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1. Introduction

Complex diffusion is a commonly used denoising procedure in image processing (Gilboa et al., 2004).
In particular, nonlinear complex diffusion proved to be a numerically well-conditioned technique that
has been successfully applied in medical imaging despeckling (Bernardes et al., 2010). The stability
condition for finite difference methods applied to the linear diffusion equation has been investigated
extensively and it is widely documented in the literature (see, e.g., Thomas, 1995; Jovanovi¢ & Siili,
2014). A stability result for the linear complex case was derived in Chan & Shen (1987).

The stability properties of a class of finite difference schemes for the nonlinear complex diffu-
sion equation were studied in Aradjo et al. (2012), where only the explicit and implicit schemes were
investigated and no reaction term was considered. In this paper we achieved a twofold extension of
the previous work, namely (a) by considering nonlinear complex reaction—diffusion equations through
the introduction of a reactive source term and (b) by considering also the semiimplicit finite difference
scheme (in addition to the previously considered explicit and implicit schemes). Applications of interest
include diffusion processes which are commonly used in image processing, as, for example, in noise
removal, inpainting, stereo vision or optical flow (see, e.g., Perona & Malik, 1990; Weickert, 1994,
1997; Grossauer & Scherzer, 2003; Brox et al., 2004; Gilboa et al., 2004; Salinas & Fernandez, 2007;
Zimmer et al., 2008; Bernardes et al., 2010). Complex diffusion with a reactive term appears also in the
well-known Schrodinger equation, though conservative numerical methods are usually used instead of
the finite difference approach (Sanz-Serna & Verwer, 1986; Matsuoa & Furihata, 2001). In the theory
of heat conduction and chemical diffusion processes, if thermal conductivity depends on the unknown
function, the temperature distribution in a bounded medium is governed by a reaction—diffusion process
(Wang & Pao, 2000).
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The complex reaction—diffusion equation considered in the present paper can be written as a system
in the real and complex parts of the dependent complex variable, resulting in a particular strongly
coupled system of reaction—diffusion equations of real variables. Though this doubles the dimensions,
the entries become real instead of complex, and therefore the computational complexity of the method
is not changed.

The stability and convergence of finite difference methods for systems of nonlinear reaction—
diffusion equations with real variables were studied in Hoff (1978). For the complex case, we men-
tion Wang et al. (2010) where the authors consider the analysis of conservative schemes for a coupled
nonlinear Schrodinger system. To the best of our knowledge there is no rigorous proof for the stability
of finite difference schemes for the general equation that we are considering in this paper. This paper
fills this gap in the theory of finite difference schemes and it is complemented by the work of Araiijo
et al. (2013) which establishes a convergence result for both implicit and semiimplicit finite different
schemes in the context of complex diffusion with reactive terms.

Let £2 be a bounded open set in R4, d > 1, with boundary I" = d52. For the sake of clearness, we
consider that £2 is the Cartesian product of open intervals in R, that is

d
2 = H(aj, bj), (1-1)
j=1

witha;,bje R.Let Q=2 x (0,T], with T > 0,and v: Q = £2 x [0, T] —> C. We consider a reaction—
diffusion process with a nonconstant complex coefficient D(x,?,v) = Dgr(x,t,v) 4+ iDi(x,¢,v) and
nonconstant complex reaction term F(x,t,v) = Fr(x,t,v) + iFi(x,t,v), where Dgr(x,t,v), Di(x,t,v),
Fr(x,t,v), F1(x,t,v) are real functions dependent on v. We assume that

Dr(x,t,v) 20, (x1)€Q, (1.2)
and that there exists a constant L > 0 such that

D, t,v)| <L, (1) €Q. (1.3)

The inequalities (1.2) and (1.3) can easily be shown to hold for the diffusion coefficient in Gilboa et al.
(2004) and Bernardes et al. (2010).
We define the initial boundary value problem for the unknown complex function u:

3—1:(16, H=V-Dxt,uVux1))+ F(x,tu), x1)e0, (1.4)

under the initial condition
u(x,0) =u’(x), xe2, (1.5)

and with either the Dirichlet boundary condition
ux,t)=0, xerl', te[0,T], (1.6)

or the Neumann boundary condition

9
a—u(x,t)=0, xeTl, te[0,T], (1.7)
v
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where du/dv denotes the derivative in the direction of the exterior normal to I".
For the reaction term we will consider the following decomposition:

F(x,t,v) = Fo(x, 1) + FL(x,t)v + FxL(x, 2, V), (1.8)

with FO(x’ t) = FOR(x’ t) + iFOI(x’ t)’ FL(X, t) = FLR(x’ t) + iFLI(xy t) and FNL(X, 5 V) = FNLR(xy z, V) +
i-F'NLI (x, 5 V), where FOR(xa t)a FOI(xi t)’ FLR(X, t)’ FLI (x’ t)a FN[R(.X', z, V) and FNU (x, z, V) are real func-
tions. For the nonlinear term, we consider that there exists a complex function x such that

Fno(x, t,v) = Fro(x,1,0) + J(x, 2, v)v, (1.9)
with
J(x,t,v) = Fy (x,1,v) + x(v), (1.10)

and |x(r)] — 0 as |[r| —> 0, where Fy; is the Fréchet derivative of Fx. with respect to the third
component.

