Semi-supervised self-training approaches in smallra unbalanced datasets:
Application to Xerostomia radiation side-effect

Abstract— Supervised learning algorithms have been widely
used as predictors and applied in a myriad of studis. The
accuracy of the classification algorithms is stronly dependent
on the existence of large and balanced training setThe exist-
ence of a reduced number of labeled data can deepfect the
use of supervised approaches. In these cases, seapervised
learning algorithms can be a way to circumvent thg@roblem.

In the present study, we apply several semi-supesed
learning methodologies to a small clinical datasetith 222 (138
labeled and 84 unlabeled) head-and-neck cancer patits
treated at the Portuguese Institute of Oncology offoimbra
(IPOCFG) with Intensity Modulated Radiation Therapy
(IMRT). In order to predict the aptness for xerostamia in-
duced by radiation treatments, we considered randonforest
classifiers. Xerostomia is one of the most frequerbng term
side-effects experienced by head-and-neck cancer tigauts
undergoing radiation therapy, reducing drastically their quali-
ty-of-life. Therefore, being able to predict xerostmia at early
stages of the treatment would make it possible todfust the
treatment plan in order to minimize or avoid this mmplication

The quality of the semi-supervised classificationule was
validated by using different subsets of patients. @ experi-
ments evidenced an improved performance of the claier as
the size of the training labeled dataset increased.

Keywords—radiotherapy,  xerostomia,  semi-supervised
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I. INTRODUCTION

In many research fields, the present challengeoistm
obtain structured data but to develop machine Iegralgo-
rithms capable of retrieving knowledge from thesérig
data. One of the most used applications is theldpreent
of classifiers. Classifiers can be trained usingesuised
learning (SL) algorithms, by considering a set albdled
samples and a set of explanatory attributes. Eanipk is

problem of the limited number of labeled samples is
through automated semi-supervised learning (SSE)][2
SSL uses both labeled and unlabeled data to cahsiru
decision rule in order to improve a classifiertiead only on
the labeled pool. Classically, SSL uses large ansoonf
unlabeled data and small volumes of labeled datally,
the training dataset should be sufficiently largel dal-
anced in order to produce a classification modat thutper-
forms a random decision rule [2]. To assure thatititlu-
sion of unlabeled data will not worsen the perfanoe of
the classifier, it is crucial to consider rulesttiall define
whether or not a given sample should be considerdde
training process.

SSL methods can deal with the lack of labeled saspl
but if there is a significant unbalance in the klde da-
taset, this can lead to a biased learning. In fachon-
uniform classes’ distribution can lead to a partérning,
i.e., @ model trained on an unbalanced dataseterah to
ignore the minority class, predicting samples asrggng
to the majority one [4]. Therefore, in non-balanaddss
datasets, alternative solutions have been incormarin
both SL and SSL algorithms, either at data levethsas
under and over sampling, or algorithm level, likeste
sensitive, active learning or even ensemble metfiba$.

In the current paper, a medical application has lwe-
sidered with the objective of predicting radiatioauced
complications in the salivary glands for head-aedkn
cancer patients treated with IMRT. The availableaskt is
both small and unbalanced.

Radiotherapy is one of the main treatments usethsiga
cancer, since cancer cells are less capable ofirepthem-
selves than healthy cells if damaged by radiatibiRT is
one technique of radiation treatment that allows th
achievement of a high degree of conformity betwéen
area to be treated and the dose absorbed by hewmisines

defined by ap-dimensional attribute vector and a class la{9]- The planning of a radiotherapy treatment idique

bel, also known as response. The goal of the algos is
the construction of a model (predictor or classjfighat
allows to accurately predict the class labels ofigas for
which only the attribute vector is known [1]. Initgpof SL
being a very efficient technique, the productiorao€urate
classifiers depends on the quality and quantityjabkled
data. SL approaches require large labeled datasetsler
to produce more useful and accurate classificatites [2].
When the working dataset is of reduced size, aacktis a
lack of labeled data, the application of supervisgthine
learning algorithms can thus be jeopardized. Inyndo-
mains, obtaining labeled data is a particularlybpematic
task. One of the most appealing ways of circumwenthe

dependent, resulting in a trial and error proceduntl a

treatment complying as most as possible with thdicaé
prescription is found. In spite of improvementsngal with

