CONVERGENCE OF FINITE DIFFERENCE SCHEMES FOR
NONLINEAR COMPLEX REACTION-DIFFUSION PROCESSES
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Abstract. This paper is devoted to the proof of the convergence properties of a class of finite
difference schemes applied to nonlinear complex reaction-diffusion equations. We investigate the
accuracy of the numerical solution considering implicit and semi-implicit discretizations. To illustrate
the theoretical results we present some numerical examples computed with a semi-implicit scheme
applied to a nonlinear equation.
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1. Introduction. Let  be a bounded open set in R?, d € {1,2}, with boundary
I’ = 8. Here we consider Q = QUAN an interval for d = 1 and a union of rectangles
ford =2. Let Q = Q x (0,7], with T > 0, and v:Q = Q x [0,7] — C. We con-
sider a reaction-diffusion process with a nonconstant complex coefficient D(z,t,v) =
Dpg(z,t,v) + iDs(z,t,v) and nonconstant complex reaction term F(z,t,v) =
Fg(z,t,v) + iFy(z,t,v), where Dg(z,t,v), Di(z,t,v), Fr(z,t,v), Fi(z,t,v) are real
functions dependent on v. We need to assume that

(1.1) Dp(z,t,v) > € >0, (z,t) € Q,
and that there exists a constant L > 0 such that
(1.2) |D(z,t,v)| < L, (z,t) € Q.

Inequalities (1.1) and (1.2) can easily be shown to hold for the diffusion coefficient in
[2, 6, 20].

We define the initial boundary value problem for the unknown complex function
U =up+iuy,

13 St =V (D LuVaE) + FE b, @0 €Q
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under the initial condition

(1.4) u(z,0) =u"(z), z€Q,
with either the Dirichlet boundary condition

(1.5) u(z,t) =0, zel, te[0,T],

or the Neumann boundary condition
(1.6) —(z,t)=0, zel, tel0,T],
v

where g—z denotes the derivative in the direction of the exterior normal to I'. For the
reaction term we will consider the decomposition

(1.7 F(z,t,v) = F(z,t,v) + Fni(z,t,v),
where F}, is a linear operator with respect to v,
F(z,t,v) = f(z,t) + Az, t)v(z, t).

We assume that the problem is well posed, in the sense that it admits a unique
solution (in the classical or the weak sense) and it depends continuously on the data.

The present paper focuses on deriving convergence results for a class of finite
difference schemes for (1.3)—-(1.4), with (1.5) or (1.6), in one and two dimensions. We
first note that expression (1.3) involves both Schrédinger type equations and parabolic
equations and includes the possibility of having a source term, a linear reaction term,
a nonlinear reaction term, or none of them (see (1.7)).

In the theory of heat conduction and chemical diffusion processes, if the thermal
conductivity depends on the unknown function, the temperature distribution in a
bounded medium is governed by this initial-boundary value problem, where F' rep-
resents the reaction mechanisms [28]. Diffusion processes are also commonly used
in image processing as, for example, in noise removal, inpainting, stereo vision, or
optical flow (see, e.g., [6, 9, 20, 21, 25, 27, 30, 31, 34]). In particular, nonlinear com-
plex diffusion proved to be successfully applied in medical imaging despeckling and
denoising [17, 27]. Although diverse numerical schemes have been implemented to ap-
proximately solve the resulting mathematical model, no formal mathematical analysis
has been yet carried out in order to gather the properties of approximate solutions
such as error estimates and rates of convergence.

In [2] the authors studied the stability of a one parameter class of finite difference
schemes for the nonlinear complex diffusion equation. Both explicit and implicit
schemes were considered. In [3] the authors analyzed the stability of implicit and semi-
implicit finite difference schemes for nonlinear complex reaction-diffusion processes.
In image denoising, the stability proof in [2] is important for the cases where the
resolution of the used image is fixed. However, in the cases where it is possible to
increase the resolution of the image from previously acquired ones, it is also important
to establish convergence results for the filtering process.

The numerical analysis of finite difference schemes for nonlinear diffusion and
reaction-diffusion equations has been investigated extensively and is widely docu-
mented in the literature (see, e.g., [23, 28]). The convergence of finite difference
methods for systems of nonlinear reaction-diffusion equations with real variables was
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studied in [22]. For the complex case, we mention [29], where the authors consider the
analysis of conservative schemes for a coupled nonlinear Schrédinger system. To the
best of our knowledge there is no rigorous proof of the convergence of finite difference
schemes for (1.3). Writing this equation as a system in the variables up and u;, we
obtain a particular reaction-diffusion system of real variables. We did not find in the
literature convergence estimates for similar systems. This paper fills this gap in the
theory of finite difference schemes applied to the considered problem.

For the sake of clarity, we restrict the approach to the case of domains which in
two dimensions are a union of rectangles. It is well known that numerical schemes
applied to boundary value problems on domains with re-entrance corners may suffer
from a global loss of accuracy caused by the influence of corner singularities. In order
to regain the full order of convergence, one common strategy is to use a systematic
mesh refinement near the corner points [10, 11]. Alternative strategies can be found
in, e.g., [7, 13, 19, 33]. In this paper we assume that the exact solution is smooth
enough, and so this pollution effect is not an issue.

The paper is organized as follows. In section 2 we describe the implicit and semi-
implicit numerical methods simultaneously by embedding them into a one-parameter
family of finite difference schemes. The core section of this paper is section 3, where
the rigorous proof of convergence is presented, taking into account the influence of the
regularity of the solution on the error estimate. In the last section some numerical
experiments are shown to illustrate the theoretical analysis. The paper ends with an
appendix with the proof of some technical lemmata.

