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Abstract

The behaviour of large-area avalanche photodiodes for X-rays, visible and vacuum-ultra-violet (VUV) light detection

in magnetic fields up to 5T is described. For X-rays and visible light detection, the photodiode pulse amplitude and

energy resolution were unaffected from 0 to 5T, demonstrating the insensitivity of this type of detector to strong

magnetic fields. For VUV light detection, however, the photodiode relative pulse amplitude decreases with increasing

magnetic field intensity reaching a reduction of about 24% at 5T, and the energy resolution degrades noticeably with

increasing magnetic field.

r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent advances on the development of large-
area avalanche photodiodes (LAAPDs) with high-
er gains and improved spatial uniformity have
prompted intensive studies of their characteristics
for scintillation detection. LAAPDs have been

mostly used as optical photodetectors coupled to
inorganic scintillators for X- and g-ray detection,
substituting for photomultiplier tubes. Applica-
tions include instrumentation for nuclear physics
[1, 2], high–energy physics [3, 4] and medicine
[5, 6]. Additionally, these devices are fairly good
X-ray spectrometers [7, 8] presenting energy resolu-
tions similar to those of proportional counters [8].
More recently, windowless LAAPDs with sensi-

tivity extended to the vacuum-ultra-violet (VUV)
region became commercially available and their
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application as VUV photonsensors for the scintil-
lation light from noble gases and liquids in
positron-emission tomography, X- and g-ray
spectroscopy is under investigation [9–11].
The use of LAAPDs in an experiment to

measure the Lamb-shift of the 2S–2P atomic states
in muonic hydrogen (mp) is being considered [12].
The experiment, to be carried out at the Paul
Scherrer Institute (PSI), Switzerland, in collabora-
tion with nine institutions, consists in obtaining
long-lived mp atoms in the 2S-metastable state by
stopping a low energy m� beam in a small volume
of low-pressure hydrogen in a 5T magnetic field. A
pulsed beam from a tuneable laser induces the 2S–
2P transition in mp and the 1.9-keV X-ray photons
resulting from the 2P–1S de-excitation will be
detected. Measuring the coincidences between the
laser pulse and the 1.9-keV X-rays as a function of
the laser wavelength, the Lamb shift can be
determined. Low counting rates are expected and
the 1.9-keV X-ray background will be reduced by
gating its coincidence with the signal resulting
from the high-energy electron produced by the
subsequent muon decay. The X-ray detector
should be compact and insensitive to a 5T
magnetic field.
The LAAPD can be used in two detector

configurations: as the VUV photosensor of a
xenon gas proportional scintillation counter
(GPSC) [13] or as a direct X-ray detector [8].
The superior signal-to-noise ratio, large-area cap-
ability and energy resolution of a GPSC are
advantages. However, the compactness and win-
dowless design, the simple operation and the use of
much lower biasing high-voltage, for the LAAPD
operation as a direct X-ray detector configuration,
present important advantages in this application.
In both cases, the LAAPD needs to be operated
under intense magnetic fields, up to 5T.
The very small effect of magnetic field on the

operation of the avalanche photodiodes has often
been referred to in the literature [3, 4, 14].
However, detailed experimental results on this
issue are scarce. Also, the experimental results
available from manufacturers have not been
published, to the best of our knowledge. Addi-
tionally, most of the studies with LAAPDs were
carried out for visible light leaving aside the VUV

and X-ray range. It has been proved that some
LAAPD characteristics are different for visible-
and VUV-light detection [15, 16].
In this work we present an experimental study

on the behaviour of LAAPDs under magnetic
fields up to 5T for X-ray, VUV- and visible-light
detection. LAAPDs were used to detect directly
5.4-keV X-rays, to read the scintillation light of a
xenon GPSC and the scintillation light of a CsI
(Tl) scintillation crystal. Detectors mean pulse
amplitudes and energy resolutions were monitored
as a function of the magnetic field. The experiment
was performed in a cryogenic superconducting
solenoid at PSI [17].

