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Abstract. In this work we discuss the numerical discretization of the time-dependent
Maxwell’s equations using a fully explicit leap-frog type discontinuous Galerkin
method. We present a sufficient condition for the stability and error estimates, for
cases of typical boundary conditions, either perfect electric, perfect magnetic or first
order Silver-Miiller. The bounds of the stability region point out the influence of not
only the mesh size but also the dependence on the choice of the numerical flux and the
degree of the polynomials used in the construction of the finite element space, making
possible to balance accuracy and computational efficiency. In the model we consider
heterogeneous anisotropic permittivity tensors which arise naturally in many applica-
tions of interest. Numerical results supporting the analysis are provided.
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1 Introduction

Maxwell’s equations are a fundamental set of partial differential equations which de-
scribe electromagnetic wave interactions with materials. The advantages of using dis-
continuous Galerkin time domain (DGTD) methods on the simulation of electromag-
netic waves propagation, when compared with classical finite-difference time-domain
methods, finite volume time domain methods or finite element time domain methods,
have been reported by several authors (see e.g. [9] and references therein cited for an
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overview). DGTD methods gather many desirable features such as being able to achieve
high-order accuracy and easily handle complex geometries. Moreover, they are suitable
for parallel implementation on modern multi-graphics processing units. Local refine-
ment strategies can be incorporated due to the possibility of considering irregular meshes
with hanging nodes and local spaces of different orders.

The staggered leapfrog time-stepping algorithm is a popular choice for time domain
Maxwell’s equations (e.g. [1,9,21]) due to its simplicity, as it does not require to save in
memory previous states, accuracy and robustness.

Despite the relevance of the anisotropic case in applications (e.g. [4,14,24]), most of the
formulation of the DGTD methods presented in the literature are restricted to isotropic
materials [11,12,16]. Motivated by our application of interest described in [2,20], in
the present paper we consider a model with a heterogeneous anisotropic permittivity
tensor. The treatment of anisotropic materials within a DGTD framework was discussed
for instance in [9] (with central fluxes) and in [13] (with upwind fluxes). The stability
analysis of DGTD methods for Maxwell’s equations was considered in [9], where the
scheme that is defined with the central fluxes leads to a locally implicit time method in
the case of Silver-Miiller absorbing boundary conditions, and [15], where the scheme is
defined with the upwind fluxes leading to an implicit method. Our derivation extends
the results in [9] and [15] to a fully explicit in time method for both cases, central fluxes
and upwind fluxes.

We consider the formulation in two dimensions as well as an extension to a three
dimensional problem and we combine the nodal DG method [11] for the integration
in space, considering both central and upwind fluxes, with an explicit leap-frog type
method for the time integration. We present a rigorous proof of stability showing the in-
fluence of the mesh size, the choice of the numerical flux and choice of the degree of the
polynomials used in the construction of the finite element space and the boundary con-
ditions, which can be either perfect electric, perfect magnetic or first order Silver-Miiller.

This paper consists in six sections after this introduction. In Section 2, we state the
problem and in Section 3 we describe the formulation of the numerical method for the
two-dimensional problem. In Section 4 we derive stability and convergence results for
the method described in the previous section. We illustrate the theoretical results with
numerical examples in Section 5. In the last section we extend the stability results to the
three dimensional case.

2 The governing equations

The electromagnetic field consists of coupled electric and magnetic fields, known as elec-
tric field intensity, E, and magnetic induction, B. The effects of these two fundamental
fields on matter can be characterized by the electric displacement and the magnetic field
intensity vectors, frequently denoted by D and H, respectively. The knowledge of the
material properties can be used to derive a useful relation between D and E and between
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B and H. Here we will consider the constitutive relations of the form D=¢E and B=uH,
where € is the medium’s electric permittivity and y is the medium’s magnetic permeabil-
ity.

In three-dimensional spaces for heterogeneous anisotropic linear media with no source,
these equations can be written in the form [9]

e%—f:curl H, yaa—I;I:—curl E. (2.1)
In a similar fashion to [23], we decompose the electromagnetic wave in a transverse elec-
tric (TE) mode and a transverse magnetic (TM) mode, this way reducing the number of
equations implemented in our model. This assumption is appropriate when studying
e.g. truly 2D photonic crystals [6] or the electrodynamic properties of 2D materials like
graphene [17].

In what follows we shall analyse the time domain Maxwell’s equations in the trans-
verse electric (TE) mode, as in [13], where the only non-vanishing components of the
electromagnetic fields are E,, E, and H,. For this case, and assuming no conductivity
effects, the equations in the non-dimensional form are

oE .

e5,=VxH inQx(0,Ty], 2.2)
oH .

War = —curl E in Qx(0,Ty], (2.3)

where E = (Ey,Ey) and H = (H;). This equations are set and solved on the bounded
polygonal domain () C R?. Note that we use the following notation for the vector and
scalar curl operators

T
Vtz(aHz _aHz) , CuﬂE_aEy oE,

dy ' ox Tox oy

The electric permittivity of the medium € and the magnetic permeability of the medium
u are varying in space, being € an anisotropic tensor

€= (e"" Cxy ) ) 2.4)

€yx Eyy

while we consider isotropic permeability u. We assume that electric permittivity tensor
€ is symmetric and uniformly positive definite for almost every (x,y) €, and it is uni-
formly bounded with a strictly positive lower bound, i.e., there are constants € >0 and
€> 0 such that, for almost every (x,y) €Q),

elg? <¢Te(xy)i<elg]>,  VEeR™

We also assume that there are constants >0 and 7> 0 such that, for almost every (x,y) €
Q,

<u(xy)<p.
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Let the unit outward normal vector to the boundary be denoted by n. We can define
an effective permittivity [13] by
det(e)
“ff = nTen

that is used to characterize the speed with which a wave travels along the direction of the

unit normal,
o nTen
~\/ udet(e)’

The model equations (2.2)-(2.3) must be complemented by proper boundary condi-
tions. Here we consider the most common, either the perfect electric conductor boundary
condition (PEC)

nxE=0 onod(), (2.5)

the perfect magnetic conductor boundary condition (PMC),
nxH=0 onod}, (2.6)
or the first order Silver-Miiller absorbing boundary condition
nxE=cunx(Hxn) onoQ. (2.7)
Initial conditions
E(x,y,0)=Ep(x,y) and H(x,y,0)=Hp(x,y) inQ,

must also be provided.
We can write Maxwell’s equations (2.2)-(2.3) in a conservation form

Q%Jrv-zf(q):o in Q% (0,T¢], (2.8)

0 E, 0 —H,
Q=(g ) g=|{E,| and F(q)=|H. 0 |,
# H, E, —E

where V- denotes the divergence operator.

with

3 A leap-frog discontinuous Galerkin method

The aim of this section is to derive our computational method. We will consider a nodal
discontinuous Galerkin method for the space discretization and a leap-frog method for
the time integration.
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3.1 The discontinuous Galerkin method

Assume that the computational domain () is partitioned into K triangular elements Tj
such that Q) = U, Tx. For simplicity, we consider that the resulting mesh 7}, is conforming,
that is, the intersection of two elements is either empty or an edge.

