
A new look to non-Fickian diffusion

J.A. Ferreira ◦ ∗ M. Grassi � † E. Gudino ◦ ‡ P. de Oliveira ◦ §

◦ CMUC, Department of Mathematics, University of Coimbra
3001-454 Coimbra, Portugal

� Department of Chemical Engineering, University of Trieste
Piazzale Europa 1, Trieste, I-34127, Italy

Abstract
In this paper a non linear mathematical model to describe absorption phenomena in polymers

is proposed. The model is established assuming that the diffusing penetrant causes a deformation
which induces a viscoelastic stress responsible for a convective field. This convective field is defined
as to represent an opposition of the polymer to the Fickian diffusion. Several numerical examples
show the effectiveness of the model.

1 Introduction

In the diffusion process of a penetrant through a viscoelastic material, as for example a polymer, two main
phenomena must be considered: the rate of diffusion of the fluid and the change in the internal structure
of the material. If the rate of diffusion is much smaller than the rate of relaxation the transport is well
described by Fick’s law. However if the rate of diffusion is of the same order or larger than the relaxation
of the material Fick’s law does not represent an accurate description of the phenomenon [17, 18, 19].
The explanation lies in the fact that the diffusing penetrant causes a deformation which induces a stress
that interacts with the Brownian motion of the fluid molecules. According to this explanation several
authors proposed diffusion models based on a modified flux resulting from the sum of a Fickian flux JF

and a non Fickian flux JNF , that is

∂C
∂ t

=−div(JF(C)+ JNF(σ)) , (1)

where C stands for the concentration of the penetrant, JF(C) = −(D(C)∇C), JNF(σ) = −(Dv(C)∇σ)
and σ represents the stress.The functions D(C)and Dv(C) represent respectively the Fickian diffusion
coefficient and the so called viscoelastic diffusion coefficient. Equation (1) is used for example in [2,
3, 5, 6, 7, 11, 13, 15] just to name a few. It is coupled with an evolution equation for the stress which
introduces in the problem the strain ε as a third variable. In the previous works a constitutive relationship
of type [1]

∂σ

∂ t
+βσ = αε + γ

∂ε

∂ t
, (2)
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has been considered. The parameters α and γ are assumed to be constant and the parameter β , which rep-
resents the inverse of the relaxation time, is considered constant in [14, 15] and in [3, 6, 7] concentration
dependent.

One of our main concerns in this paper is to properly understand the meaning of the non-Fickian flux
JNF . In [14, 15] the authors consider that the stress related to the viscoelastic behavior of the material
leads to a negative convex flux, consequently considering that the strain in (2) is linearly related with the
penetrant concentration ε = ηC, a model of type

∂C
∂ t

= D∆C+DvηγCxx +Dvη(α− γβ )
∫ t

0
eβ (s−t)Cxx(x,s)ds (3)

is proposed in [14], where D and Dv are assumed constant, and Dv is considered negative.
An analogous model has been studied in [8] while describing the permeation of a fluid trough a

membrane. The authors established that when Dv < 0 the steady flux accounts for the existence of a
convective negative flux related to the viscoelastic properties of the membrane. Also analogous models
where used in [3, 5, 6]. However in these works the viscoelastic behavior is not considered responsible
for a negative convective flux and consequently is assumed positive.

As a result of the previous arguments it seems that different interpretations exist in the literature
concerning the meaning of JNF and its mathematical description. In this paper we present a mathematical
deduction of JNF which is physically sound. The following aspects will be addressed:

(i) To account for a typical response to a strain ε several relaxation times will be introduced using
Boltzman type integrals relating σ and C;

(ii) Two different approaches to obtain functional relations for the stress driven diffusion coefficient Dv

in function C will be established;

(iii) A Non linear functional relation between ε and C will be presented;

(iv) Linear functional relations for the Young modulus in function of C will be established.

In Section 2 the model is established. In Section 2.1 a generalized Maxwell-Wiechert model is pre-
sented. In Section 2.2 functional relations for Dv are introduced following two different approaches.
A non linear expression for the strain is deduced in Section 2.3. A Linear relation between the Young
modulus of the spring elements associated to the generalized Maxwell-Wiechert model and C is intro-
duced in Section 2.4. The complete non linear model is established in Section 2.5. In Section 3 several
numerical experiments are exhibited, evidencing a sound physical behavior. Finally in Section 4 some
closing remarks are presented.