IMRT technique in head-and-neck cancer patientspeoed
to old radiation therapy techniques, sparing of shkvary
glands is still very challenging and the irradiatiof such
organs at risk can result in salivary dysfunctiderosto-
mia, characterized by the feeling of dry mouth duehe
lack of saliva, reducing drastically the qualityidé of

patients due to the difficulties in swallowing aindeeding,
is one of the most frequent long term side-effentperi-
enced by head-and-neck cancer patients undergaitig-r
tion therapy [10]. Therefore, being able to predietosto-



mia prior to the radiation treatment can make #gilole to
optimize the treatment plan in order to minimizeavoid
such complication. We have developed a xerostonaeiq-
tion model based on a labeled dataset of 138 patigith
head-and-neck cancer treated at IPOCFG with IMRIngu
random forest predictors. The SL model considessniet-

B. Classification Model

We have considered the random forest predictioneinod
to classify new patients according to the aptnessxéro-
stomia 12 months after IMRT treatments. Random $tere
works as an ensemble of decision tree classifiéf, [

fic information, namely, the planned mean dose dthb where leaves represent class labels and branchesseat

parotids, and also specific patient features kn@nor to
treatment age, gender and severity of xerostoni@ po
radiation therapy treatment. These attributes ledet» be
highly relevant predictors of xerostomia inducedrbglia-
tion using random forests. One of the drawbackghaf

approach is the fact that many unlabeled clinicales can-

not be considered. In the present study, we preselifter-
ent approach by using SSL techniques that willvaltbe
incorporation of more 84 unlabeled patients in thedel
construction. To the best of our knowledge, thighis first
time that SSL algorithms are used to predict tis& for
xerostomia induced by radiation treatments.

Il. MATERIAL AND METHODS

A. Dataset

This study considers a small and unbalanced cliniaa
taset with 222 head-and-neck cancer patients treatth
IMRT. The patients’ clinical data were exportednfrahe
electronic health information system RESPONSE [ddd
include a number of patient features and mediogistia-
tions, such as patient and tumor characteristiestrnent
details and patient response to radiation theragystered
during the follow-up medical consultations.

The classification of a side-effect at IPOCFG igdmas-
ing RTOG/EORTC guidelines. A complication severigy
ranked from 0 to 5, where 0 means no complicatioh &
death from toxicity [12]. In the present study, @e not
interested on the complication degree but onlyradjcting
if a patient will develop or not xerostomia aftexdiation
therapy. Therefore, only two severity classes wanesid-
ered, namely “1” if the patient presented xerostand “0”
otherwise. In the considered dataset, 84 samplesnat
labeled and from the 138 samples of the labeled, @&
correspond to patients with xerostomia, belongmglass
“1”, and 52 are complication-free, belonging tossld0”.

combinations of features leading to those classl$abirhe
key of this procedure comprises the random seleotib
features to build a number of trees with locallyhowl
decisions at each node. The split in each nodeadenac-
cording to the best feature among all possibleufeat on
the selected subspace. The class assigned to absawa-
tion is the mode of the classes outputted by thlévidual
trees.

R software was used, namely the “randomForest’-R i
brary [14]. In the predictive model, random forest®e
composed by 500 trees.