Let hy be the diameter of the triangle Ty € 75, and h be the maximum element diameter,

hy= su Pi—DB||, h=max{h}.
sup Pi=Bol, = max i)

We assume that the mesh is regular in the sense that there is a constant 7> 0 such that
hy
VT €Th, - <7, (3.1)
k

where 7, denotes the maximum diameter of a ball inscribed in T.

On each element Ty, the solution fields are approximated by polynomials of degree
less or equal to N. The global solution g(x,y,t) is then assumed to be approximated by
the piecewise N order polynomials

K
q(xy.t) ~4(x,y,t) =P ak(xy.t),
k=1

defined as the direct sum of the K local polynomial solutions g (x,t) = (E,,Ey,, H,).
We use the notation E,(x,y,t) = @K, E,, (x,y,t), E,(x,y,t)= [ E,(xyt), Hy(xyt)=
@®X | A, (x,y,t). The finite element space is then taken to be

Vn={veL?(Q)%:v|1, € Py(T¢)%},

where Py (Tx) denotes the space of polynomials of degree less or equal to N on Ti. The
fields are expanded in terms of interpolating Lagrange polynomials L;(x,y),

NP NP
Gx(xyt) =Y ax(xiyit) Li(xy) = Y _du(t) Li(xy).
i=1 i=1

Here N, denotes the number of coefficients that are utilized, which is related with the
polynomial order N via N, =(N+1)(N+2)/2.

In order to deduce the method, we start by multiplying Eq. (2.8) by test functions v €
VN, usually the Lagrange polynomials, and integrate over each element T;. The next step
is to employ one integration by parts and to substitute in the resulting contour integral
the flux F by a numerical flux F*. Reversing the integration by parts yields

[ (51 +VF@) -o(y)dzay= [ n-(F@)~F @) -o(x ),
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where n = (ny,ny) is the outward pointing unit normal vector of the contour.

The approximate fields are allowed to be discontinuous across element boundaries. In
this way, we introduce the notation for the jumps of the field values across the interfaces
of the elements, [E] =E~—E* and [H] = H~—H™, where the superscript “+” denotes
the neighboring element and the superscript “—" refers to the local cell. Furthermore
we introduce, respectively, the cell-impedances and cell-conductances Z* = y*c* and

YE=(z*)"! where
o nTetn
—\ utdet(et)’

At the outer cell boundaries we set Zt =Z".

The coupling between elements is introduced via numerical flux obtained using the
Rankine-Hugoniot condition [12,13], defined by

755 (Z* 1] = (na[Ey] =y [E4]))
n-(F@)~F ()= | 77 (27 [F] —a (nslEy) ~my[E:]))

Y +Yy- (Y* (nx[Ey] —ny[Ex]) —a[H])

The parameter a € [0,1] in the numerical flux can be used to control dissipation. Taking
a =0 yields a non dissipative central flux while a =1 corresponds to the classic upwind
flux.

In order to discretize the boundary conditions we set [E;] =2E;, [Ey] =2E;, [H;]=0
and [Ex]=0, [E,]=0, [H;]=2H;, for PEC and PMC boundary conditions, respectively. For
Silver-Miiller absorbing boundary conditions, using the same kind of approach as in [1],
we consider, for upwind fluxes Z~H;} =n,Ef —n,E} or equivalently A} =Y~ (n E; —
nyE}) and, for central fluxes Z~H; = (n:E; —nyEy) and Y~ (nyE;f —nyE}f)=H; . This is
equivalent to consider, for both upwind and central fluxes, =1 for numerical flux at the
outer boundary and [E,]=E;, [E,]=E; and [H,]=H; .

In what follows, (-,-)1, and (,-)s1, denote the classical L?(T) and L?(3Tx) inner-
products, respectively. The same notation is also used for the classical inner-products
in (L?(Ty))? and (L?(9Ty))>.

3.2 Time discretization

To define a fully discrete scheme, we divide the time interval [0,T] into M subintervals
by points 0=1% <t! < ... <tM =T, where " =mAt, At is the time step size and T is such
that T+At/2<Ty. The unknowns related to the electric field are approximated at integer
time-stations #™ and are denoted by E/*=E;(.,t™). The unknowns related to the magnetic
field are approximated at half-integer time-stations #"*+1/2=(m+1) At and are denoted by
A2 = f; (.,#m+1/2). With the above setting, we can now formulate the leap-frog DG

method: given an initial approximation (Egk,ﬁgk,ﬁ;k/ 2) € Vy, for each m=0,1,---, M—1,
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find (Ep*1,EJ, HEH/2) € Vi such that, V(uy, v, wi) € Vy,

Em+1 Em Em+1 Em .
<€M Xi X tey Yk t Ve y :(aszmkH/zluk)
Ty
k

At A
+(—_ Z+[Hm+1/2]_ n [Em]_n [Em] ,uk) , (3.2)
Zt+Z ( ( iy I Ty )) aT;
Em+1_fm Em+1_ fm B
<€yx X ~ X +eyy Yk — Y oy :_(axHZH/z'vk)Tk
T;
Ny o~ ~
7Y L 7— Z+ Hm+1/2 Em - Em 7 7 33
(g e il ) 09
gm+3/2 _ ggm+1/2 _ 3
<Il Zg v Zk , W :(ayEZ+1_axEﬁ+llwk)Tk
T;
1 - - ~
Y+ Em+l _ Em+l _ Hm+1/2 , . 3.4
+(Y++y—( (nx[ y ] ny[ x ]) a[ Z ]) Wk - (3.4

The boundary conditions are considered as described in the previous section.