2. Numerical method. Let us construct a nonequidistant rectangular grid,
Rn,on Q. Let R = szl(zk,o,xk,m) such that Q C R. We define the space grid by

d
Rh = H th’
k=1

where Ry, = {zro < @k1 < --+ < zy,n, }. We associate each grid point z; with
the coordinate j = (j1,...,J4). Let (hij,)o<j.<N.—1 be a vector of mesh-sizes (i.e.,
positive numbers) in the kth spatial coordinate direction, k = 1,...,d. We denote by h
the maximal mesh-size. Points halfway between two adjacent grid points are denoted
by Tjs(1/2)e, = Zj + (1/2)hij.ex and zj_(1/2)e, = j — (1/2)hk,j,—1€k, where ex
is the unit vector in the kth direction. We will also use the notation hg j, —1/2 =
(hk,jk—l + hk,jk)/Z. We define Qp, = QN Ry, 'y =T NRy, and Qh =Q, UT',. The
grid R}, is assumed to be such that the vertices of Q arein I'y.
For the temporal interval we consider the mesh

0=t <tl<--.<tM 1 <tM =T,

where M > 1 is an integer and At™ = ¢! —¢t™ m = 0,...,M — 1. We denote
by th the mesh in Q defined by the Cartesian product of the space grid Q) and
a grid in the temporal domain. Let Q5! = th NQ and I'd = aft NI x [0,T].
We associate the coordinate (j,m) = (j1,...,J4,m) to the point (z;,t™) € aft and
associate (j + (1/2)ex, m) and (j — (1/2)ex,m) to the midpoints (z;+(1/2)e,,t™) and
(@j—(1/2)ex t™), respectively.

We consider the notation V™ = V(z;,t™), Vi (15, = V(Tj+(1/2)e,,t™), and
Vi 1 /2yex = V(@j—(1/2)ex,t™) for a function V' defined on Q. For the formulation of
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the finite difference approximations, we use the centered finite difference quotients in
the kth spatial direction,

Vitwe = Vit e Vit - Vi,

o V™ = v Vi1 /2)e, = Pt k=12

Py j—1/2

If d = 1, these definitions are simplified for the case of one spatial coordinate instead
of two. _ o

We use the notation Q4 for the set Q4% or @), , in the case of Dirichlet or
Neumann boundary conditions. On Gst we approximate (1.3)—(1.4) by the one-
parameter family of finite difference schemes: find UT" ~ u(z;,t™) such that

U1n+l Urn d

(2.1) " Z (D U + ™ in QR

with

(2.2) U} =u’(z;) in Qa,

and either

(2.3) Ur=0 in Ty,

in the case of homogeneous Dirichlet boundary conditions (1.5), or
d

(2.4) kZ: (hk dr—exOkUSL (1/2)e, T Pk ji+er 06U (1/2)ek) ve=0 in T3,
=1

in the case of homogeneous Neumann boundary conditions (1.6), where v}, represents
the kth component of the normal vector ». In (2.1) we consider

D("L'j,tm-f-l’Uf""—u)+D(xj+e , L+l U"H'ﬂ)

m, . J j+e
DJiitl/?)ex - 2 =, BE {Os 1}:
where
(25) Ut = WU 4 (- U7, pe {0,1),
and

LT m+l LONTEEE m+1 m+1 m+1 T, 1L
F F FNL] +A(.'L' t )U -+ NLj*

where, as, e.g., in [24],

1
(26) = [ fertds,
[w;] Ju

with w; = H‘é:l(xj_(l/z)ek,xj+(1/2)ek) C Q and |wj| the measure of w;, and
(27) FZLL‘; = FNL(xja tm+1a U;,H-ﬂ)s 12 € {0’ 1}

Note that the cases x = 0 and p = 1 correspond to a semi-implicit and an implicit
discretization, respectively. In the semi-implicit case, the diffusion coefficient and the
nonlinear part of the reaction term are treated explicitly.
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3. Convergence. The main result of this paper is Theorem 3.1. Estimates
for the difference between the pointwise restriction of the exact solution on the dis-
cretization nodes and the finite difference solution are proved. The key idea is to
start by finding a variational system for the error. We obtain error estimates using
the Bramble-Hilbert lemma (see Lemma A.1 in the appendix) in order to derive the
highest possible accuracy assuming the minimum hypothesis on the smoothness of
the exact solution.

To provide a proper functional setting, we need to define spaces involving time-
dependent functions [16]. Let X denote a Banach space with norm ||.|x. In what
follows, X is shorthand for any of the usual Sobolev spaces W*?(2) (which we also de-
note by H*(f2) in the case p = 2) or the Banach space L>(2). The space L>(0,T"; X)
consists of all measurable functions v : [0,7] — X with

[0l Lo (0,7, x) = esssup [|[v(t)]| x < oo,
0<t<T

and C([0,T7]; X) is the space of continuous functions v : [0,7] — X with

oo = max [v(@)llx < oo.

In what follows, || - ||, will denote the discrete L? norm, which will be specified
later in this section. In the next theorem, D(u) and Fyr(u) denote the functions on
the variables z and ¢, D(z,t,u(z,t)) and Fyp(z,t,u(z,t)).

THEOREM 3.1. Let the weak solution u of (1.3)—(1.4), with (1.5) or (1.6), lie in
C([0,T); HF(Q)NWL>°(Q)), r € {1,2}, where Q is an interval (in the case d = 1)
or a union of rectangles (in the case d = 2). Let us assume that D and Fxy, are
Lipschitz continuous with respect to the third component, with Lipschitz constant Cp
and Cp, respectively, in the sense that

(3'1) |D(.’E,t, ‘U) - D(*’”) t, w)l < CDI'U(.’IJ,t) - 'lU(.’L‘,t)l V(.’L‘,t) € Qs

(3.2) |Fxp(z,t,v) — Fynp(z, t,w)| < Crlu(z,t) — w(z,t)| V(z,t) € Q,

and D(u) € C([0,T]; W»>(Q)), Fnr(u), Au € C([0,T]; H*()), f € C((0,T]; L*(%)).
If (1.1) and (1.2) hold, and 3% € C([0, T); H*()), %—i# € L>=(0,T; H'(R)), then the
numerical solution U of (2.1)—(2.2), with (2.3) or (2.4), satisfies the error estimate
(339 max_[Ryu(t™) — U™ < O") +O(A0),
where Ryu denotes the pointwise restriction of the function u to the space grid Q.
We will prove the convergence for the bidimensional case. For the proof we follow
some arguments taken from [4, 5, 15, 18]. In what follows, C denotes a generic positive
constant.
We first note that, as a result of Taylor expansion about ™!,

u(x’ t1n+l) _ u(x, tm.)

ou
(3.4) A = E(z, t™ ) + At™p™(z) Vz € Q,
with
” 0%u
low ez < C |5 )
ot
L:x_v(trn,tnl-l;L?(Q))
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and, for any sufficiently smooth function g(t),

L) mn d
65 gt =g + ey, with o< | %

Lm(trn ,t"l—l)

Let us consider the numerical method (2.1)-(2.2) assuming Neumann boundary
conditions. For Dirichlet boundary conditions the proof follows the same steps.