2 Mathematical model

2.1 Preliminary considerations

Let us consider a polymeric sample Ω⊂ R3 initially void, with boundary ∂Ω = Γin∪Γout .
We model in what follows the sorption by Ω of a penetrant solvent. The solvent of concentration C

penetrates the matrix at Γin, diffuses through the device and at Γout the solvent flux is zero (impermeable
wall condition). From (1) we have
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∂C
∂ t

= ∇ · (D(C)∇C)+∇ · (Dv(C)∇σ) in Ω× (0,T ] . (4)

To define the stress σ we use a Maxwell-Wiechert model [1, 16] with n+1 arms in parallel, where
n of them are Maxwell fluid elements and one of them is a free spring as in figure 1. When the solvent
penetrates the polymeric sample Ω a strain occurs and the corresponding stress is then given by

σ(t) =−E0(C)ε−
n

∑
i=1

Ei(C)
∫ t

0
e−

1
µi

∫ t
s Ei(C(r))dr ∂ε

∂ s
(s)ds . (5)

where Ei(C), for i = 1,2, ...,n, are the Young modulus of the spring elements associated to each of the n
Maxwell fluid arms, µi, for i= 1,2, ..,n, represents the viscosity and E0(C) stands for the Young modulus
of the free spring. Equation (5) is the solution of the constitutive equation of the Maxwell-Wiechert
model assuming that σ(0) = 0 and that the Young modulus of the spring elements are concentration
dependant. We note that in (5) the strain ε caused by the penetrant induces a viscoelastic stress response
with opposite sign.

Figure 1: Maxwell-Wiechert model

Replacing (5) in (4) we have

∂C
∂ t

= ∇ · (D(C)∇C)

−∇ ·

(
Dv(C)∇ ·

(
n

∑
i=1

Ei(C)
∫ t

0
e−

1
µi

∫ t
s Ei(C(r))dr ∂ε

∂ s
(s)ds

)
+Dv(C)∇ · (E0(C)ε)

)
. (6)

Equation (6) is completed with the initial condition

C(x,0) =C0, x ∈Ω , (7)

and the boundary conditions

C = Cin on int(Γin)× (0,T ] , (8)

J(C) ·η = 0 on int(Γout)× (0,T ] , (9)
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where η represents the unit outer normal and the flux J is defined by

J(C) =−D(C)∇C+Dv(C)∇ ·

(
n

∑
i=1

Ei(C)
∫ t

0
e−

1
µi

∫ t
s Ei(C(r))dr ∂ε

∂ s
(s)ds

)
+Dv(C)∇ · (E0(C)ε) . (10)

Conditions (8) and (9) represent a source of constant concentration at Γin, an impermeable wall at
Γon respectively.

A Fujita-type [10] exponential dependence for D(C) is assumed with

D(C) = Deqexp(−β (1− C
Cin

)) , (11)

where Deq is the diffusion coefficient of the liquid agent in the fully swollen sample.
In equation (6) several concentration dependent parameters are considered. The functional relations

that characterize this dependence will be established in what follows.

2.2 The viscoelastic diffusion coefficient Dv

In (6) whereas the diffusion coefficient has a well known physical meaning the viscoelastic diffusion
coefficient Dv(C) has not been clearly studied so far. In fact even its sign is not clear in the literature. As
mentioned in Section 1 some authors [8, 14, 15] consider Dv constant and negative while in the works
[2, 3, 5, 6, 7, 11] Dv is considered to be a positive parameter. In what follows we analyze the meaning of
Dv and we establish concentration dependent expressions for Dv.

As we assume the existence of a stress gradient ∇σ , this implies the existence of a velocity field ν .
Then the non-Fickian flux JNF can be interpreted as a convective field of form

JNF = νC . (12)

We present in what follows two different approaches to compute Dv. The first one is based on Darcy’s
law and the second one on the Hagen-Poiseuille equation.

Let us consider that the polymeric sample is a porous media. Then by Darcy’s law [20] we have

ν =−K∇p , (13)

where p is the hydrostatic pressure and K is the hydraulic conductivity. The parameter K can be computed
using the Kozeny-Carman equation

K =
r2

f α
3

4Gµ(1−α)2 , (14)

where r f is the fiber radius, α is the concentration dependent porosity, µ is the solvent viscosity and G
is the Kozeny constant.