We want to emphasize that the scheme (3.2)-(3.4) is fully explicit in time, in opposition
to [15], where the scheme is defined with the upwind fluxes involving the unknowns
E,’c”+1 and H,'("+3/ 2 and to [9], where the scheme that is defined with the central fluxes
leads to a locally implicit time method in the case of Silver-Miiller absorbing boundary
conditions.

4 Stability and convergence analysis

The aim of this section is to provide a sufficient condition for the L?-stability of the leap-
frog DG method (3.2)-(3.4).

Choosing u; = AtELTH/Z], v = AtEL':H/Z] and wy = AtI:Iz[:"Hj, where Elm+1/2) —
(E"’+E"’+1) /2 and Hm+1 = (I:Im+1/2+1:1m+3/2) /2, we have

(eEI'("H, E;"H) .~ (ELED).,

=20t (V x /2 ) .

+2At(ﬁ(z*lff’"“/2] o (nx[Ey] —ny [E2]) ). E "'“/2)

w2t (1 (20 A - (mlEf] -, [E21) ) E "’*”2:)% @)

oT;
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and
(yI“'_Im+3/2 I"_Im+3/2) ( A1/ Hm+1/2)

Zj 7= 2y T,

k

=2t (curl £, H["’“])
+2At (# (Y+ (nx[EmH]_n [Em+1]) “[Hm+1/2]) m+1l> . (4.2)
Y+4Y- y Ytz aT,
Using the identity,

(curl B+ ALY = (VALY E"’“)T + (neEptt—m B+t ALY

T, oT,”

summing (4.1) and (4.2) from m =0 to m =M —1, and integrating by parts, we get

Ti
= (eEQ,ER) 5, + (AL 2 L)) .
. 5 - . M-1
+ot(VxAYZE) —at(VxAMFZEN) ont Y Af, 4.3)
k k m=0

where
ap=(grrg= (2712 —a (nalEy)—n E71) ) £ mm)an
+ (# (Z+[H'"+1/2]_ ( x[E;"]_"?/[E;"]))’E“[’TH/ZJ)aT

1 + Fm4+17 Fm+1 m+1/2 M+1J
+(—Y++Y_ (Y (mal Byt —my (1)) —al A +1/2)) B "

Fm+1 pm+1 pylm+1
— (maBgett —my Bt HEY)
k

Let us denote by F™™ the set of internal edges and F?** the set of edges that belong to
the boundary 9Q). Let v be the set of indices of the neighboring elements of Ti. For each
i € vk, we consider the internal edge fix = T;N Tk, and we denote by n; the unit normal
oriented from T; towards T;. For each boundary edge fi = T;xNd(}, ny is taken to be the
unitary outer normal vector to f;. Summing over all elements T; € 7;, we obtain

)., Ay'=BI'+BY,
TveTh
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where BY" = BJ} + BY; + BJ; with

B- 1 [ (z Bk (22— (na)w B~ ()l EET) ) B2

f EP"”

+ —(ny)ix (Zk[H;'}H/Z]—d((nx)ik[E —(ny)u[Ex; )) :[ZIH/Z]

Zi+Zy
Y; Y,
Y(:’_yl)(:t [Em+1 [T+1] 1l;l(ny)lk [Em+1]H [m+1]
+(ny ) Er AT o (ny) g EPHL AT ”) ds, (4.4)

= E / (Z(":_)g H’"+1/2] tx((nx)k,-[E ("y)kl[E )) ;Tﬂ/z]

f GF"”
Nx )ik > = 1/2
+% (Zk[HZH/Z]—a((nx)ik[E —(ny)i[Ex: )) Lr:w /2]
Y(nx)kz m+17 5 lm+1] Yk(nx)zk m+1 [m+1]
Yy, B ey R I
— (B ALY — () g En AL ;"*11> ds, 4.5)
_ m+1/27 pylm+1] m+1/2) gy(m+1]
Bl3_ fkgmt-/xk (Y+Yk[ * ]HZ +Y Y [H ]H ) (4.6)

and B7' has the terms related with the outer boundary

BI'= E /( (ny)k [Hm+1/2]_a((nx)k[1‘5; (ny)k[E )) Lr:+1/2]

e Fext

+ 02 (22— (no B Gy eIET) ) Bl

27
1 ~ ~[m
2Y (Yk ((nx)k[Em+1] _ (ny)k[Em+1 ) —a[HZ(‘“/Z]) HL; +1]
- (B - A . w7

Lemma 4.1. Let BY}, B} and B be defined by (4.4), (4.5) and (4.6), respectively, and B}' =
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BYi + B3+ B{3. Then
M-1 1 5 . 2
B'< ————~ | —a((ny)ulE2,]— (n2)ii[E)

mz=:0 1 _f,-k;""f fik4(zi+zk) (( y)kz[ xk] ( x)kz[ yk])

+2( ()i (ZiE), + ZAEY,) — (ny )ia (ZiES, + Z4ED,) ) (L)
~ ~ 2 ~ ~

o (ol - (na)ulE3) - (1221 124112F) )
+2((ny )i (ZEM+ZEM) — (no)es (ZEYM+ZAED) ) [ﬁgg+1/2])ds.