We rewrite (2.1)-(2.2), (2.4) as a system by separating the real and imaginary
parts, Ur and Uy, respectively, of the main variable U = (U, ...,Uy). We shall then
study the convergence of the family of finite difference schemes: find Uj" ~ u(zj, t™)
such that

36) +1 2
U"l' —[Jm .
=Y (6:(DR0.URs™) - (DR 8,UT ™)) + F* im QR
R k2=1
U?JH’ — 17.'; m, m+1 m m+1 m, . AAL
Atm = kz=:l (6k(DIj'”6-TURj ) + Jk(DRj#(s-’r Ij )) + FIjﬂ m Qh 3

with initial condition
U?lj = u[IJZ(xj)’ U?j = u(IJ(zJ) in Q,

and homogeneous Neumann boundary conditions

M=

(hkvjk‘—ek(skUg;+(l/2)ek + hk.jk+ek6kUIT£;'—(l/2)ek) vp=0 in Fﬁts

x>
Il

1

d

m m . A
> (A0 UT 2 2ye, + hiren WU} —1 e, ) e =0 i TR
k=

-

We start by introducing some notation related to the space domain. For each
z; = (zj,,2j,) € Qn, we define the rectangle O; = (z;,,z;,+1) X (2},, zj,+1) and |0;]|
the measure of O;. The discrete inner products, for the two-dimensional (2D) case,
are

0] T T
U V=), 2 UineVisie + Upnraa Vi
0;ca
+ Ujs jo+1 Vi1 + U +1,0 41V i 41,241) 5

0] v -
U V)= TJ (Usi1/2.5.V 172,50 + Usis1/2.5041 Vi 41/2,041) »
0;co

and

o _ _
0, V)hE = Z TJ (Uj1,1'2+1/2v]'15j2+1/2 + Ujl+1,j2+1/2Vj1+1,j2+1/2) :
0;co

Their correspondent norms are denoted by ||.||n, |||, and ||.|[»;, respectively.
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Let E = Rpu — U, Egr = Ryur — Ug, and E; = Rpuy — U;. Multiplying both
members of the first and second equations of (3.6) by Ej™' and EJ**', respectively,
according to the discrete inner product (3.7), using (3.4), and taking into account the
boundary conditions, we obtain

E1n+1 ER 1 1/2 112
(T ER* ) +Z|I(DR+(1/2)ek) P2oER*1h:

0
= (R “"(t'"“),E;:“) + A8 (o7, B,

ot h

2
T, m+1 m+1
+) (DR+“(1/2)ek5:RhuR+ O ER T )h;
k .

)
—

_Z( I+(1/2)e,\5thuI+ 6kEm+l)h,
k

k

)
—

(37) + Z (DI+(1/2)8A 6kEI m+1 (SkEmH_l) . (Fm JH E}?_’_l)h

k=1 k

and

E;'H—l _E;n +1 2 m 1/2 +1)12
(BB 3 DR ) 0BT
h k=1

(Rh aautl (tm+l), E}n+l) + At™ ( m E"H-l ) N

Puys
h

2
m,u m+1 m+1
+3 (DH(1 2y, ORRAUR T, LB )h*
k=1 k

(Pt DR 5157

2
— kg ’
2
58) 3 (Dt e 8B 0~ (F, B)

s h

x>
Il
—

In order to provide the desired bounds, we start by deducing that

Ept' —Ep 1 1
( R’EHHLI) = (BB, — o é‘,EZ‘“)

Atm A Atm h Atm ( h

= A IER R — BRI + | B — BRIR.
Then
E’"""l E"L . T T
(39) (Bt mm™) > gam (IBR™IR - VERIR).
Likewise
E'n+1 E T 1 T T
610 (FETEp) > o (B - 1B
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Let z = (z1,22) and z; = (z;,,z;,). We will consider the contribution of each
rectangle (J;, which we subdivide into four congruent subrectangles R, Rz, R3, R4
such that P; is the common vertex of the region [J; and R;, i =1,...,4, respectively,
that is, P = (z;,,25,), P = (%),4+1,%3,), Ps = (Tj,+1,Tjo+1), Pa = (25, Tjp41)-

Integrating both sides of (1.3) over |O;|, multiplying in both members the con-
tribution of R; by E(Pi, t™+1), and using integration and a summation by parts, we
may conclude that

(3.11)
|EF 1% + IIEVII?L

+ 2 Z At'"Z (”(Dgﬁl/z)q)w‘skEMl

m=0

b + I(DRY 200 26T Ry )

M-1
<2 Z At™(|Ty| + |To| + |Ts] + |Tal + [T5] + [T6| + |T7] + |Ts| + [To]),

m=0

where the expressions for 71, ..., Ty are defined in what follows. In the previous bound
we took into account the boundary conditions, the fact that ||E°||, = 0, and (3.9)
and (3.10).

In (3.12)

Ty = Z T1(0;) and T = Z T2(0;),

O,ca 0;ca

which is the contribution of the region [0; to 77 and T3, given, respectively, by

h’ lh 6 T - 6 m T
T(@) = 1»"42”2 E8 (P, e+ (B ) i—Z/IQ%(a:,t 1) da(Ep ),
i=1 i= i
and
h '1h' j Ou m m . Ou m m
T»(0;) = 1’142022 I(P,,t +1y (E +1) i_z I( t™+1) dg(E7 ) p,,
=1 i=1

where (E7 ') p, denotes Ep(P;,t™*+!) and (E7*™")p, denotes Ey(P;,t™+?).
We set

T3 — Atm (puR’E"H-l) + Atm (puI’E"H-l)h .

