictors. The SL model considers dosimet-
ric information, namely, the planned mean dose in both 
parotids, and also specific patient features known prior to 
treatment age, gender and severity of xerostomia prior to 
radiation therapy treatment. These attributes revealed to be 
highly relevant predictors of xerostomia induced by radia-
tion using random forests. One of the drawbacks of this 
approach is the fact that many unlabeled clinical cases can-
not be considered. In the present study, we present a differ-
ent approach by using SSL techniques that will allow the 
incorporation of more 84 unlabeled patients in the model 
construction. To the best of our knowledge, this is the first 
time that SSL algorithms are used to predict the risk for 
xerostomia induced by radiation treatments. 

II.  MATERIAL AND METHODS 

A. Dataset 

This study considers a small and unbalanced clinical da-
taset with 222 head-and-neck cancer patients treated with 
IMRT. The patients’ clinical data were exported from the 
electronic health information system RESPONSE [11] and 
include a number of patient features and medical registra-
tions, such as patient and tumor characteristics, treatment 
details and patient response to radiation therapy registered 
during the follow-up medical consultations. 

The classification of a side-effect at IPOCFG is made us-
ing RTOG/EORTC guidelines. A complication severity is 
ranked from 0 to 5, where 0 means no complication and 5 
death from toxicity [12]. In the present study, we are not 
interested on the complication degree but only in predicting 
if a patient will develop or not xerostomia after radiation 
therapy. Therefore, only two severity classes were consid-
ered, namely “1” if the patient presented xerostomia and “0” 
otherwise. In the considered dataset, 84 samples are not 
labeled and from the 138 samples of the labeled pool, 86 
correspond to patients with xerostomia, belonging to class 
“1”, and 52 are complication-free, belonging to class “0”. 

The main purpose of the present work is to assess the 
improvements that can be obtained by incorporating unla-
beled data in the training algorithm, compared with a SL 
classification approach. The features set considered in this 
study comprises dosimetric information, specifically, the 
planned mean dose in both parotids, age, gender and severi-
ty of xerostomia before irradiation. 

B. Classification Model 

We have considered the random forest prediction model 
to classify new patients according to the aptness for xero-
stomia 12 months after IMRT treatments. Random Forests 
works as an ensemble of decision tree classifiers [13], 
where leaves represent class labels and branches represent 
combinations of features leading to those class labels. The 
key of this procedure comprises the random selection of 
features to build a number of trees with locally-optimal 
decisions at each node. The split in each node is made ac-
cording to the best feature among all possible features on 
the selected subspace. The class assigned to a new observa-
tion is the mode of the classes outputted by the individual 
trees. 

R software was used, namely the “randomForest” R li-
brary [14]. In the predictive model, random forests are 
composed by 500 trees.  

C. Semi-supervised Approaches 

We have applied the self-training algorithm defined in 
[3], which starts by creating a prediction model trained on 
the labeled data. Then, the model is used to classify the 
unlabeled observations. The process is iterative, being the 
most confidently newly labeled samples added to the la-
beled dataset and the classifier re-trained, i.e., the topmost 
surely elements classified by the model in each step of the 
algorithm are then also used to self-train the model in the 
subsequent steps. The main goal of such procedure is to 
amplify the labeled dataset in order to produce a better-
quality model. The different self-training approaches con-
sidered in the present study are briefly described below: 

Self-Training with Unbalanced Dataset (STUD): In this 
algorithm, the original class distribution of the labeled da-
taset is maintained, in agreement with the approach devel-
oped by [3]. The newly labeled topmost confident instances 
are added to the labeled pool according to its positive-to-
negative ratio. The performance of STUD algorithm is 
compared with the specific case of adding only the best 
classified sample (positive or negative) and also assuming 
an adding ratio 1:1, i.e., extracting from the unlabeled seed 
set the top most confident instances from each class, accord-
ing to [4]. 

Self-Training with Over-Sampling (STOS): This algo-
rithm starts by balancing the classes of the original labeled 
dataset. The instances of the majority class (the positive 
class in our dataset) are kept and the minority class (the 
negative one) is randomly over-sampled until an equal pro-
portion between both classes is reached [3]. 

Self-Training with Under-Sampling (STUS): Similarly to 
STOS, STUS first balance the classes of the labeled seed 
set. In STUS, all instances of the minority class are kept and 
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the elements of the majority class are randomly picked 
without replacement until a balanced dataset is obtained [3, 
4]. 

Self-Training with Under-Sampling Ensemble (STUSE): 
STSUE is a self-training algorithm with an ensemble ap-
proach. Several ensemble variants can be seen in [2-4, 6]. In 
general, multiple sets of initial training data are considered 
to train multiple classifiers, which work together as an en-
semble to select confident elements from the unlabeled 
dataset to be included in the labeled pool. Indeed, many 
weak predictors self-trained on different subsamples of the 
labeled data can outperform the multi-view training [4]. 
Each classifier is trained on a balanced dataset containing 
all the minority instances and an equal number of majority 
elements randomly sampled without replacement. All train-
ing sets in the ensemble contain the same minority samples 
and different overlapping majority instances. A different 
classifier is trained with each of the balanced subsets, elect-
ing the two instances to be included into the labeled dataset 
for self-training in the next steps of the algorithm. The new-
ly labeled instances with majority vote are selected for in-
clusion in the labeled datasets of each classifier and then the 
predictor models are re-trained. As the number of iterations 
increases, both the training sets and the ensemble models 
start to converge. 