PTOOf: Since Zi/(Zi-f-Zk)-{—Yi/(Yi-}-Yk) = Zk/(Zi-{—Zk)—}—Yk/(Y,-—i—Yk) =1, Zi/(Zi+Zk) =
Yi(Yi+Yx) and Zi(Z;+ Zx) =Y;(Yi+ Yy), summing from m =0 to m=M—1, we conclude

E Bjy = —f ). ¢ % (— (ZES, + ZiEY,) [/ +a ((nx)ki[é(y)k] _("y)ki[Egk]) (E2]
cpint! fic 2\ 4i

+o zo((nx)k,-[E;z“J—(ny)ki[é;"k+1]+(nx)k,-[ —(ny)lER]) B+
+ (ZEY+ ZEM) (2]~ e () M) — (my )l X ) [E2Y ) ds
In the same way, for B}, we have

):Bu D ﬁk%<(2iégk+zkégi) (22— ((na)ii[E9,]— (my )i [ES,] ) [E]

f eI:mt

—a ): ()i B = (my g B+ () Bt — (my Dl E] ) (Bt

— (ZEY+ZEM) [AM12] 4o ((n)l EY) - (ny )l EX) ) [EX )ds,
and for B}
B — / Ar+12) ([AmY2) 4 [A43/2]) ds
): = "?:Ofgm sy a2 (1B 2+ /)

Observing that, for general sequences {4™} and {b™}, hold
M-1

m+ m\ m+ _1 _ = m m+ B
E(“ 11,4 )a 1_2( (a°)2+(uM)2+m§0(a +a 1) ),

m=0



A. Aratjo, S. Barbeiro and M. Kh. Ghalati 11

Mz—:l (am+1+am) pm+1 :% (—a°b°+aMbM+Mi1 (ambm+2a’"b"’+1+am+1bm+1) ) ’
m=0 =
we get
M-1

Y (Bfi+BD)

m=0

E 4.(Z +Z ) <_a(n}l)%i (_[Egk]z_*_[gﬁf 2)

" fuerimtd fu
(s )ii(my )i (= (ES D, 1+ (EMIIEN]) —2(m, )i (ZiES, + ZeED:) 1AL/
+2a(ny )i ((n2)ei[E9,] - (ny )i [E)) (ES)+2(ny )i (ZEY + ZiEM ) [AX+1/2)
201y )i (1) EY] — (my Do ER) ) [EX) - ()3 (—[ED, 12+ [EMT?)
a(ma)ii(ny )i (— (ES(EQ, )+ [EMIIEN) +2(me)es (ZiE9, + ZeED:) [FLL/?]

oa(n)i ((nx)ki [Egk] —(ny)ki [Egk]) [ES,J —2(nx)xi (Zifﬁf +ZkE%) [HZIHU]
+20(ny ) ki ((”’x)ki[gﬁlI _(ny)ki[Eﬁf ) [Eﬁf )ds
We also have

M-1 - 2
ZOBﬁz_ y 4(Y+Y) ([H1/2]2 HM+1/2]2+ E (H;z+1/2]+[HZ+3/z]) >ds

f GPm! ftk

fgmt f,k4(Y +Yk) ([Hl/z]z (A M+1/2])

which concludes the proof. O
Let us now analyze the term B} for different kinds of boundary conditions.
Lemma 4.2. Let B be defined by (4.7). Then

YE<y | 4%1(—((ny)késk—(nx)késk)2+((ny)kﬁﬁf—wx)kﬁﬁf)z)

m=0 f € Fext fk
2 ~ ~ ~ 3
- % (Hzlk/ 2 (("x)kEBk —(ny)kES, — fy a1/ 2)

_Hi\;l+1/2 (("x)kE (ny)kEM 2.31\(3 HM+1/2) ) ds,



12 A. Aratjo, S. Barbeiro and M. Kh. Ghalati

where B1 =wa,B2 =0 for PEC, B1=0,82=1, B3 =a for PMC, and B1 =2 = %, Bz =1 for
Silver-Miiller boundary conditions.

Proof. First we consider PEC boundary conditions. We have

E/ ((ny)k (Tlx)kEyk (ny)kE ) [m+1/2]

f eple

- (nx)k (("x)kEyk — (ny)kE ) ;’ZH_UZJ) ds.

Summing from m =0 to m=M —1 we obtain

L= & [ (oo -oae) s (ooi-omie)
—4 E ((nx) Em+1/2] (ny)x E[m+1/z) >ds
< (~ (8- 082) (0= nuet)

For PMC boundary conditions we have

Bg’l: E /k (Hm+1/2((n ) Em+1/2] (ny) E[m+1/2)

fke Fext

- (%ﬁ;’;“/%(nx)ké —(my)x Em+1) H['"“]) ds.
k
Summing from m =0 to m= M —1 results

MX—; {,_"5 2 / (H;"/z((n")kEyk (ny)kE2, ——Hl/z)

fke Fext

_I:‘IZIH/Z ((nx)kgx_ ("y)kgﬁf i HM+1/2) ) ds.
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For Silver-Miiller absorbing boundary conditions we have

E / (( (ny) BT 24 (y)k ((nx)kE ("V)kgz»@'fﬂm

f GI_‘exl

- n ~ ~ o 1
+ ((nx)kHZ+1/2_ % ((nx)kE;i - ("y)kEﬁ)> e

_ (Ylkgz+1/2+(n ) Em+1 (ny)kEZ+1) H[m+1 ) ds.

Summing from m=0to m=M—1, and taking into account the previous cases, we deduce

Eo< T [ o (- (=)« (ie-ust)’)

1( 5172 70 0 1 ~1p
+Z (sz ((nx)kEyk - (ny)kE X WH
- =M 1
_Hé\f+1/2 ((nx)kE (ny)kExk 2Y HM+1/2) ) dS,

which concludes the proof. O

Theorem 4.1. Let us consider the leap-frog DG method (3.2)-(3.4) complemented with the dis-
crete boundary conditions defined in Section 3.1. If the time step At is such that

min{e,u}

where

1 20+ 1
Ceg= —CinvN2+C§-(N+1)(N+2) (2+'32+2mjn—ﬁ) p

{Z}
Ch= %C,,WN2+C2(N+1) (N+2) (2+ﬁ2+ “TL%Z ‘; ) ,

with C defined by (A.4) of Lemma A.1 and C;y,, defined by (A.6) of Lemma A.2, and B1=w,B,=0
for PEC, B1=0,82=1, B3 =u for PMC, and B1= B2 =3, Bs =1 for Silver-Miiller boundary
conditions, then the method is stable.