C. Semi-supervised Approaches

We have applied the self-training algorithm defirad
[3], which starts by creating a prediction modaiiried on
the labeled data. Then, the model is used to &jadise
unlabeled observations. The process is iteratiemgothe
most confidently newly labeled samples added to l#he
beled dataset and the classifier re-trained, the.,topmost
surely elements classified by the model in each efethe
algorithm are then also used to self-train the rhanlehe
subsequent steps. The main goal of such procedute i
amplify the labeled dataset in order to produceetteb-
quality model. The different self-training approashcon-
sidered in the present study are briefly descrldw:

Salf-Training with Unbalanced Dataset (STUD): In this
algorithm, the original class distribution of thebéled da-
taset is maintained, in agreement with the apprahiel-
oped by [3]. The newly labeled topmost confidestamces
are added to the labeled pool according to itstpesio-
negative ratio. The performance of STUD algorithsn i
compared with the specific case of adding only biest
classified sample (positive or negative) and alssuming
an adding ratio 1:1, i.e., extracting from the beled seed
set the top most confident instances from eacls cixord-
ing to [4].

Salf-Training with Over-Sampling (STOS): This algo-

The main purpose of the present work is to asdess trfithm starts by balancing the classes of the oaigiabeled

improvements that can be obtained by incorporatinka-
beled data in the training algorithm, compared vattSL
classification approach. The features set considerehis
study comprises dosimetric information, specifigalthe
planned mean dose in both parotids, age, gendeserati-
ty of xerostomia before irradiation.

dataset. The instances of the majority class (tbsitipe
class in our dataset) are kept and the minoritgscldhe
negative one) is randomly over-sampled until anaéguo-
portion between both classes is reached [3].
Self-Training with Under-Sampling (STUS): Similarly to
STOS, STUS first balance the classes of the labsed
set. In STUS, all instances of the minority classkept and



the elements of the majority class are randomlykgac
without replacement until a balanced dataset isinbtl [3,
4].

Self-Training with Under-Sampling Ensemble (STUSE):
STSUE is a self-training algorithm with an ensemate
proach. Several ensemble variants can be seerdingR In
general, multiple sets of initial training data a@nsidered
to train multiple classifiers, which work togeth&s an en-
semble to select confident elements from the utdabe
dataset to be included in the labeled pool. Indeedny
weak predictors self-trained on different subsammethe
labeled data can outperform the multi-view trainif#gj.
Each classifier is trained on a balanced datasetagung
all the minority instances and an equal number ajonity
elements randomly sampled without replacementtrAlh-
ing sets in the ensemble contain the same minsaigples
and different overlapping majority instances. Afaliént
classifier is trained with each of the balancedsetdy elect-
ing the two instances to be included into the lattelataset
for self-training in the next steps of the algamithThe new-
ly labeled instances with majority vote are selédir in-
clusion in the labeled datasets of each classifierthen the
predictor models are re-trained. As the humbetestions
increases, both the training sets and the ensembtiels
start to converge.

The first approach is not specifically designeddtal
with unbalanced datasets, contrarily to the remagirines.
For the last three variants, the training labelathset is first
balanced and thus, at each iteration of the alguoritonly
two of the newly labeled elements are added tdaheled
pool, the top most confident from each class. Thase
proaches were designed to address the unbalanded
problem. Re-sampling helps to readjust the classibli-
tion and thus the prediction model has an equahahaf
learning the positive and negative classes.

Each classifier produces a value belonging to [Gai-
responding to the probability of a patient beloggito a
specific class. Classifying a patient will thus uig this
probability to be translated into a binary outgubr 0. This
can be done by considering a threshold valgeich that if

an unlabeled instance as positive if the probagbildlue

yielded by the model is equal or greater than ib.&ase of
such value is equal or smaller than 0.2 the samspitassi-

fied as negative. All other instances resultingniodel val-

ues outside this range were discarded from theysisain

order not to affect the quality of the results. SThieans that
all unlabeled samples used in the training of tlaesgifier

are being classified with a high level of certaiatyd thus
will contribute to a more consistent predictor.