2. Experimental set-up

Avalanche photodiodes are compact, mono-
lithic devices made of a silicon p–n junction where
the internal electric field can reach values high
enough to allow electron multiplication by impact
ionisation [14, 18, 19]. When a high voltage is
applied to the photodiode only a small region of
the p-layer in the front part of the diode remains
undepleted—the drift region (Fig. 1). The electric
field in this region is low but in the depleted region
increases with the depth, presenting a maximum
around the p–n junction. An incident photon,
absorbed in the drift region or in the p-depleted
layer, produces electron–hole pairs and the result-
ing electrons are accelerated towards the n+-
contact, undergoing avalanche multiplication due
to the high electric field around the junction.
Charge gains of a few 100 are typical, depending
exponentially on the applied voltage.
The different detector configurations used in

this work are presented in Fig. 2. In all cases,
LAAPDs 16-mm in diameter,1 biased with 1800V,
were used. For each run, ambient temperature
inside the superconducting bore remained at about
201C within 711C and amplitude corrections of
5.4% per 1C were carried out [16]. The thickness of
the LAAPD drift region is about 10 mm, while the
charge-multiplication region begins at a depth of

1Advanced Photonix, Inc., 1240 Avenida Acaso, Camarillo,

CA 93012, USA.
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about 20 mm in the depleted region and has a
thickness of about 20 mm [14].
For direct detection of X-rays with LAAPD an

X-ray beam from a 54Mn radioactive source was
used (Fig. 2a). The X-ray interacts directly in the
Si and the resulting primary electrons are amplified
by the intense electric field around the junction
producing a pulse with amplitude that is, in
average, proportional to the X-ray energy.

For visible-light detection, 835-keV g-rays
emitted from the 54Mn radioactive source were
allowed to interact in a 1� 1� 1-cm3 CsI (Tl)
scintillation crystal, placed above the LAAPD
used to readout the scintillation (wavelength
around 520 nm) produced by each g–ray interac-
tion (Fig. 2b). The pulse amplitude at the LAAPD
output is proportional to the amount of detected
scintillation and, thus, in average to the g-ray
energy.
For VUV-light detection the LAAPD was

placed inside the gas envelope of a driftless GPSC
[13], which has a 1.1-cm thick scintillation region
filled with xenon at 1140mbar (Fig. 2c). The gas
volume is sealed and uses a small getter for gas
purification (SAES St 172). The 12.5-mm-thick, 10-
mm-diameter aluminised Mylar window is main-
tained at �6 kV. A Macor ceramic insulates the
window holder from the detector body. The
LAAPD was positioned just below the anode grid
(80-mm-diameter stainless steel wire with 900-mm
spacing). The anode grid, the photosensor body,
and the detector body were maintained at ground

Fig. 2. Different detector set-ups for LAAPD-detection of X-rays (a), visible-light (b) and VUV-light (c).

Incident photon

multiplication region

n+

p+

p-n junction

de
pl

et
ed

 la
ye

r

undepleted layer

undepleted layer

Fig. 1. Schematic diagram of a typical avalanche photodiode
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potential. The Macor, the radiation window and
holder and the detector body were vacuum-sealed
using a low-vapour pressure epoxy, while the
photosensor body was vacuum-sealed to the
detector body by compressing an indium gasket.
A 2-mm collimated X-ray beam from a 55Fe
radioactive source was allowed to interact in the
xenon. The electric field inside the detector is
sufficiently high for the primary electrons resulting
from each X-ray interactions to excite but not
ionise the gas atoms along their path towards the
anode grid. In the de-excitation processes VUV
scintillation photons (wavelength around 172 nm)
are emitted and the average amount of scintillation
light detected by the LAAPD is proportional to
the X-ray energy.
The detectors were installed in a black box to

shield from the ambient light. The LAAPD signals
were fed through a low-noise charge preamplifier
(Canberra 2004, with a sensitivity of 45mV/MeV)
to a spectroscopy amplifier and were pulse-height
analysed by a multi-channel analyser. Shaping
time-constants of 0.2, 1 and 2 ms were used in the
main amplifier for X-ray, visible and VUV detection,
respectively: 0.2ms is optimum for X-ray pulses in
the LAAPD; 1ms corresponds to the time character-
istic of the CsI(Tl) scintillation; 2ms corresponds to
the electron drift time in the xenon gas. For pulse-
amplitude and energy resolution measurements the
pulse-height distributions are fitted to a Gaussian
function superimposed on a linear background, from
which the centroid and the full-width at half-
maximum (FWHM) are determined.
Each detector system was placed in a 1-m-long

and 20-cm-bore-diameter superconducting sole-
noid capable of achieving magnetic fields up to
5T, uniform (10�4) over an axial distance of 30 cm
from the centre. The amount of scintillation light
collected in the LAAPD was kept constant during
the experiment for both visible and VUV cases.
Detector pulse amplitude and energy resolution
were monitored as a function of the magnetic field,
varying the magnetic field intensity inside the
solenoid in 1T steps up to 5T. The detector
orientation inside the solenoid was chosen such
that the LAAPD axis was perpendicular to the
magnetic field direction, the most unfavourable
orientation, Fig. 3.