Proof. From (4.3) and the previous lemmata, considering the Cauchy-Schwarz’s inequal-
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ity and taking into account that Z;/(Z;+Zx) <1, we obtain

z (()(HH>)

T.eTh

5 (et mrar),

T €T,y

rar (||vxz—"zzlfnmm||E£||Lz(m+||vxHﬁf*”anzm)||E£4||Lz(m)
T €Tn

ont Y (||E£‘||Lz<ﬁk)||[HQ:“/Z]||Lz<ﬁk)+||E2||Lz(fik)||[H;12]||L2(,,,k))
fkePinl

FM M+1/2

51At ﬁzﬂgAt
): B Ny iy s E 121

zmln{z }f epe:(t mm{Y }f epext
+2B28¢ Y- (I1BY 2 1 ER ey + 1A+ 2 1 E¥ oy )
fkepe:(t

Using the inequality (A.4) of Lemma A.1 and the inequality (A.6) of Lemma A.2 (both in
Appendix), we get

min{e,u} (I1E¥|[F2 0+ 12122y )
<max{¢,j} (||E0|| Q)+”H1/2”L2 Q))
+—= C,,wszax{ }(||H1/2||L2(n +||E0||%2(0)+||I:I£A+1/2“ )+“EM“L2 Q))

_ 20+ B ~
2 1 M2
+CT(N+1)(N+2)Atmax {hk } (2+ﬂ2+ m) “E ||L2(Q)

+C2(N+1)(N+2)Atmax {hk—l} (2+ B2+ %) 1E12012:q
+C2(N+1)(N+2)Atmax {hk_l} (2+Bz2) (||E0||%2(0) +||H;/2||%2(0)) .
and so, taking Co=1C;, N2+ C2(N+1)(N+2) (2+82),
(minfe, u} — Atmax{ ;! }max{Cp,Cur} ) (IIE |2 + 1M1/ 2, )
< (max{é,ﬁ}+Atmax {hk‘l}co) (||E0|| )+||H1/2||L2(0 )

which concludes the proof. O
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The stability condition (4.8) shows that the method is conditionally stable, which is
natural since we are considering an explicit time discretization. Furthermore, it discloses
the influence of the values of &, hynin and N on the bounds of the stable region. This is of
utmost importance to balance accuracy versus stability.

For the completeness of the study of the method we present the error estimates in the
following Theorem 4.2. To provide a proper functional setting, we need to define spaces
involving time-dependent functions [8]. Let X denote a Banach space with norm |.| x.
The spaces L?(0,T;X) and L*(0,T;X) consist, respectively, of all measurable functions
v:[0,T] = X with

T 172
9l 20,70 = (/ ||U(t)||§<dt) <00, ||v]|L=(o,1;x) =esssup||v(t)||x < oo.
0 0<t<T

In what follows, X is shorthand for any of the usual Sobolev spaces H? () or the Banach
space L(Q)). By ||.||12(q) we denote the classical norm in L?(Q2) or (L?(€2))?, depending
on the context, and we use the same type of notation for the norms and semi-norms in
other Sobolev spaces H?(}).

Theorem 4.2. Let us consider the leap-frog DG method (3.2)-(3.4) complemented with the dis-
crete boundary conditions defined in Section 3.1 and suppose that the solution of the Maxwell’s
equations (2.2)-(2.3) complemented by (2.5), (2.6) or (2.7) has the following regularity:
Ex Ey, H,€L™(0, T HT1(QY)), %, %x 3H: c12(0, Ty; HS+1(Q)NL™(3Q2)) and aza—ﬁ"%la;—fg‘
€ L*(0,T5;H'(Q)), 5>0. If the time step At satisfies

min{e,
At< {e E}

_mmjn{hk}(l—(S), 0<é<1, (49)

where Cg and Cy are the constants defined in Theorem 4.1, then, for the case of PEC and PMC
boundary conditions, holds

F 1/2 _ pym+1/2
jmax ([[E"—E" |l + [ HI 2= A2 )

<C(AP+hmin{sN}) . C (||EO—E0 20 + |H/2—-HY?| LZ(Q))
and, for the case of Silver-Miiller absorbing boundary conditions, holds
max ([[E"—E" oo+ [ HP 2= B4 )

<C(At4hr™in{sNH 4 C (||E°—E°||L2(Q)+||H21/2—F1;/2||L2(Q)) ,

where C is a generic constant independent of At and the mesh size h.
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Proof. The key idea for the proof is to find a variational system for the difference between
the numerical solution and a projection of (E JC,Ey,HZ) onto the space Vy.

Let (PyEx, PNEy, PnH;) € Vy be an interpolant of (E,,E,,H,) having the optimal ap-
proximation errors given by the hp-approximation properties (A.7) and (A.8). On the
external boundary we define the jumps [PyEx] =2PnEx, [PNEy| =2PNEy, [PyH:] =0
and [PyEy| =0, [PyE,| =0, [PnH,] =2PyH,, for PEC and PMC boundary conditions,
respectively. For Silver-Miiller absorbing boundary conditions we consider [PyE,| =

NEx, [PNEy) =PNEy, [PnH;] =PnH;. Let us consider the notations ¢y = PyE}’ —Em,
&= PNEy— B, 7= (&7, ), and n+1/2 = PyHy1/2— (172,
Takmg 1nto account lemmas A.1, A.2 and A.3, we obtain

min{e,u} (16M 22y + 17312122 ) )
<max{&, i} (1181122 0 + 172122y )

At -
+5-CinoN?max{ k1 } (nn/anzm 1801122+ 24121 )+ 16222 )

M-1
+At5(7+B4) ( Y 18" 1220y + Z I /2)122 o))

m=1 m=

Ato
+ 22 7+0) (12020 +16¥ Iy 12/ 2 i)+ I B

_ 20+ B1
+CH(N+1)(N+2)Atmax {1} (2+ﬂz+m) 181172

_ 200+2
+CUN+D(N+2)atmax {1} (2ot G 022 ) [ 2

+c2(N+1)(N+2>Atmax{h '} (2+62) (nc"anm + 172212y )

+Ch2‘7At _ a_E dt+_/-T+At/2 aH it
5N2p at HP(Q) ‘u At/2 at HP(O
+2CAt4 /T+A‘/2 ﬁ it / asz it
6 At/2 ot? Hl(n H(Q)

+%(N3+(1+ { })CZ(N+1)(N+2)) |ENZe 0187
+ﬁ4C$(N+1)(N+2)At2 /-T At/2 )3 2 i

86min{Z2} 0 0t || L=(a02)
(BCHN DN 208 T |21 C o

166min{Y?} at/2|| Ot ey
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where p>0, o =min(p,N+1), C and C; are constants independent of (Ex,,Ey,,Hz,), hk
and N, ¢ is an arbitrary positive constant, B4 =0 for PEC and PMC boundary conditions
and B4 =1 for Silver-Miiller absorbing boundary conditions.