The first approach is not specifically designed to deal 
with unbalanced datasets, contrarily to the remaining ones. 
For the last three variants, the training labeled dataset is first 
balanced and thus, at each iteration of the algorithm, only 
two of the newly labeled elements are added to the labeled 
pool, the top most confident from each class. These ap-
proaches were designed to address the unbalanced data 
problem. Re-sampling helps to readjust the class distribu-
tion and thus the prediction model has an equal chance of 
learning the positive and negative classes. 

Each classifier produces a value belonging to [0,1], cor-
responding to the probability of a patient belonging to a 
specific class. Classifying a patient will thus require this 
probability to be translated into a binary output: 1 or 0. This 
can be done by considering a threshold value α such that if 
the probability is greater than α, the assigned class should 
be “1”, and “0” otherwise. Each α represents a decision 
boundary in the feature space. The most used threshold 
value is the value 0.5. However, tightening the decision 
boundary can lead to more certainty and accurate classifica-
tions and thus enhance the performance and quality of the 
classifier. In the present study, we have chosen to classify 

an unlabeled instance as positive if the probability value 
yielded by the model is equal or greater than 0.8; in case of 
such value is equal or smaller than 0.2 the sample is classi-
fied as negative. All other instances resulting in model val-
ues outside this range were discarded from the analysis in 
order not to affect the quality of the results. This means that 
all unlabeled samples used in the training of the classifier 
are being classified with a high level of certainty and thus 
will contribute to a more consistent predictor. 

D. Evaluation Metrics 

The usual rule of thumb to create a best sample and im-
prove the performance of the classifier when dealing with 
small datasets is producing a "bootstrap sample", which is a 
sample higher or equal in size to the original dataset but 
generated by random selection with replacement [15]. In the 
present study, we run the classifier without and with boot-
strap samples, generating sets with 500 elements in the 
latter case. Regarding the composition of the classes, we 
considered two bootstrapping situations: random bootstrap 
sampling and balanced bootstrap samples. Self-training is 
considered by many authors a bootstrapping method. How-
ever, in the present work this technique is not used with this 
purpose. 

The most commonly recommended and used perfor-
mance measures to judge the discriminative ability of a 
model when handling binary outcomes are the Receiver 
Operating Characteristic (ROC) curve and the Area Under 
the ROC Curve (AUC) [16]. Nevertheless, many authors 
consider the Area Under the Precision-Recall Curve 
(AUPRC) a more appropriate assessment metric when un-
dertaking problems with unbalanced datasets [17]. There-
fore, in the current study, we evaluate the performance of 
the classifier by using both, AUC and AUPRC. 

In order to assess the suitability of the prediction model, 
we applied a cross-validation procedure [18]. Cross-
validation consists in splitting the original dataset into com-
plementary subsets: a training set, used to perform the anal-
ysis, and a testing or validation set, used to confirm the 
results. In this study, 20 labeled samples are used to validate 
the analyses, being the remaining ones used to build the 
prediction model. For each SSL approach, the algorithm 
was run 100 times, calculating at the end the average and 
the standard deviation of the obtained performance 
measures. 

Table 1 Small and unbalanced dataset. 

 
SSL 

(Mean±SD) 
SL 

(Mean±SD) 

AUC AUPRC New Labels AUC AUPRC 
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STUD      