In order to introduce T4, we start by defining the line segments S7 ., =

{zJ1+1/2} X (xhazgz+l/2)s 31+1/2 - {x]1+1/2} X (zJ2+1/2’zJ2+1)) _72+1/2 -
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(@5, %j,41/2) X {Zj,41/2}, and 82 0 = (25,4172, Tjy +1) X {Zj,11/2}. Then we set

BuR

1 1

Ty = E hy j, (/ Dg(zj,+1/2, @2, t™" ’“)_az (T, +1/2, T2, ™) dzy
0,ca ;1+1/2 1

X (‘SIEKL+1)j1+l/2,j2>

BuR

1 1

+ Z hl’jl (Lb DR(le+l/2)x2at"L+ ’u)a_ﬁll(le+l/2,z2’tm+ )dxg
0;ca J1+1/2

><(61EKL+1)J',+1/2,3'2+1)

T auR m
+ Z hz,jz(/s Dp(z1,2j5,41/2:t +1,u)a—m($1,$]’2+1/2,t 1) day

0;ca ;‘2+1/2

x (52EKL+1)3'1,12+1/2>

7 6uR m
+ > h2,j2(/b Dr(z1,25,41/2,t ‘+1,u)a—x2($1,$12+1/2,t 1) dz,

0;ca J2+1/2

><(52E}?+1)j,+1,j2+1/2)

*

2

m, m+1 m+1 m, m+1 m—+1
— (Dtts oye, O1RAUE T, 81 B )h_ — (DRt e, S2Ru ™, BB
1

The terms 15,7, and 17 are analogous to T replacing D, ugr, and Ei by Dy,
uy, and Ep for T5; by Dy, ug, and Ej for Ts; and by Dpg, uy, and Ej for T7.
Finally,

h j1 h: \J - m m - m m
Ts= ) (—1’]4 a2 ;(FR “Vp, (BE)p, _;AFR(x,t ) dz(ER+l)P.>

0;ca
and
B i o s 4 4
To= 3. (—4 Y ), (BP) g - 3 /IFz(w,t'"“,u) dz(EI"‘“)p.).
0;cn i=1 i=1" "

Let us start by estimating 73. First, note the equality

4 4 4
42(’4(11' = Z&'Zdi + (c1 + 2 — 3 — ca)(d1 + d2 — d3 — da)
i=1 i=1 =1
+(c1 —c2+c3 — ca)(dr —d2 +d3 — da)
+(Cl —Cy—C3+ C4)(d1 - dz - dJ -+ d4),
with
_ by b2, Our Our

R 72 St Y 22  pm+1y van m+1
Ci 4 ot (Pi,t ) R Ot (z,t ) dz

i
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and d; = (E"")p,. We apply this equality to 471(0J;) and study the behavior of

the four resulting sums T14(0;), T15(0;), T1c(0;), and T14(0;). Using the inequality
(A.1) of Lemma A.2, we obtain

hl!j1h2:j2 z Our (Phtm+1 / au_R( tm—f—l)dx‘

4 ;
=1
0 ur
< C(hl ) max Hi( m+l)
g T lJz Piarapge S15pS2 ’
51,512-2{20,12,2} ataxl axl Ly(O;)

and then

6' ur #m
IT14(0;)| < C(hT;, +h3,;,) max W( !

§1+82=2

ZI(Em+1 e

LY(0O;) =1

We can write T15(0;) in the form

(Cl + Cy —C3 — C4)(d1 + d2 - d.; - d4)
= (e +e2 = ez — o g, ((02EF ™) pi—(1/2)e, — (B2BR ) py—(1/2)e);

and we obtain
IT1(0;)| < ler + ez — e5 — ealha g, (|(02EF ) pi—1/2)e | + | (B2EF ) Po—(1/2)ea) -

Using inequality (A.2) of Lemma A.2, we get

ICLl < C(hlm & UR tm+1 ) i= 1a2)3a4,
LyG;)
and then
62u;{
Tw(0;)| < C(h? gl
I lb( J)l ( 1_71 2]2) mazs L@,

x (|(62ER ™) pi- (1/2)e2| +[(EER ) -/ ) -

The other sums, T3.(0;) and T14(0;), can be bounded in the same way as T1,(0;).
Summing the contribution of all the rectangles in the domain, we obtain
) 1/2

OUR ,,m
Tl <O | 30 (B +83,)° || 55 @)
0,c

(”Em+l”h + ||61Em+1

H2(0;)
ny + |162ER Ing) 5

and then using the inequality ab < ea® + 41—Eb2 for all a,b € R and € > 0, we get

6uR
ot

2
SN BRI + e (I6.E7 I + 18E7

|Ty| < Ch* (1 + )
H2(Q)

%)

where € is an arbitrary positive constant. Likewise we obtain an analogous estimate
for 1.
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For T3 we have

T3] < CAt™ (o N @ IEE T Ik +100 lm @ IEF T n)

: 2
(At‘"l)2 aluR T
<= %5 + BRI
Lac(tnx,tnli—l;][l(n))
At™ 2 62u1 2 -
(3.12) + ol 1 ) 512 + | EPTHE.
Lm(tvn:tnl-%l;lll(n))

Let us now obtain an estimate for T;. We split T4 into several terms, |T4| =
|Taa, + Taa, + Tan, + Tap,|, where

T4a1 = Z hl,j1 (/ (DR(x11+l/2az2;tm+13u) - DR($j1+1/2az2atm+1:um+”))

0;ca Sii+1/2

Our " -
X a_zl(zj1+1/2a T, t™ ) day (6, EF; +1)j1+l/2,j2>

+ Z hl:jl (/b (DR(xj1+l/2ax2)tm+l)u) _DR(zj1+1/2sz2stm+1sum+#))

DJ‘CQ +1/2

Our - -
X a—zl(zg‘lﬂ/z, T, t™ ) day (6, EF; +1)j1+1/2,j2+1) )

ji+1/2

Our
Ty, = Y hy, (/ DR($1‘1+1/2’$2J"‘“,u’"“‘)g(%ﬂ/zsxz,t”‘“)d$2
0;ca 55 !

><(51EZ‘+1)11+1/2,12)

T Ti auR m
+ ) hl-jx(/ DR($j1+1/2,$2,t"“,u"“‘)a—h(%wl/z,wz,t ) de,

b
O;cn j1+1/2

1
x(6ER* )j1+1/2,j2+1)

m, m+1 n+1
- (D}lt+ﬂ(1/2)el‘is‘h'u‘Irt1 ’JlEZ+ ) s

"
h?

where we used the notation
um+u(z’ tm+1) — u(z, tm+u).

Analogously, we define Ty,, and T4, which have the natural correspondence to Ty,,
and Ty, with respect to the space variable z,.