D. Evaluation Metrics

The usual rule of thumb to create a best sampleirand
prove the performance of the classifier when dealiith
small datasets is producing a "bootstrap samplbigiwis a
sample higher or equal in size to the original sgttebut
generated by random selection with replacement [hShe
present study, we run the classifier without anthwaoot-
strap samples, generating sets with 500 elementthén
latter case. Regarding the composition of the elssie
considered two bootstrapping situations: randomtditap
sampling and balanced bootstrap samples. Selfiiiis
considered by many authors a bootstrapping metHou-
ever, in the present work this technique is notlusith this
purpose.

The most commonly recommended and used perfor-
mance measures to judge the discriminative abditya
model when handling binary outcomes are the Receive
Operating Characteristic (ROC) curve and the Areadd
the ROC Curve (AUC) [16]. Nevertheless, many aughor
consider the Area Under the Precision-Recall Curve

déAUPRC) a more appropriate assessment metric winen u
dertaking problems with unbalanced datasets [1Rpr&-
fore, in the current study, we evaluate the perforce of
the classifier by using both, AUC and AUPRC.

In order to assess the suitability of the predictimodel,
we applied a cross-validation procedure [18]. Gross
validation consists in splitting the original daasto com-
plementary subsets: a training set, used to pertberanal-
ysis, and a testing or validation set, used to iconthe

the probability is greater tham the assigned class should results. In this study, 20 labeled samples are tsedlidate
be “1", and “0” otherwise. Eaclx represents a decision the analyses, being the remaining ones used tal lod
boundary in the feature space. The most used thicesh prediction model. For each SSL approach, the dlyori

value is the value 0.5. However, tightening theiglen
boundary can lead to more certainty and accuratssifica-
tions and thus enhance the performance and qu#lithe
classifier. In the present study, we have chosedassify

Tablel Small and

was run 100 times, calculating at the end the aeeand
the standard deviation of the obtained performance
measures.

unbalanced dataset.

SSL SL
(MeanxSD) (MeanzSD)
AUC AUPRC New Labels AUC AUPRC




STUD
Proportion 0.71+0.11 0.82+0.09
Best 0.69+0.12 0.80+0.11
11 0.7240.11 0.82+0.09
STOS 0.71+0.10 0.74+0.09
STUS 0.66+0.11 0.70+0.11
STUSE 0.69+0.10 0.7340.10

1149
3618 0.69+0.12 0.80+0.11
8+7
1947 0.71%0.10 0.73%0.11
2448 0.69+0.12 0.7240.12
2146 0.70+0.11 0.71%0.11

Ill. RESULTS AND DISCUSSION

approach of overlapped undersamples of the majolitys,
as adopted by STUSE algorithm, the SSL analysesare

The performances of SSL methodologies were compargatoved, outperforming the SL ones. This approadatisice

with the correspondent SL ones in order to undedsthe
benefits of increasing the training labeled datdsetising

ers several weak classifiers that are trained dferdnt
sample sets. A multi-view training allows a moreedsified

unlabeled samples, assuming the same methodologicaalysis and thus more precise class learning.r&evias-

conditions. Table 1 displays the results obtainéemwap-
plying random forests to the original small and alabced
dataset. As it can be easily observed, SSL appesacht-
perform SL methodologies in almost all situatiokkreo-

sifiers working together for the same purpose cescate
better tasks than individual predictors. On theepthand,
oversampling the minority class can result in gédartrain-
ing set with a greater sample variance, which |gadan

ver, in all cases, AUPRC measure revealed betten th easier learning, resulting thus in a better perforoe when

AUC. Such evidence is most notorious in the casatdeal
with unbalanced training sets, which is the cas&BUD
approach. The disproportion between classes ishigiily
significant as well as the number of unlabeled dataot
too large; so, the results obtaining when applyirgSTUD

applying the STOS methodology by SSL.