If (4.9) holds, using the discrete Gronwall’s Lemma (see e.g. [7,22]), we obtain

112 g+ 7241722,

SC(e,u,N)(||¢°||izm)+||n;/2||iz<m

T 2 T+At/2 2

dt+Ath* /
At/2

+Ath% / J9F
21 (2 T+At/2
275 dt+ At FH; dt

0
T
vy i,
0 H(Q) At/2 ot? HY(Q)

2™ e i) N2 e g oy

T—At/2 2
+BuAP / oF oH, dt) .
0 L=(a02)

ot ot
We complete the proof by using the triangle inequality and the hp-approximation
properties of Lemma A.3 to estimate PNEY —E2, ’PNEﬁj(I - E;‘f and PyHM /2 gM+1/2,
O

o,
ot
2

dt
HP(Q)

2 T
dt+ BsAt? /
At/2

L=(202)

Remark 4.1. We want to remark that in the case of Silver-Miiller absorbing boundary
conditions we only get first order convergence in time. A possible way to recover second
order convergence is to consider a locally implicit time scheme (see e.g. [9]). In order
to keep efficiency, we propose an alternative which is explicit and second order conver-
gent in time: for each time step, solve (3.2)-(3.4) and save the solution in the variables

= = = . . sm+1 xm+1 m+43/2, .
(Em+ 1,Eﬁ+1,H£+ 3/2). Then the numerical solution (E7, ,E;: ,H;TL / ) is computed re-

placing in (3.2)-(3.4) the numerical flux by the following expression
—n 5 Em \'E""l [Em) . [Fm+1]
i (ZﬂH;"“/z]—a(nJ s ))

. Frm+1/2 (Ep]+(Ey) [Em]+[Em+1]
z-iz— (Z+[H£"+ / ]_‘x(nx ey 7{

~ _ ~ _ I“_I;n—l/z -ﬁ;n+3/2-
. (Y*(nx[E;"“] ny[E;n+1]) a 4 \

5 Numerical results

In this section we present numerical results that support the theoretical results derived
in the previous section.
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We will check numerically that (4.8) defines a sharp stability condition, in terms of
the influence of N and h;, =min{k }. In our experiments, we computed C that satisfies

C

Atmax = —hmin:
(N+1)(N+2)

(5.1)
where Atmax is the maximum observed value of At such that the method is stable. For
these tests, the domain is the square ()= (—1,1)?, the simulation final time is fixed at T=1,
we consider a symmetric and positive definite anisotropic constant permittivity tensor
(2.4), with €xy =5, €xy =€yx =1 and €, =3, and y=1. We consider Egs. (2.2)-(2.3) with
initial conditions Ex(x,y,0)=0, E,(x,y,0)=0, H,(x,y,At/2)=cos(7rx)cos(my)cos(wAt/2),
where w=11,/1/€,+1/€,y, for the case of PEC boundary conditions and E,(x,y,0)=0,
E,(x,y,0)=0, H,(x,y,At/2)=sin(mAt/2)sin(mxy) for the case of Silver-Miiller absorbing
boundary conditions.

In Table 1 and Table 2 the results are computed for different mesh sizes, considering
respectively central and upwind fluxes in the DG method, for the case of PEC boundary
conditions, while in Table 3 and Table 4, the results are computed for the case of Silver-
Miiller boundary conditions.

Table 1: Atmax such that the method is stable and C computed by (5.1) for PEC and central flux.

N=1 N=2 N=3 N=4 N=5
Atmax C  Atmax C  Atmax C Atmax C Atmax C
05657 017 180 01 212 0.065 230 0.044 233 0.032 237
0.2828 0.088 187 0.05 212 0.031 220 0.021 223 0.016 237
0.1414 0.044 187 0.024 2.04 0.015 212 0.01 212 0.0078 232
0.0707 0.021 178 0.012 2.04 0.0078 220 0.0054 230 0.0038 2.26
00354 001 170 0.006 2.04 0.0039 220 0.0027 230 0.0019 2.26
0.0177 0.0054 1.83 0.003 2.04 0.0019 215 0.0013 221 0.00095 2.26

min

Table 2: Atpmax such that the method is stable and C computed by (5.1) for PEC and upwind flux.

N=1 N=2 N=3 N=4 N=5
Atmax C Atmax C Atmax C Atmax C Atmax C
05657 0.10 1.06 0.056 119 0.034 120 0.023 122 0016 1.19
0.2828 0.047 1.00 0.026 110 0.016 113 0.011 117 0.0081 1.20
0.1414 0.023 098 0.012 1.02 0.008 1.13 0.0054 1.15 0.0039 1.16
0.0707 0.011 0.93 0.0062 1.05 0.0039 1.10 0.0026 1.10 0.0019 1.13
0.0354 0.0055 0.93 0.003 1.02 0.0019 1.07 0.0013 1.10 0.0009 1.07
0.0177 0.0027 0.92 0.0015 1.02 0.0009 1.02 0.0006 1.02 0.0004 0.95

min
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Table 3: Atmax such that the method is stable and C computed by (5.1) for SM-ABC and central flux.

N=1 N=2 N=3 N=4 N=5
Atmax C  Aftmax C Atmax C Atmax C Atmax C
05657 018 191 01 212 0.064 226 0044 233 0.031 230
02828 0.092 195 0.05 212 0.031 219 0021 202 0.015 223
0.1414 0.044 1.87 0.024 2.04 0.015 212 0.01 212 0.0079 235
0.0707 0.021 1.78 0.012 2.04 0.0077 218 0.0053 225 0.0038 2.26
00354 001 170 0.006 2.04 0.0038 215 0.0026 221 0.0019 2.26
0.0177 0.0053 1.80 0.003 2.04 0.0018 2.04 0.0012 2.04 0.00095 2.26

hmin

Table 4: Atmax such that the method is stable and C computed by (5.1) for SM-ABC and upwind flux.