Next, we will derive in detail the bounds for Ty,, and Ty;,. Provided the assump-
tion u(t) € H3(2) holds, we can use the Sobolev embedding theorem [1] to conclude
that the norm ||u(t)||y . (q) is bounded and that the embedding H3(Q2) <> C*(Q) is
continuous. If we only assume the regularity u(t) € H%(2), this argument does not
hold in two dimensions. In this case we use L?-embedding theorems for traces [1].
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In the case p =1, Ty,, = 0. In the case u = 0, by (3.1) and (3.5), we get

6’!“2
+1
(T, 4172, T2, ETT)

a.'l,‘l d.'L‘z

Ou
Tha,| KCpAL™ || —
| <ot | 3

> b1, (/
Lac(tm:tm-H;Lac(Q)) DJCQ S;1+1/2

9 |<51E;;+1>,»,+1/2,j2l)

ou

ot

Our

Am
+ CpAt B,

1
E : hl:jl (/b ($j1+1/2,112,tm+ )d"l“2
Lo (¢ tm+1;L°0(Q)) 0,co Sj1-+-1/2

X | ER )1 41/2,5041] ) g
The trace theorems (see, e.g., section 2.1.3 of [26]) provide the bound

( / d)

Ji+1/2
—1/2 auR m
613)  <OWZD2 (Ha—m(t )

Oup
m+1
_(xjx+l/2)x2,t )

6u_R(tm+1)

L2(0j)

H‘(Dj)> .

By the Cauchy—Schwarz inequality, it follows that

[T4a,| < CAt™

: lur@E™ )| g2 |61 ER T (|ns

6t Lao(tm’tmj—l;Loo(Q)
(At™)? || Bul|? '
SO || lur@™ )3 ) + elle R+ 13-
Lw(t"’,t"'+l;L°°(Q))

In order to estimate Ty, , we first consider that u(t) € H?(2) N W(). Using
the inequality (A.3) of Lemma A.2, we deduce that

Dr(zj, 11,25, t™ L, u™ )+ Dg(z;, , xj,, t", ™A
'DR(le+l/2,x2’tm+l’um+p)_ ( Ji+1ls%g2s 3 )2 ( Ji3 g2 3 )I

(3'14) < CIDjI_lﬂ(hlsjl + h2,1'2)”DR(tm+la um+“)||111(|:]j)a

and, since Dp, is Lipschitz continuous with respect to the third component, from (3.1)
we obtain

1 1
Dg(xj,+1,Tj,, t™ T, u™ ) + Dg(zj,, zj,, ™, u™H) _ pmn
2 Rj+(1/2)es

B )il IR
: .

(3.15) <Cp I
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From the inequality (A.4) of Lemma A.2 and (1.2) we get

T, a T T
2 hl’j‘(/a Drit1/2e: 55, dz, (@, 41/2: 22, ™) day (51 ER )al+1/2,jz>

0;ca Sii+1/2

|D | m, m ™
- (DRJi(1/2)e.1 S1ug (25,4172, 25,) (61 B +1)j1+1/2,j2)
O;ca

(3.16) <C > ((hl,j1 +ha,,) |0,

O;ca

a’LLR (t7n+ 1 )

H(O;)

(51E1?+1)j,+1/2,j2>-

Collecting the estimates (3.14), (3.15), and (3.16) and applying the Cauchy—Schwarz
inequality, we get

[Tav: | < Ch||DRE™, w™ )| s g lurE™ ) llwr.oe (@) |81 ER ™ In;

+ Cllurt™ ) llwe o) BRI I61ER " |a;

BuR

+ Ch || (@) 6B [|ns

H(Q)

T1

< C— ”D (tm+l ‘”Hb#)”Hl |uR(tm+1)||W1 22 (Q) + CH(SIE"H_I

() I

+ _||uR(tm+l)||Wl-m(n)||Em+l||h + €| BRI

+ C_”uR(tMH)”m(Q) + €||6: ER;

Let us now assume that u(t) € H3(2). The estimates (3.14) and (3.16) do not
recover the desired order of convergence. Hence we have to exploit the alternating
behavior in the zo-direction using the approach from [15, Lemma 5.2]. With the aid
of inequality (A.5) of Lemma A.2, we get

[Tap, | < C— |DrE™, um+”)”w2 0 (Q) lur@™ )12 @) + €ll61 ER
—||uR(t"‘+1)||W, oo @ IERTHIR + €ll61 B I7; -

The estimates for T35, T, and 77 are obtained in an analogous way.
We write Ty in the form |Ts| = |Ts, + Tp|, with

TSa — Z (“:lll | Z(FZ}{“)P (Em+l Z/ FLR(x tm+l’u) d:E(Em+1 i)

O;ca
and
D T, begs m m
T =3 (l lZ(FNL’h)p (ER™) Z/ Fypg(z, t"",u) de(ER*)p, >
O;ca

According to (2.6),

4
2 ('D 'Zf"‘“ B -2, f(z,t’”‘“‘)dw(E};‘“)p.) ~o.
i=1v "

0;ca
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To estimate Ty, note that
I(R}LAR(tm—{—l)EIT;—{—l _ RhAI (t'm.+l)E;n+l’ E;{n-{—l)h|
1 T
< Z”A(tmﬂ)”%x(n)||Em+l||i + |1 ER IR,

and, using the same type of analysis as for T},

4
’> (DTZ (AR(Poyt™ Yun(Poyt™) 4 Ar(By 7 Yy (P, 7)) (B,
O;ca =1

_Z/ AR(ZC, t7n+l)uR(x’t1n+l)+AI(z,t'm+l)uI(z, tm.+l)d‘z,(EZL+l)P>

;)

.+ |[62Em.+l

< O (1 1) At o +HIBR e (151
From the previous inequalities we conclude that

1 m Ti T
|Toal < ZIAE™ )L (@ IE™ 7 + 21 ER IR

1 m T 2
+ Ch* (1 + ;) [AE™ D ul™ )2y + € (||<51 i+ 102ER 2;).
We write Tgp in the form
Tos = (PRt B ™), — (RaFrn(e™ um), B3),
+ (RhFNLR(t"H'l,um+“),E}?+l)h— Z ( / FNLR(:L' tm+l )d.’l:(E"H'l) >
0,c \i=

Using (3.2), we have
|(FN 2R BR ™), — (RaFnL(E™*, um ), BT, | < C'FIIE"‘*“IIhIIE"”’l I