Proportion 0.71±0.11 0.82±0.09 11±9 

0.69±0.12 0.80±0.11 Best 0.69±0.12 0.80±0.11 36±8 

1:1 0.72±0.11 0.82±0.09 8±7 

STOS 0.71±0.10 0.74±0.09 19±7 0.71±0.10 0.73±0.11 

STUS 0.66±0.11 0.70±0.11 24±8 0.69±0.12 0.72±0.12 

STUSE 0.69±0.10 0.73±0.10 21±6 0.70±0.11 0.71±0.11 

III.  RESULTS AND DISCUSSION 

The performances of SSL methodologies were compared 
with the correspondent SL ones in order to understand the 
benefits of increasing the training labeled dataset by using 
unlabeled samples, assuming the same methodological 
conditions. Table 1 displays the results obtained when ap-
plying random forests to the original small and unbalanced 
dataset. As it can be easily observed, SSL approaches out-
perform SL methodologies in almost all situations. Moreo-
ver, in all cases, AUPRC measure revealed better than 
AUC. Such evidence is most notorious in the cases that deal 
with unbalanced training sets, which is the case of STUD 
approach. The disproportion between classes is not highly 
significant as well as the number of unlabeled data is not 
too large; so, the results obtaining when applying the STUD 
approach adding the new labeled samples to the labeled 
dataset in proportion with the unbalance ratio or according 
to the 1:1 ratio are similar. The performance of the model is 
lightly improved by using SSL in both cases with a few 
number of new quality labeled samples added to the labeled 
seed set. When considering the inclusion of only the best 
new classification, no improvement is achieved, even add-
ing more than a few samples. It could be related with the 
fact that a model trained on an unbalanced dataset tends to 
better classify the samples of the majority class and the 
labeled dataset may be getting increasingly unbalanced. 
When applying machine learning classification techniques 
specifically designed to deal with non-uniform class distri-
butions, only the AUPRC measure is able of producing 
enhanced results by SSL compared with SL. From the three 
used variants that first readjust the class distribution, only 
the STUS approach results in a worse-quality performance 
by SSL. Undersampling the majority class can result in an 
even smaller and poorly diversified dataset, skewing the 
learning of the model. However, considering an ensemble 

approach of overlapped undersamples of the majority class, 
as adopted by STUSE algorithm, the SSL analyses are im-
proved, outperforming the SL ones. This approach consid-
ers several weak classifiers that are trained on different 
sample sets. A multi-view training allows a more diversified 
analysis and thus more precise class learning. Several clas-
sifiers working together for the same purpose can execute 
better tasks than individual predictors. On the other hand, 
oversampling the minority class can result in a larger train-
ing set with a greater sample variance, which leads to an 
easier learning, resulting thus in a better performance when 
applying the STOS methodology by SSL. 

Table 2 and 3 illustrate the performance of SSL and SL 
algorithms when considering the generation of bootstrap-
ping samples to train the prediction models. Only the STUD 
approach was run, since a bootstrapping technique does not 
enrich the training data of the remaining methodologies. 
Assuming random bootstrapping samples, no STUD variant 
is improved by using SSL instead of SL. Random boot-
strapping may increase the disparity between the composi-
tions of the classes introducing bias in the learning of the 
model. The real disparity of the classes is not very large, but 
it may be accentuated by random bootstrapping, negatively 
affecting the performance of the model. In contrast, when 
generating balanced bootstrap samples, all STUD alterna-
tives result in a better performance by SSL, which is more 
evidenced with the AUPRC measure. The performance of 
the classifier is lightly improved by the inclusion of some 
new labeled instances.  

In general, the performance of a classifier can be im-
proved by increasing the size of the training labeled set by 
SSL approaches, either dealing with the original small and 
unbalanced labeled set, adding the instances according to 
the class proportion or the 1:1 ratio, or adjusting the initial 
class distribution by using re-sampling techniques or gener-
ating balanced bootstrapping samples. 

 
Table 2 Random bootstrapping samples. 

 
SSL 

(Mean±SD) 
SL 

(Mean±SD) 

AUC AUPRC New Labels AUC AUPRC 

STUD      

Proportion 0.71±0.11 0.81±0.09 25±9 0.73±0.11 0.83±0.11 
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Best 0.68±0.11 0.79±0.10 62±8 

1:1 0.72±0.13 0.82±0.10 18±8 

 

Table 3 Balanced bootstrapping samples. 

 
SSL 

(Mean±SD) 
SL 

(Mean±SD) 

AUC AUPRC New Labels AUC AUPRC 

STUD      

Proportion 0.71±0.11 0.82±0.09 32±6 

0.70±0.12 0.80±0.11 Best 0.71±0.10 0.82±0.09 43±8 

1:1 0.71±0.12 0.82±0.11 30±8 

 
IV.  CONCLUSIONS 

In this paper a medical-case study was considered where 
it was necessary to address the problem of having only a 
small sized dataset with an unbalanced class distribution. As 
far as the authors know, this is the first time that SSL algo-
rithms are used in the context of predicting the aptness for 
xerostomia after radiation therapy. Our empirical results 
revealed a successful utilization of the unlabeled data by 
SSL approaches. In small and unbalanced datasets the per-
formance of the SSL classifier is slightly improved when 
compared with the use of SL methodologies. The use of 
labeled data is enriched by the unlabeled one. The smaller 
the dataset, the greater the difficulty in describing satisfac-
torily the data patterns. Therefore, by increasing the size of 
the dataset, we would be able of highly improving the per-
formance of the classification model. Furthermore, classifi-
ers are negatively affected when learning from datasets with 
non-uniform distributions. The more skewed the distribu-
tion of the classes, the more affected the performance of the 
classifier is. Our experiments show that classifiers can have 
better performances on unbalanced datasets if they are self-
trained according to the original data set unbalance or 1:1 
ratios or on balanced datasets, either by resampling tech-
niques or by balanced bootstrapping samples. 

In future work we intend to develop a methodology that 
generates synthetic data in order to increase the amount of 
labeled data as well as balancing the classes’ distribution. 
Moreover, we are also interested in applying co-training 
algorithms and possibly explore cost-sensitive techniques. 
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