3. Experimental results and discussion

In Fig. 4 we present pulse-height distributions
obtained for each case, and for magnetic fields of 0
and 5T. For the X-ray detection cases (Figs. 4a
and 4c), spectral features include the Cr or the Mn
K-lines, the respective escape peaks and the tail
due to the electronic noise in the low-energy limit.
For the g-ray detection (Fig. 4b) the pulse-height
distribution depicts the peak corresponding to the
full-energy absorption, the Compton continuum
and the electronic noise tail. As shown in Fig. 4,
there is no significant degradation of the obtained
pulse-height distributions with the magnetic field
intensity for the cases of X-rays and visible light
detection with the LAAPD. On the other hand, for
the VUV-scintillation detection, pulse amplitude
reduction above 20% can be observed. In all cases,
the electronic noise tail in the low-energy limit did
not change with the magnetic field.
Figs. 5a and b present the detector relative pulse

amplitude and energy resolution, respectively, as a
function of the magnetic field intensity for the
three different cases. For X-ray and visible-light
detection with the LAAPD, amplitude variations
are less than 1.5%, being within the experimental
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Fig. 3. Schematic of the detector/LAAPD orientation relative

to the electric and magnetic fields in the experimental set-up.
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error. Also, no significant variations of the energy
resolution are observed for these two cases. For
the VUV-light detection with the LAAPD sig-

nificant variations are noticeable: the relative pulse
amplitude decreases gradually with increasing
magnetic field intensity reaching a reduction of
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Fig. 4. Pulse-height distributions obtained with the different detector set-ups. (a) direct Cr Ka,b X-ray detection in the LAAPD, (b)

835-keV g-rays interacting in a CsI(Tl) crystal and (c) Mn Ka,b X-rays interacting in a Xe-GPSC, using the LAAPD for the visible- and

VUV-scintillation detection, respectively.
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24% at 5T, while the detector energy resolution
degrades from 12.9% to 15.1% as the magnetic
field increases from 0 to 5T.
The effect of the magnetic field on the GPSC

scintillation is negligible [20,21]: since the X-ray
beam is well collimated and aligned with the axis,
possible variations in the solid angle subtended by
the LAAPD relative to the region where the
scintillation takes place, due to Lorentz angle
effect [20], are negligible. Thus, the noticeable
influence of the magnetic field has its origin in the
VUV-light detection in the LAAPD. Although the
dependence of the avalanche photodiode ampli-
tude and the respective statistical fluctuations on
the magnetic field is not significant for X-ray and
visible-light detection, it becomes important for

VUV-detection. Since VUV photons interact with-
in the first atomic layers, the effect of the magnetic
field on the photoelectrons and subsequent sec-
ondary electrons diffusion may be responsible for
increased charge carrier losses to the front
electrode with increasing magnetic field. Penetra-
tion depths in Si are about 5 nm and 1 mm for 172-
and 520-nm photons [22], respectively, and 22 mm
for 5.4-keV X-rays [23].
Presently, the LAAPD manufacturing technol-

ogy is well established and quite good reproduci-
bility is obtained. Thus, it is expected that the
observed behaviour for individual LAAPDs are
representative for any of these devices [24,25]. The
response to VUV could be improved if the electric
field intensity in the drift region would be
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Fig. 5. Relative pulse amplitude (a) and energy resolution (b) for the different detector systems as a function of the magnetic field

intensity: direct 5.4-keV X-ray interactions in the LAAPD; visible-light interactions in the LAAPD, resulting from 835 g-ray
interactions in CsI(Tl) and VUV-light interactions in the LAAPD, resulting from 5.9–keV X-ray interactions in a xenon-GPSC.
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increased. However, this cannot yet be achieved
due to the increase of discharge probability at the
surface [25].

4. Conclusions

We have shown that large-area avalanche
photodiodes can operate in strong magnetic fields
up to 5T with negligible performance degradation
when used for X-ray or visible-light detection.
However, for VUV-light detection a noticeable
degradation in the avalanche photodiode pulse-
amplitude and in the respective statistical fluctua-
tions is observed. The relative pulse amplitude
decreases with increasing magnetic field intensity,
reaching a reduction of 24% at 5T.
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