We assume that the problem is well posed, in the sense that it admits a unique solution and it depends
continuously on the data. We note that expression (1.4) involves both Schrédinger-type equations and
parabolic equations and includes the possibility of having a source term, a linear reaction term, a non-
linear reaction term or none of them (see (1.8)).

The paper is organized as follows: in Section 2 we describe the implicit and semiimplicit numerical
methods simultaneously by embedding them into a two-parameter family of finite difference schemes.
In Section 3 we derive a stability result for the numerical methods considered in the previous section.
In Section 4 some numerical experiments are shown to confirm the theoretical analysis. In Section 5 we
gather some final conclusions. Several technical results needed throughout the paper are presented in
the Appendix.

2. Numerical method

Let us construct a nonequidistant rectangular grid on Q. Let (f,)o<j,<n,~1 be a vector of mesh sizes
(i.e., positive numbers) in the kth spatial coordinate direction, k =1, ..., d, with N; > 2 an integer. We
denote by 4 the maximal mesh size. We define the space grid by

d
=[] 2. 2.1)
k=1
where, fork=1,...,d,
-Qhk = {xk,,-k € R:xk,o = Ak Xkji+1 = Xkj, + thk, Je=1,...,Ny — 1}.
The set of grid points is denoted by x;, where j = (ji,. .., ja), 0 <j1 < Ni. Points halfway between two
adjacent grid points are denoted by Xjt+(1/2)ex = Xj + %hk‘jkek and Xj—(1/2)ex =Xj — %hk,ik—leks where e

denotes the kth element of the natural basis in R¢. We will also use the notation Ay de—172 = (hrj—1 +
hij)/2,jx =1,...,Nr — 1. For the temporal interval we consider the mesh

0=C<t'<.c.<M1T<cM=T,
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where M > 1 is an integer and Af™ =l om=0,...,M — 1. Let At = max Af™. We denote by
Q4! the mesh in Q defined by the Cartesian product of the space grid £2, and a grid in the temporal
domain. Let Q7' =0~ NQand I =0 N T x [0,T]. .

We associate the coordinate (j,m) = (ji,...,js,m) to the point (x;, ") € Q,f“ and (j + %ek,m) and
G- %ek, m) to the midpoints (Xj4(1/2)e., ™) and (Xj—(1/2)e;,t™), Tespectively. We consider the notation
V=V, "), Viae =V &ir/2e, ™) and VT ), = V(Xj—(1/2)e,, ™). For the formulation of the
finite difference approximations, we use the centred finite difference quotients in the kth spatial direction
Vi = Vil

- k=1,...,d.

Vitame = Vitap
m__ J 13 J— €k m —
V"= s Viiae =

hij—172 P j—1

On Q7" we approximate (1.4-1.5) by the one-parameter family of finite difference schemes

m+l _ rrm d
U -y,

= D SO U) + Y in O, 22)
k=1
with
U =u’(x;) in 2, 2.3)
and either
Ur=0 inn; (2.4)

in the case of homogeneous Dirichlet boundary conditions (1.6), or

d
D _OUf% (1 2ye, +8eUT e )0 =0 in I} 2.5
k=1

in the case of homogeneous Neumann boundary conditions (1.7), where U;" represents the approxima-
tion of u(x;, #™). In (2.2) we consider, for u € {0, 1} and 6 € [0, 1],

D = D(xj, 1"+, U"*%) = D" + iDj™*,

D(Xj, tm+6’ Ujm+u9) + D(xj+ek’ gm0 U(n+lt0)

m, 1,0 _ s Yjte
Diid e, = > .
and
FJ™ = Fo(, ™) + FLGg;, 1)U + P G 07, UP),
where

U = uUp*! + (1 - uo)Up. (2.6)

We use the notation Q7 for the set Q' or Q7' in the case of Dirichlet or Neumann boundary
conditions, respectively, and v, represents the kth component of the normal vector v.