N=1 N=2 N=3 N=4 N=5
Atmax C Atmax C Atmax C Atmax C Atmax C
05657 0.11 117 0.057 121 0.035 124 0.023 122 0.016 1.19
0.2828 0.051 1.08 0.026 110 0.016 1.13 0.011 1.17 0.008 1.19
0.1414 0.023 098 0.012 1.02 0.008 1.13 0.0054 1.15 0.0039 1.16
0.0707 0.011 093 0.0061 1.04 0.0039 1.10 0.0026 1.10 0.0019 1.13
0.0354 0.0055 093 0.003 1.02 0.0018 1.07 0.0013 1.10 0.00097 1.15
0.0177 0.0027 0.92 0.0015 1.02 0.00097 1.10 0.00065 1.10 0.00045 1.07

hmin

As expected from the condition (4.8), the numerical examples show that the stability
regions corresponding to central fluxes are slightly bigger when compared to the regions
obtained using upwind fluxes. From all the examples presented, we may deduce that the
right hand side of (4.8) is a sharp bound for Atmax. Moreover, we can also conclude that
Atpayx is directly proportional to A, and inversely proportional to (N+1)(N+2).

To illustrate the error estimate, we consider the model problem (2.2)-(2.3) defined in
the square Q= (—1,1)?, complemented by initial conditions and Silver-Miiller absorbing
boundary conditions (2.7). In order to make it easier to find examples with known exact
solution and consequently with the possibility to compute the error of the numerical
solution, source terms were introduced. The simulation time is fixed at T=1 and in all
tests we assume that x =1 and € is given by (2.4), with €xx = 4x2 +y2+1, Eyy = x*+1 and
Exy =€yx =1/ x2+y2.

For the computation of convergence rates in space, we herein use rate =
log(error/error*) /log(h/h*), where error and error* denote the respective L2-errors,
|EM—EM|| 2 + [ HMH/2 — AM1/2| 12, computed for two consecutive meshes of
sizes h and h*. For the computation of convergence rates in time we proceed in a cor-

respondent way computing the errors of the numerical solutions for two different values
of At.
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To illustrate the order of convergence in space, we fix At=107, except for N=4 where
we consider At=107°. In Table 5 we compute the discrete L?-error considering different
degrees for the polynomial approximation while the spatial mesh is refined for both cen-
tral and upwind fluxes. For central flux we find that the numerical convergence rate is
close to the value estimated in Theorem 4.2, O(hY), and for upwind flux we observe
higher order of convergence, up to O(hN*!) in some cases.

Table 5: The error and the order of convergence in space for SM-ABC.

” N K h error rate error rate H

Central flux Upwind flux

32 7.07E-01 6.18E-01 2.83E-01

50 5.66E-01 4.51E-01 1.42 1.70E-01 2.28
200 2.83E-01 2.28E-1 099 3.75E-02 218
800 1.41E-01 1.16E-1 097 6.90E-03 245
32 7.07E-01 1.61E-01 4.97E-02

50 5.66E-01 9.74E-02 2.27 231E-02 3.43
200 2.83E-01 223E-02 213 290E-03 298
800 1.41E-01 5.00E-03 214 3.12E-04 3.23
32 7.07E-01 2.93E-02 9.90E-03

50 5.66E-01 1.42E-02 3.24 3.80E-03 4.26
200 2.83E-01 240E-03 259 248E0-4 3.94
800 1.41E-01 3.16E-04 290 1.58E-05 3.97
32 7.07E-01 4.06E-03 1.40E-03

50 5.66E-01 1.90E-03 391 4.38E-04 5.04
200 2.83E-01 1.61E-04 3.57 1.36E-05 5.01
800 1.41E-01 9.39E-06 4.11 845E-07 4.01

We can visualise the convergence order in time in Table 6, where the polynomials
degree and the number of elements have been set to N =8 and K= 800, respectively, for
upwind flux. The results exhibit first order convergency in time for the leap-frog method

Table 6: The error and the order of convergence in time for SM-ABC.

|| At error rate error rate ||

Leap-frog Modified leap-frog
1.00E-03 7.04E-04 1.27E-04
5.00E-04 3.52E-04 1.00 2.84E-05 216
2.50E-04 1.76E-04 1.00 6.79E-06  2.07
1.25E-04 8.79E-05 1.00 1.66E-06  2.03
6.25E-05 4.39E-05 1.00 4.10E-07  2.02
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and show that the second order is recovered when the modified leap-frog method is
considered.

6 Stability of the 3 D model

In this section we extend the analysis in Section 4 for the TE mode of Maxwell’s equations
in two-dimensions to the full three-dimensional time-dependent Maxwell equations (2.1),
defined on a bounded polyhedral domain Q) C R3.

We assume that electric permittivity and the magnetic permeability tensors € and
y are symmetric and uniformly positive definite for almost every (x,y,z) € (), and are
uniformly bounded with a strictly positive lower bound, i.e., there are constants € > 0,
€>0and p >0, #> 0 such that, for almost every (x,y,z) €Q,

el <¢e(xy2)<eldl,  ulgP<C"u(xy2)E<ulgl,  VEER’.
Let us define an effective permeability (in the same way as the effective permittivity) by
pesr =det(y) / (nT un). Now the speed with which a wave travels along the direction of
the unit normal is given by c=/1/ (y.¢s€c5)-
We assume that () is partitioned into K disjoint tetrahedral elements Ty. The leap-frog

discontinuous Galerkin method is the natural extension of the formulation (3.2)-(3.4) to
the three-dimensional domain, with the numerical flux defined by

<#lz_nx (z+[H]—anx [E]))
yry=nx (Y*[E]+anx [H]) '

We start by noticing that the following equalities hold
pm+1 Fm+1 pm fm
(eEk + ’Ek + )Tk— (GEk lEk )Tk

=20t (Vx A2 V)
k

1 - ~ ~(m+1/2]
—2At ZH[Em1/2) - Em)), Eim+ 1
(Z++Z_nx( [ |—anx[E")),E} " 6.1)

and

(FH’r(n+3/2’I‘_"IIr(n+3/2) - (VHIr(n+1/2’HIr(n+1/2) )
k k
=28t (Vx Pt M)

k

+2A¢ ( nx (Y+[E""’+1] +anx [1—”1'"+1/’-]) ,1—“1,£'”+”) , (6.2)

Lt
YF+Y- oT,
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where (+,+)1, and ()31, denote the inner-products in (L?(Tx))® and (L?(9T))?, respec-
tively. Using the identity,