02 T ™
(3.17) < SFIE™HIE + IIE aar#

In the case p =1,

Tjt1/2
Z/ FNLR(x tm+1 m+u) FNLR(:E tm+l’u)) d.’L‘(Em+l) — 0

Tj—1/2

and, in the case p = 0, by (3.2) and (3.5),

Z ( /FNLR("’ tmFL umte) — Fypp(z, t™ L u) dz(ER ) p, >

0;ca
7 6u 7
< CrAt™ ot ”E1?+1"h
Lx(t"l ’tlll+l;Lx(Q))
C3 2 : L pmt1y2
(3.18) < Ay = + 5 I1ER™ Ik
Loo(trn,tnl-l;Loo(Q))
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From (3.17) and (3.18) and using the same type of analysis as for 7}, we get

02 n mn P, 1 m ™m 2
[Teo < = IE™ |17 + 2| ER 7|7 + Che (1 + Z) [ Fner@™ " w™ )2

2

ou

ot

{ig 7T 02 p
+e (”‘SIERH”iI + ||52ER+1|i;) + TF(Atrn)l

Lm(t!ll,trll+l;L3c(Q))

For Ty we use the same type of analysis as for T.
Considering all the contributions, we apply the discrete version of Gronwall’s
lemma (see, e.g., [14, 32]) to obtain the convergence estimate (3.3) for the 2D case.
Remark 1. If we consider, in the numerical method, (2.6) replaced by
(3'19) m—+1 — f(z,j’t7n+l)’

]

we must assume that the source f has the same regularity restrictions as the linear part
of the reactive term A to obtain the order of convergence established in Theorem 3.1.

4. Numerical results. In this section, we will illustrate the theoretical results
for convergence for the semi-implicit method (that is, m = 1 and g = 0) for both
Dirichlet and Neumann boundary conditions and also considering reactive and non-
reactive source terms. We will discritize the reactive term using (3.19) instead of
(2.6).

4.1. Dirichlet case without reactive term. Let us consider the equation

% — V- (DVU)+f, @1, € (0,m)x (0,m), t € (0,1],

with initial condition given by
u(z, 2, 0) = sin(z;) sin(zs)
and homogeneous Dirichlet boundary conditions. Given two constants a, 8 € C, for

f(z1,z2,t) = ( + 2B) sin(z1) sin(z2)e**

+ (2sin®(z,) sin®(z2) — cos?(z1) sin®(z,) — sin’(z1) cos®(z2)) €**

and D(z1,z9,t,u) = B + u, the exact solution is u(z1,z,t) = sin(z; ) sin(z)e**. For
the following, we will consider a = —2—2i, 8 = 1+ 1. We also note that in this case f
does not depend on u. In the following examples we will consider reactive terms, that
is, source terms f that depend on the solution u.

To illustrate the linear numerical order of convergence in time, we will consider
constant spatial step sizes h; = hy and step in time At. Moreover, we will suc-
cessively halve the spatial step sizes hj,hs and step in time A¢. One gets the ap-
proximations U¥ ., ,.. for u(m/2,7/2,T) = —0.05632 — 0.12306: on the central

point (7/2,7/2) of thezspatia.l domain at the final time 7" = 1, given in Table 1. We
note that
EX .\ vy =u(m/2,m/2,T) - UM\ nper-
2 r2 2 ? 2

Moreover, the order of convergence p can be approximated by

(4.1) p ~ logy(|En|/|En+1l),



Approzimation, error, and numerical estimate on the order of convergence p for the Dirichlet
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TABLE 1

case, obtained by halving the step in time and the spatial step sizes.

hi=hz | At U¥is1 Nyt BN i1 vy BN 41 Nyt P
/2 T | 0.23565-0.10324 | 0.20197+0.019821 0.29264 0.79414
/4 1/2 | 0.11239-0.11884 | 0.16871+0.004221 0.16876 0.76446
/8 1/4 | 0.04300-0.125481 | 0.09932-0.00242i 0.09935 0.83004
7/16 | 1/8 | —0.00056-0.126281 | 0.05576-0.00322i 0.05585 0.89736
7/32 | 1/16 | —0.02642-0.125351 | 0.02990-0.00229i 0.02998 0.94333
7/64 | 1/32 | —0.04078-0.12440i | 0.01553-0.00134i 0.01559 0.97023

7/128 | 1/64 | —0.04839-0.12378i | 0.00793-0.00072i 0.00796 0.98474
7/256 | 1/128 | —0.05232-0.123431 | 0.00400-0.000371 0.00402 -
TABLE 2

Discrete L? norm of the error and numerical estimate on the order of convergence p for the
Dirichlet case, obtained by halving the step in time and the spatial step sizes.

hy = h2 At |[u(.,., T) —UM”,,. p
/2 1 0.45968 0.78001
w/4 1/2 0.26770 0.81094
w/8 1/4 0.15259 0.85691

/16 1/8 0.08425 0.90866
/32 1/16 0.04488 0.94786
/64 1/32 0.02327 0.97208
/128 1/64 0.01186 0.98554
/256 1/128 0.00599 -

where E, and E,+1 are the errors considering At = 1/2", hy = hy = /2",
n = 0,1,.... Similar results are obtained for the numerical convergence using the
discrete L2 norm of the error ||u(.,., T) — UM ||}, as presented in Table 2. As expected,
the numerical orders of convergence tend to 1.

To illustrate the quadratic numerical order of convergence in space, we will again
consider constant spatial step sizes h; = hy and step in time A¢. Moreover, we will
successively halve the spatial step sizes hi, hy, while we will successively divide by
4 the step in time At. The results are shown in Table 3 for pointwise convergence
and in Table 4 for the error measured with the discrete L? norm. As expected, the
numerical order of convergence tends to 2.