As the convective field is induced by the stress we have

−Dv(C)∇σ = νC ,

and by identifying the stress σ with the pressure p we conclude that

Dv(C) = KC . (15)
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We present now a second functional relation for Dv(C). The main difference of this approach is that
the velocity is now computed using the Hagen-Poiseuille equation. We have

ν =− R2

8µ
∇p , (16)

where R stands for the radius of a virtual cross section of the polymeric sample available for the con-
vective flux, p is the pressure drop and µ represents the viscosity. Thus from (12), (16) and identifying
again the pressure p with the viscoelastic stress σ we conclude that

Dv(C) =
R2C
8µ

. (17)

Let us study now the evolution in time of R. Let mS and VS represent the mass and volume of the
solvent respectively. If ρS represents its density then mS = ρSVS and C = mS

V0+VS
, where V0 is the volume

of the polymeric matrix in the dry state. We conclude then

Vs =
C

ρS−C
V0 ,

and as V0 = ∆x0S, we have
VS

∆x0
=

C
ρS−C

S . (18)

The first member in (18) can be interpreted as the virtual cross section Sv available for convective
flow. As Sv = πR2 and S = πR2

0 where R0 is the radius of the dry sample, we deduce

R2 =
C

ρS−C
R2

0 . (19)

From (17) and (19) we finally have

Dv(C) =
C2

ρS−C
R2

0
8µ

. (20)

We note that from both approaches, (15) and (20), we can conclude that:

• Dv(C) is positive, thus the non-Fickian flux JNF represents a contribution to the mass flux which
develops from high stress to low stress.

• Dv(C) is an increasing function of C.

• Dv(0) = 0 which accounts for the fact that no stress gradient contributes to the mass flux when
C = 0.

2.3 Non linear viscoelasticity

In order to relate ε and C let us consider, for a sake of simplicity, a cylindrical dry polymeric sample
with cross section S and volume in the dry state V0. We assume that the deformation ε occurs only in a
direction orthogonal to S. If its thickness in the dry state is represented by ∆x0 then

∆x0 =
V0

S
.
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After swelling the thickness of the sample can be defined as

∆x =
V0 +VS

S
,

where VS is the volume of solvent absorbed by the sample up to time t. As

ε =
∆x−∆x0

∆x0
,

we have

ε =
V0+VS

S − V0
S

V0
S

,

which leads to
ε =

VS

V0
.

Let mS and ρS represent the solvent mass and density respectively. We use the fact that VS =
mS

ρS
, to

obtain
ε =

mS

ρSV0
. (21)

We note that equation (21) holds under the reasonable hypothesis that the mixing of the polymer
and the solvent occurs in an ideal manner that is the final volume of the swelling element is V0 +VS.

Considering that the concentration C is defined by C =
mS

V0 +VS
, then from (21) we easily deduce that

ε = f (C) with

f (C) =
C

ρS−C
. (22)

From (6) after integrating by parts we obtain

∂C
∂ t

= ∇ ·

(
D(C)∇C−Dv(C)∇ · (

n

∑
i=0

Ei(C) f (C))+ f (0)
n

∑
i=1

Ei(C)e−
1
µi

∫ t
0 Ei(C(r))dr

)

+∇ ·

(
Dv(C)∇ ·

(
n

∑
i=1

Ei(C)

µi

∫ t

0
Ei(C(s))e−

1
µi

∫ t
s Ei(C(r))dr f (C(s))ds

))
. (23)

2.4 Behavior of Young modulus

We begin by assuming that we have a purely elastic material with initial Young modulus E0, which
represents the Young modulus of the sample in the dry estate. The bounds that link polymer chains,
known as cross-links, have a significant role in the mechanical properties of materials. Let us define the
cross-link density in the dry estate of the sample as

ρ
0
x =

ξ 0

V0
, (24)

where ξ 0 represents the number of moles of cross-links per unit of volume in the dry estate. In the
swollen state the cross-link density becomes

ρx =
ξ 0

V0 +VS
, (25)
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and thus we have from (24) and (25)
ρx

ρ0
x
=

V0

V0 +VS
. (26)

As C = mS
V0+VS

and ρ = mS
VS

we deduce from (26)

ρx

ρ0
x
=

ρS−C
ρS

. (27)

As the Young modulus of a polymer is related to the cross-link density by E = 3ρxRT [12] where
R is the universal gas constant and T is the absolute temperature, then ρx

ρ0
x
= E

E0 . Therefore we conclude
from (27) that

E(C) = E0 ρS−C
ρS

. (28)

Equation (28) holds for purely elastic materials. In the case of viscoelastic materials we will assume
that the elastic contributions in each Maxwell arm satisfy (28).