(OB ). (OB oA,
T Ti AT,

summing (6.1) and (6.2) from m =0 to m =M —1, and integrating by parts, we get
FM M FIM+1/2 FM+1/2
(eEk By )Tk+(ka A )Tk
= (e, E)) 1, + (A%, HY?) A (vxay2E)

k
M-1

—at(VXAPZEM) oat Y AR, 6.3)
T m=0
where
1
m___ +rm+1/2 m [m+1/2
A= (z++z nx (Z* A1) —anx [E"]) E} )an
1 +pm+1 m+1/21) plm+1] m+1 pylm+1]
(Y++Y nx(Y [E" ] +anx [H ]) . (ank JH; )aTk'

Let us consider the following decomposition } 1, .. AY' = BT"+ B}, where

—1 1/2)
B — / g x (Z[A Y2 — g x [E1) - B
=L, ik(zﬁzk X (ZilA 7] —amy x [E]]) B

Z+Z 7 ki X (Zk[I:I{’“+1/2]+ank,-x[E;"]).El[’"H/Z]
nk, (Y[Em+1]+ankx[H'"+1/2]) m+1j
Y+Y Ngi X (Yk[Em+1]—ank X[Hm+1/2]) H[m+1]
— g x EPHL H[m+1J g x EPHLL H[m+1> ds, 6.
and
Bi= ) /( nkX Z K [H 2] — g x [EF ]) gim+1/2]
focFext? fi

2; g X (Yk[Em+1]+an x[Hm+1/2]) Ay x B H,E"’*”) ds. (6.5)
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We will now estimate B* and B}'. Summing from m =0 to m = M—1, using the
equalities u xv-w = —uxw-v, and u X (vxw) =v(u-w)—w(u-v) and since I —ngn} is a
positive semidefinite matrix, where I is the identity matrix, we obtain

Mg rs ), /,k(4(z +Z)[EM]T(1_""""£) B

f e[.‘ml

s FrM+1/21T M+1/2
L . 71/2 0 . TMA+1/21 1M
oz 7y (X 2] B =i x (B2 B )

1 ~ - . .
+5 (nki x [HYHV2) EM — g x [A?] E,?) ) ds.

The proof follows from the fact that, since the matrix I —ny;n} is an orthogonal projector,
xT(I—nnk)x <x-x, for all vector x, and then

M-1
mz=:0 fg,,,,/,k (4(2 +Z )[EII(M] [EII‘\A]+W[HII<\A+1/2]'[H’€M+1/2]

Z . - 8
T2zt zy) (e ¢ [ [ER] e x [A1/2)- [

1 . - /o =
+5 (nk,- x [AMH2) EM —nyy x (A2 -E,?) ) ds. (6.6)

For B}’ be defined by (6.5) we obtain

RS- B1 70 70 EM =M
EOBZS E /fk lﬁk —(nkxEk)-(nkxEk)+(nkxEk).(nkxEk)
m= fkel:‘e.tt

B2 50 171/2 M pyM+1/2) , P3 ~1/2 ~1/2
+?(11kXEk'Hk —np X Eg 'Hk * )+4_Yk —(nkak )»(nkak )
+ (nk X I:I,?“l/z) - (nk X I:I,?’”l/z) ) ) ds, 6.7)

where B =a, B, =0 for PEC, B; =0, B =1, B3 =a for PMC, and B =B, =B3=1 for
Silver-Miiller boundary conditions.
As for the 2D case, from (6.3), (6.6), (6.7), considering the Cauchy-Schwarz’s and tri-

angular inequality and using the inequality (A.5) of Lemma A.1 and the inequality (A.6)
of Lemma A.2, we get the following stability result.
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Theorem 6.1. Let us consider the leap-frog DG method (3.2)-(3.4) complemented with the dis-
crete boundary conditions defined in Section 3.1. If the time step At is such that

At< %m{m}, 6.8)

where

Ce= CznvN2+C2(N+1)(N+3) (3+ ﬁz " a+{ﬁék})

CH——Cmvl\’ZwLCz(NH)(N+3) (3+ﬁ2+ ﬁf;k})

with C; defined by (A.5) of Lemma A.1 and C;y,, defined by (A.6) of Lemma A.2, and B; =«,
B2 =0 for PEC, B1 =0, B2 =1, B3 =ua for PMC, and B1 =B, = %, B3 =1 for Silver-Miiller
boundary conditions, then the method is stable.
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A Technical lemmata

We consider the following trace inequalities (see e.g. [18]).

Lemma A.1. Let Ty be an element of T}, with diameter hy and let fi be an edge or a face of T.
There exists a positive constant C independent of hy such that, for any u € H'(Ty,),

2y < Cy 225 (Il V). (A1)

Moreover, the following inequality holds for any u € Py (Ty)

- . (N+1)(N+2) |fi]
in2D:  |Jullr2p) < f”w”u“L (T) (A.2)

3D (N-+1)(N+3) |fi
in 3D: ||u||Lz(fk)s\/f|T|n ullzny (A3)
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Consequently, there exists a positive constant C. independent of hy and N but dependent on the
shape-regularity hy /T, where Ty is the diameter of the largest inscribed ball contained in Ty (see
(3.1)), such that, for any u € Pn(Ty),

in2D:  [[ullgz(omy < Coy/ (N+1) (N+2)h 2 [ull 2, (A4)
in3D:  [ullgz(omy < Coy/ (N+1) (N+3)h /2]l 2y (A5)

The next result is an inverse-type estimate [5, 10], where we present explicitly the
dependence of the constant on the polynomials degree.

Lemma A.2. Let us consider Ty € T, with diameter hy. There exists a positive constant Ci,,
independent of hy and N such that, for any u € Py(Ty),

l[24]| g9 (13 < CimoN?Thc ]| 2, (A.6)
where g > 0.
The reader can refer to [3] or [19] for the following approximation properties.

Lemma A.3. Let Ty € Ty, and u € HP(Ty). Then there exits a constant C depending on p and
on the shape-regularity of Ty but independent of u, hy and N and a sequence Pyxu € Pn(Tx),
N=1,2,---, such that, forany 0<q<p

o~
([ —Prue]| o) SCNk,,_q lullae (T, P20, (A7)
2—1/2

Np-1/2

1
l|lu—Pnull 2y <C lullge(ry, P> > (A8)

where o =min(p,N+1) and f; is an edge of Ty.
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