4.2. Neumann case with reactive term in L-shaped domain. Let us con-
sider the equation

% =V (DV‘LL) + fa 1,2 € (_"a") X (0’") U (Osﬂ') X (_"so]s te (Os 1]3
with initial condition given by
u(z1, 2, 0) = cos(z;) cos(zs)

and homogeneous Neumann boundary conditions. Again, given two constants «, 8 €
C, for

f(z1,z2,t, 1) = (o + 2) cos(z1 ) cos(zz)e*t + 2u?
— (sin®(z1) cos?(z2) + cos?(z1) sin®(z2)) €2
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TABLE 3

Approzimation, error, and numerical estimate on the order of convergence p for the Dirichlet
case, obtained by halving the spatial step sizes and dividing by 4 the step in time.

hi=hy | At UNi1 Ny BY 1 npn: EY i1 npi: P
2 L) 2 2 L] 2 2 L] 2
/2 1 0.05703-0.168071 0.11335-0.045011 0.12196 1.62845
/4 1/4 —0.02090-0.14042i | 0.03542-0.017361 0.03945 1.89815
/8 1/16 —0.04714-0.12833i | 0.00918-0.005271 0.01058 1.97857
/16 1/64 —0.05402-0.12444i | 0.00230-0.001381 0.00269 1.99486
/32 1/256 —0.05574-0.123411 | 0.00058-0.000351 0.00067 1.99873
/64 1/1024 | —0.05618-0.123151 | 0.00014—0.00009i 0.00017 -
TABLE 4

Discrete L? norm of the error and numerical estimate on the order of convergence p for the
Dirichlet case, obtained by halving the spatial step sizes and dividing by 4 the step in time.

hi = h2 At llu(., ., T) — UM, P
7r/2 1 0.19157 1.65693
/4 1/4 0.06075 1.92837
/8 1/16 0.01596 1.98124
7r/16 1/64 0.00404 1.99522
/32 1/256 0.00101 1.99880
/64 | 1/1024 0.00025 -

and D(z1,z9,t,u) = B + u, the exact solution is u(z;,x2,t) = cos(z;) cos(zz)e™.
Again, we will consider @ = -2 — 27, 8 =1+ 1i.

To illustrate the linear numerical order of convergence in time, we will consider
constant spatial step sizes h; = hy and step in time Af. Moreover, we will halve
the spatial step sizes hy,hs and step in time At¢. The results are shown in Table 5
for pointwise convergence. Similar results are obtained for the numerical convergence
using the discrete norm, as presented in Table 6. The numerical orders of convergence
tend to 1.

To illustrate the quadratic numerical order of convergence in space, we will con-
sider constant spatial step sizes h; = h, and step in time At. Moreover, we will halve
the spatial step sizes h,, ho, while we will divide by 4 the step in time At. The results
are shown in Table 7 for pointwise convergence and in Table 8 for the discrete norm.
The numerical order of convergence is approximately 2, as expected. In Figure 1 we
show the approximation and its errors at 7" = 1, with the last considered set of step
sizes hy = hy = m/64 and step in time At = 1/4096.

4.3. Neumann case with reactive Lipschitz term and nonuniform mesh.

Let us consider the equation

ou
E—V-(DVu)+f,

with initial condition given by

z1,29 € (0,7) x (0,7), t € (0,1],

u(zy,T2,0) = cos?(z;) cos?(z2)
and homogeneous Neumann boundary conditions. Given two constants c, 3 € C for
f (@1, za,t,u) =(a + 48)|u| — 2|u| (cos?(z;) (3sin®(z2) — cos?(z2))
+ cos®(z2) (3sin®(z1) — cos?(z1))) ™

— 2B (sin®(z1) cos?(z2) + cos?(z1) sin®(z2)) €2
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TABLE 5
Approzimation, error, and numerical estimate on the order of convergence p for the Neumann
case with reactive term, obtained by halving the step in time and the spatial step sizes.

hl =h2 At E%'l+1,3;\.'2+1 E%'1+1,3N2-+-1 p
772 174 | —0.15826-0.076031 0.17557 0.78530
/4 1/8 | —0.10155-0.00809% 0.10187 1.07784
7/8 | 1/16 | —0.04826+0.00047i 0.04826 1.05809
7/16 | 1/32 | —0.02316+0.00089i 0.02318 1.03151
7/32 | 1/64 | —0.01133+0.00056i 0.01134 1.01606
7/64 | 1/128 | —0.00560+0.00030i 0.00561 1.00806

7/128 | 1/256 | —0.00278+0.000161 0.00279 1.00403
/256 | 1/512 | —0.00139+0.000081 0.00139 -
TABLE 6

Discrete L? norm of the error and numerical estimate on the order of convergence p for the
Neumann case with reactive term, obtained by halving the step in time and the spatial step sizes.

hi=hs [ At | u(,.T)—-UM], P
/2 1/4 1.24288 1.14767
/4 1/8 0.56098 1.09666
/8 1/16 0.26231 1.05930

/16 1/32 0.12587 1.03198
/32 1/64 0.06156 1.01651
w/64 | 1/128 0.03043 1.00838
/128 | 1/256 0.01513 1.00422
/256 | 1/512 0.00754 -

and D(z1,z2,t,u) = B + |ul, the exact solution is u(z;,2,t) = cos?(z;) cos?(z,)e™t.
Again, we will consider @ = —4 — 41, 8 =1+ 1i.

In order to numerically illustrate the linear convergence order in time, we ran-
domly choose M in the set {20,21,...,100} with uniform distribution. We then de-
fine N; and N, randomly and independently, with normal distribution of mean M
and standard deviation 2. N; and N, are then rounded to the closest integer greater
than or equal to 2. In this way, N; and N, vary (almost) linearly with respect to M.
Then, we randomly and independently define the points

0=ako <@k <Thp < <Tpn, =7, k=12,

by a uniform distribution in [0, 7]. We proceed similarly with time, randomly defining
the instants by a uniform distribution in [0,1]. We then solve the problem with the
defined mesh and calculate the error in the discrete L? norm. The plot of the logarithm
of this error depending on the logarithm of the maximum step in time considered for
300 different meshes is given in Figure 2 (left). The numerical convergence rate is
approximated by the slope of the linear regression line, which is 1.0047. As expected,
it is close to 1.