Table 2 and 3 illustrate the performance of SSL &hd
algorithms when considering the generation of Homps
ping samples to train the prediction models. Ohly $TUD
approach was run, since a bootstrapping techniges dot

approach adding the new labeled samples to thdelhbe enrich the training data of the remaining methodias.

dataset in proportion with the unbalance ratio aroading
to the 1:1 ratio are similar. The performance &f thodel is
lightly improved by using SSL in both cases wittfeav

number of new quality labeled samples added tdaheled
seed set. When considering the inclusion of onéy tlest
new classification, no improvement is achieved,neadd-
ing more than a few samples. It could be relateith Wie

fact that a model trained on an unbalanced datesds to
better classify the samples of the majority clasd the
labeled dataset may be getting increasingly unialhn
When applying machine learning classification téghes
specifically designed to deal with non-uniform elafistri-

butions, only the AUPRC measure is able of prodycin

enhanced results by SSL compared with SL. Fronthiee
used variants that first readjust the class distidm, only
the STUS approach results in a worse-quality peréorce
by SSL. Undersampling the majority class can reisulin
even smaller and poorly diversified dataset, skgwiine
learning of the model. However, considering an pide

Assuming random bootstrapping samples, no STUDawari
is improved by using SSL instead of SL. Random boot
strapping may increase the disparity between thmeposi-
tions of the classes introducing bias in the lesgrf the
model. The real disparity of the classes is noy \etge, but
it may be accentuated by random bootstrapping, tiveda
affecting the performance of the model. In contragien
generating balanced bootstrap samples, all STUE&rralt
tives result in a better performance by SSL, wh&more

evidenced with the AUPRC measure. The performarice o

the classifier is lightly improved by the inclusiaf some
new labeled instances.

In general, the performance of a classifier canirbe
proved by increasing the size of the training ladedet by
SSL approaches, either dealing with the originaalsrnd
unbalanced labeled set, adding the instances adngotd
the class proportion or the 1:1 ratio, or adjusting initial
class distribution by using re-sampling techniqoegener-
ating balanced bootstrapping samples.

Table2 Random bootstrapping samples.

SSL SL
(MeanzSD) (MeanzSD)
AUC AUPRC New Labels AUC AUPRC
STUD
Proportion 0.71+0.11 0.81+0.09 2549 0.7310.11 0.83+0.11




Best 0.68+0.11 0.79+0.10 62+8
11 0.72+0.13 0.82+0.10 18+8
Table3 Balanced bootstrapping samples.
SSL SL
(MeanzSD) (MeanzSD)
AUC AUPRC New Labels AUC AUPRC
STUD

Proportion 0.71£0.11 0.820.09 3246

Best 0.71+0.10 0.82+0.09 43+8 0.70+0.12 0.80+0.11
11 0.71+0.12 0.82+0.11 308

Iv. CONCLUSIONS

In this paper a medical-case study was considereztev
it was necessary to address the problem of havilg &
small sized dataset with an unbalanced class ldigion. As
far as the authors know, this is the first timet tBSL algo-
rithms are used in the context of predicting thinegs for
xerostomia after radiation therapy. Our empiricasults
revealed a successful utilization of the unlabelath by
SSL approaches. In small and unbalanced datasetseth
formance of the SSL classifier is slightly improvedien
compared with the use of SL methodologies. The afse
labeled data is enriched by the unlabeled one. shhaller
the dataset, the greater the difficulty in desagbsatisfac-
torily the data patterns. Therefore, by increagheysize of
the dataset, we would be able of highly improvihg per-
formance of the classification model. Furthermailessifi-
ers are negatively affected when learning from skttawith
non-uniform distributions. The more skewed the riist
tion of the classes, the more affected the perfon@af the
classifier is. Our experiments show that classfigain have
better performances on unbalanced datasets ifategelf-
trained according to the original data set unbaaoic 1:1
ratios or on balanced datasets, either by resampéoh-
niques or by balanced bootstrapping samples.

In future work we intend to develop a methodololstt
generates synthetic data in order to increase rimuat of
labeled data as well as balancing the classeitditibn.
Moreover, we are also interested in applying coing
algorithms and possibly explore cost-sensitive égples.
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