2.5 Complete non linear model

Let E ini
i for i = 0,1,2, ...,n denote the Young modulus of each spring element in the dry state. Taking

into consideration (28) for each Maxwell arm and the free spring, after integrating by parts we rewrite
(23) as

∂C
∂ t

= ∇ ·

(
D(C)∇C− Dv(C)

ρS

(
n

∑
i=0

E ini
i

)
∇C+

f (0)
ρS

n

∑
i=1

E ini
i ∇ ·

(
(ρS−C)e−

1
µi

∫ t
0 Ei(C(r))dr

))

+∇ ·

(
Dv(C)

ρ2
S

∇ ·

(
n

∑
i=1

(E ini
i )2

µi
(ρS−C)

∫ t

0
e−

1
µi

∫ t
s Ei(C(r))drC(s)ds

))
, (29)

where D(C), f (C) and Dv(C) are given by (11), (22) and (15) respectively.
The complete non linear model (CNLM) is given by equation (29), initial condition (7) and boundary

conditions (8),(9). The flux J is given by

J(C) = −D(C)∇C+
Dv(C)

ρS

(
n

∑
i=0

E ini
i

)
∇C− f (0)

ρS

n

∑
i=1

E ini
i ∇ ·

(
(ρS−C)e−

1
µi

∫ t
0 Ei(C(r))dr

)
−Dv(C)

ρ2
S

∇ ·

(
n

∑
i=1

(E ini
i )2

µi
(ρS−C)

∫ t

0
e−

1
µi

∫ t
s Ei(C(r))drC(s)ds

)
. (30)

3 Numerical Results

In order to have a better understanding of the influence of the parameters in the model, we will recast
CNLM in dimensionless form. Let us consider the one-dimensional case where Ω = [0,b]. Then we
define

C+ =
C

Cin
, x+ =

x
b
, t+ =

tDeq

b2 , ρ
+
S =

ρS

Cin
, f+(C+) =

C+

ρ
+
S −C+

,

D+(C+) = exp(−β (1−C+)) .
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The diffusion coefficient Dv from (15) and (20) are defined as

D+
v (C

+) =
K

Deq
C+ , (31)

D+
v (C

+) =
(C+)2

(ρ+
S −C+)8∑

n
i=1 E ini

i Dei

, (32)

respectively. The Deborah numbers Dei are defined as

Dei =
τiDeq

b2 ,

with τi =
µi

E ini
i

for all i = 1,2, ...,n.
We rewrite CNLM in dimensionless form as

∂C+

∂ t+
= ∇ ·

(
D+(C+)∇C+− D+

v (C
+)

ρ
+
S

(
n

∑
i=0

E ini
i

)
∇C+

+
f+(0)
ρ
+
S

n

∑
i=1

E ini
i ∇ ·

((
ρ
+
S −C+

)
e
− 1

Dei ρ
+
S

∫ t+
0 (ρ+

S −C+(r))dr
))

+∇ ·

(
D+

v (C
+)

(ρ+
S )2 ∇ ·

(
n

∑
i=1

(E ini
i )

Dei
(ρ+

S −C+)
∫ t+

0
e
− 1

Dei ρ
+
S

∫ t+
s (ρ+

S −C+(r))dr
C+(s)ds

))
, (33)

with the initial condition
C+(x+,0) =C0/Cin, x+ ∈ [0,1] , (34)

and the boundary conditions

C+(1, t+) = 1 in (0,T+] , (35)

J+(C+(0, t+)) = 0 in (0,T+] , (36)

where

J+(C+) = −D+(C+)∇C++
D+

v (C
+)

ρ
+
S

(
n

∑
i=0

E ini
i

)
∇C+

− f+(0)
ρ
+
S

n

∑
i=1

E ini
i ∇ ·

((
ρ
+
S −C+

)
e
− 1

Dei ρ
+
S

∫ t+
0 (ρ+

S −C+(r))dr
)

−D+
v (C

+)

(ρ+
S )2 ∇ ·

(
n

∑
i=1

(E ini
i )

Dei
(ρ+

S −C+)
∫ t+

0
e
− 1

Dei ρ
+
S

∫ t+
s (ρ+

S −C+(r))dr
C+(s)ds

)
, (37)

In what follows we fix n = 1, that is we consider one Maxwell fluid element in parallel with a free
spring. We consider the following values for the parameters and initial conditions ρS = 1000 kg/m3,
C0 = 20 Kg/m3, Cin = 350 Kg/m3, r f = 2×10−9 m, µ = 8,94×10−4×Pas, G = 1×10−3 and Deq =
3,74×10−9 m2/s. The porosity α is given by α = C

ρS
. We define Mt+ as the total mass inside the matrix

at time t+ as

Mt+ =
∫ 1

0
C+(x, t+)dx .
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In Figure 2 we plotted the non-Fickian part of the flux JNF , considering the definition of Dv es-
tablished from Darcy’s law (31) and the definition of Dv deduced from Hagen-Poiseuille equation (32)
respectively, with De1 = 1, E ini

0 = 1×104 Pa and E ini
1 = 2×104 Pa. When Dv is given by (31) a higher

opposition to the diffusion is observed. In Figure 3 we plotted a comparison of the complete flux J when
Dv is given by (31) and (32) respectively. In accordance with the behavior observed in Figure 2 when Dv

is given by (31) the model predicts a slower sorption of the solvent into the polymeric sample.