In order to numerically illustrate the quadratic convergence order in space, we
randomly choose N in the set {15,16,...,60} with uniform distribution. We then
set Ny randomly with a normal distribution with mean N; and standard deviation
2. We set N to the closest integer greater than or equal to 2. In order to show the
quadratic order, we force M to grow by a factor of 4 each time that the minimum
of N; and N, doubles. In this way, we choose M randomly by a normal distribution
with mean Mgﬂf_} and standard variation 2. We then solve the problem with
the defined mesh and calculate the error in the discrete L? norm. The plot of the
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TABLE 7
Approzimation, error, and numerical estimate on the order of convergence p for the Neumann
case with reactive term, obtained by halving the spatial step sizes and dividing by 4 the step in time.

hi = h2 At E‘:}’l’\',—jl 3Np+1 Ef'yN,.:x 3Np+1 p
y E——} 44
/2 1/4 -0.15826-0.07603i 0.17557 1.69909
/4 1/16 -0.05407-0.00037i 0.05407 2.06101
/8 1/64 —0.01286+0.00162i 0.01296 2.02298
/16 1/256 | —0.00315+0.00051i 0.00319 2.00339
/32 1/1024 | -0.00078+-0.00014i 0.00080 1.99916
/64 1/4096 | —0.00020+-0.00003i 0.00020 -
TABLE 8

Discrete L? norm of the error and numerical estimate on the order of convergence p for the
Neumann case with reactive term, obtained by halving the spatial step sizes and dividing by 4 the
step in time.

hy = ho At (., ., T) — UM"h p
/2 1/4 1.24288 2.11550
/4 1/16 0.28681 2.03747
/8 1/64 0.06987 2.00528
/16 1/256 0.01740 1.99892
/32 1/1024 0.00435 1.99850
/64 1/4096 0.00109 -

Solution (Real Part) Error (Real Part) x10°

Approx. (Real Part)

0.05
A\ -
0 ' 0 '
2 2
-0.05
-2 0 2

w 05

0 0 ‘ 15

0.05

(=)

005 25
2 0 2 2 0 2
Solution (Imag. Part) "
. Approx. (Imag. Part) Error (Imag. Part) x10
01
0.1
: s A il Oa!
’ 0.05
0 0 ) ' ) ) ‘ S
-0.05 -0.05
2 -2 -2 .
-0 01 an
2 0 2 2 0 2 2 0 2

F1G. 1. Real (top) and imaginary (bottom) parts of the ezact solution (left), numerical solution
(center), and error (Tight) for the ezample of section 4.2 at T = 1.

logarithm of this error depending on the logarithm of the maximum spatial step sizes
for 300 different meshes is given in Figure 2 (right). The numerical convergence rate is
approximated by the slope of the linear regression line, which is 1.9540. As expected,
it is close to 2. This example shows that the numerical orders of convergence are not
affected by either a Lipschitz reactive term or nonuniform meshes, as already shown
theoretically.

Appendix A. Technical lemmata. The following lemmata are technical tools
needed to derive the convergence estimates. They are a consequence of the Bramble—
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1.5 -2
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F1G. 2. Left: Density plot and linear regression line (with slope 1.0047) of the logarithm of the
discrete L2 norm of the error depending on the logarithm of mazimum of the steps in time At™.
Right: Density plot and linear regression line (with slope 1.9540) of the logarithm of the discrete L?
norm of the error depending on the logarithm of mazimum of the spatial step sizes hy j, .

Hilbert lemma (see, e.g., [8, 12]).

LEMMA A.1 (Bramble-Hilbert). Suppose that Q2 is a bounded open set in R with
Lipschitz continuous boundary. Let A be a bounded linear functional on the Sobolev
space WTP(Q), r > 1, 1 < p < o0, such that A(Q) = 0 for any polynomial Q of degree
less than or equal than r — 1. Then there ezists a positive constant C = C(Q,r,p)
such that

[A@)| < Clolwroe) Vv € W™P(Q).

Let O; = (2;,,2j,41) X (%)5,Tjo11), P = (25,,%),), P2 = (2j,41,%5,), Ps =
(@j.+1,Tjo+1), Po = (), Tj,41), and 812 = {21172} X (j2r Tjp1/2)-
LEMMA A.2. For v € H%(O;), the following estimate holds:

(an)
hy,j, ha,j, /' 2 2 v
— =2 u(P) — [ v(z)dz| < C(hi,, +hy;,) max —r ,
4 z; 0, T By 1901027 )
(A.2)
o
hyj,ha,j, V() —/D‘U(z) dz| < C(hyj, + haj,) max 6:: . i=1,2,3,4,

v(T; 2, Lj,) +v(T; z;
v(a:j1+1/2,a:2)— (]1+1/2’ ]2) 2( J1+1/2 J2+1)

(A.3) < C(h,j, +hz,jz)IDj|_1/2||U||ul(D,), T2 € [T),, Zj,+1],

ov hg ;
/u 6_1:1(le+1/2’$2) dzy — 22‘”"2 019(Z;, +1/2: %)
J1+1/2
ov
8:1:1

By o \ 12
(A.49) < C(hyj, + hay,) ( hz’”)
lsjl

b
H(D;)
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and
Zipt1 hyjihoj
by, / v(xj, +1/2, T2) dTa — % (v(@j, +1/2, T50) + v(Tj, 4172, Tjo 41))
Ljo
(A.5) < C(hy, + o) |01 2 0] 2 (y)-

Proof. Let the function w be defined by
w(§,n) = v(zj, +&hi, T +nh2,),  (§,m) €[0,1] x [0,1].
Then

hijihag o
%ZU(B‘) - []jv(ﬂﬂ) dz = hyj, ha j, A(w)

=1

with

A(_,,):9(0’0)+9(1’0)19(0’1”9(1’1)_/0 /0 o(6,m) dé di,

g € W2((0,1) x (0,1)). This functional is bounded in W2!((0,1) x (0,1)) and
vanishes for polynomials (in £ and 7) of degree 1. By the Bramble-Hilbert lemma the
estimate [A(g)| < C|g|lw=2.1((0,1)x(0,1)) holds and we obtain the bound (A.1). To prove
(A.2) we consider

hl,j1h2,j2 'U(Pl) - /[;] 'U(IIJ) der = hl,jlhz,jQA('ID)
with
1 1
Mo =90.0~ [ [ otemacan

g € WH1((0,1) x (0,1)). This functional is bounded and vanishes for polynomials of
degree zero. By the Bramble-Hilbert lemma we obtain [A(g)| < Clg|w:.:((0,1)x(0,1))-
The proof using the points P>, P3, and Pj follows the same steps.

We obtain the estimates (A.3), (A.4), and (A.5) in a similar way, defining func-
tionals A that vanish for polynomials of degree 0, for (A.3) and (A.4), and polynomials
of degree 1, for (A.5). We transform 0, into the unit square and apply the Bramble-
Hilbert lemma. O
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