Figure 2: Non-Fickian flux JNF for x+ = 0.5 Figure 3: Flux J for x+ = 0.5

In Figures 4 and 5 we exhibit plots of J+ as a function of De1 with Dv as in (31) and (32) respectively.
In the case of Figure 4 we observe an accurate physical behavior since as expected J+ is an increasing
function of De1 . In Figure 5 we observe that J+ is not a monotone function of De1 .

Figure 4: J+ as a function of De1 with Dv given by (31), E ini
0 = 1×104 Pa and E ini

1 = 2×104 Pa

In Figures 6 and 7 we plotted Mt+ as a function of E ini
0 with Dv given by (31) and (32) respectively.

In both cases we observe that Mt+ is a decreasing function of E ini
0 . This is a physically sound behavior

since if the material becomes less elastic the solvent will encounter more resistance to diffuse into the
polymer.

We note that for the plot of Figure 7 we considered a smaller value of De1 , since as we can observe
on Figure 8 the D+

v associated to (32) is smaller than the one that comes from (31). When the weight of
the non-Fickian part of the model is too small, the numerical solutions are not sensible to variations in
the parameters. Thus a larger Deborah number was considered allowing to observe changes in Mt+ as a
function of E ini

0 .
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Figure 5: J+ as a function of De1 with Dv given by (32), E ini
0 = 1×104 Pa and E ini

1 = 2×104 Pa

Figure 6: Mt+ as a function of E ini
0 with Dv given by (31), E ini

1 = 2×104 Pa and De1 = 1

If we consider that the elastic contributions Ei are constant, for i = 0,1, ...,n, then from (6) we get

∂C+

∂ t+
= ∇ ·

(
D+(C+)∇C+−D+

v (C
+)

(
n

∑
i=0

Ei

)
∇

(
C+

ρ
+
S −C+

)

+∇ ·

(
D+

v (C
+)∇ ·

(
n

∑
i=1

(E ini
i )

Dei

∫ t+

0
e
− s−t

Dei
C+(s)

ρ
+
S −C+(s)

ds

))
, (38)

with the flux given by

J+ = −D+(C+)∇C++D+
v (C

+)

(
n

∑
i=0

Ei

)
∇

(
C+

ρ
+
S −C+

)

−D+
v (C

+)∇

(
n

∑
i=1

(E ini
i )

Dei

∫ t+

0
e
− s−t

Dei
C+(s)

ρ
+
S −C+(s)

ds

)
. (39)

In Figure 9 and 10 we used (38) to plot Mt+ as a function of E0 and De1 respectively, with D+
v defined

as in (31). In both plots M+
t is a decreasing function of the parameters showing an accurate physical
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Figure 7: Mt+ as a function of E ini
0 with Dv given by (32), E ini

1 = 2×104 Pa and De1 = 0.1

Figure 8: Quantitative comparison of Dv at t+ = 0,5 for E ini
0 = 1×104 Pa, E ini

1 = 2×104 Pa and De1 = 1

behavior. We note that since the E ′i s are non decreasing, the non-Fickian part of (38) is more significant,
thus the model is more sensible to changes in the parameters.

Finally it is worth mentioning that as we can observe in Figures 4 and 10 even for the simple case of
one Maxwell element in parallel with a free spring we do not obtain unrealistic oscillations.

4 Conclusions

A non linear non-Fickian model for sorption of a solvent into a polymeric sample is proposed. The
main idea is a new interpretation of the non-Fickian flux which lead to the establishment of a non linear
functional relations for the strain ε , the viscoelastic diffusion coefficient Dv and the Young modulus Ei,
for i = 0,1, ...,n. Several numerical examples are presented showing a sound physical behavior. No
spurious oscillations are observed even when only one Maxwell fluid arm is coupled in parallel with a
free spring [12].
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Figure 9: Mt+ as a function of E0 for E ini
1 = 2×104 Pa and De1 = 1

Figure 10: Mt+ as a function of De1 with E ini
0 = 1×104 Pa and E ini

1 = 2×104
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