Note that, when p =1, the cases § =0, 6 = % and 6 =1 correspond, respectively, to the explicit
Euler, Crank—Nicolson and implicit Euler schemes. When p = 0, we have the semiimplicit case (semi-
implicit Euler method when 6 = 1), that is, the diffusion coefficient and the nonlinear part of the reaction
term are treated explicitly.
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In this paper we will consider two cases: the case when = 1, which corresponds to the usual 6
method, and the case where © =0 and 6 = 1, that is the semiimplicit Euler scheme. For all cases we
suppose that

FLR(xj’ tm+1) < FrRrmax (2.7)

and
JR(xja tm+1, [ij+0) < JRmax (2.8)

for all (xj,t™*!) € Qf‘, where Jg(x,,v) is the real part of J(x,?,v) given by (1.10). For x =1 and
6 €0, i—,) or . =0and 6 =1 we also consider

T, 0, U0) < Trmax 2.9

for all (x;, "t e Q,f“, where Ji(x, ¢, v) is the imaginary part of J (x, ¢, v) given by (1.10). In addition, for
u=1and@ € [0, %) we also need to assume that

Fr(xj, ") < Frima (2.10)
for all (x;,#*+') € 0. We need the notation
|FLmax|2 = Flzkmax + F12‘lmax’ |Jmax|2 = JI%max + lemax (211)

In what follows, || - ||, denotes the discrete L? norm, which will be specified in the next section.

3. Stability

In this section we derive the continuous dependence of the numerical solution on the initial data and on
the right-hand side.

3.1 Implicit and explicit case

Let us first consider the case where p = 1. In this case we have the usual §-method.

THEOREM 3.1 Let us consider i = 1 in the n~umerical method (2.2-2.3) with (2.4) or (2.5) and suppose
that (2.7) and (2.8) hold for all (x;, "*') e Q7. If 6 € [%, 1] the method is stable if, for some ¢ € Rt
independent of discretization parameters,

0<¢<1-40°AK., (3.1)
with
Ke = Frrmax + Jrmax + €%, (3.2)

where € &0 is a constant arbitrarily chosen. If 6 € [0, %) then the method is stable under the condition
(3.1), for some ¢ € R independent of discretization parameters, with

Ko = Frrmax + Jrmax + € + A" (L —0) (1 + € D)1+ €2)
X (1 + €)|Fpmael® + A + €2 Tnax ), (3.3)
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where € &0 is a constant arbitrarily chosen and

]
D72

m
: 2 & g
(minfy j,)* xe2 Df;"

1— A (% - e) 1 +€?) >0, (3.4)

provided that (2.9) and (2.10) hold, for all (x;, /**!) € Q,f", |D}"’1’9| is bounded and there exists some
constant &, independent of discretization parameters, such that

0<&<DR" Vjm. (3.5)

Proof. To prove this result we will consider the unidimensional case and Neumann boundary condi-
tions. For higher dimension or Dirichlet boundary conditions, the proof follows the same steps.

We rewrite (2.2-2.3) and (2.5) as a system by separating the real and imaginary parts, Ur and U,
respectively, of the main variable U = (Uy, . .., Uy). We shall then study the stability of the family of
finite difference schemes: find UJ?" ~ux;,t"),j=0,...,N,m=0,...,M, such that

( rrm+1 m
Ri VR m m m
J e v _ x(%+gaxURj+e) _ ax(DZH-eaxUlj-}-e) + FRj+9’
j=0,...,N, m=0,...,.M —1,
S Um+1 ym (3‘6)
I Yy m m m m m
W — 31(D1j+08):URj+0) + 8X(DRJ'+08XUIJ' +0) + Fl] +0’
| j=0,...,N, m=0,...,M -1,
with initial condition
UY=ud(x), Ul=ul(x), j=0,...,N, 3.7)

and homogeneous Neumann boundary conditions
Ug 1=Ug, Ugy1=Upyi» Ut =Up, Upn 1 =Up,,, m=0,....M, (3.8)

where, for simplicity, we write D;'l’l’e — D}’”’e =Dj;‘j+9 + iDZ‘*e and F}"w = F;"’l’e =F 1’5}“’ +i }’j’+9,
j=0,...,N,m=0,...,M — 1. We also use the notation D" =D;’_‘;}’19/2)el =Dt +iD} . In (3.6)
and (3.8) we need the extra points x_; =xo — hy and xy; =Xy + hy_; and we define D™}? =DJ't¢,
Dm+6 — D"H—G
N =D
We consider the discrete L? inner products

N-1

h; _ _
W V=D 5 W%+ Ujs1Vjs1) (3.9)
j=0
and
N-1 ~
U, V)p = z hiUjs12Vjs172, (3.10)
j=0

and their corresponding norms

U= U,0),* and |Ully = U, U)> (3.11)
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Multiplying both members of the first and second equations of (3.6) by Up*® and U'?,
respectively, according to the discrete inner product (-, -), and using summation by parts we obtain

Um+1 UR ) ( Um+1 um
Um+9 + I Um+0 + II(DKTG)I/ZaxUm+9 "i'
< At™ N A" N

— FKH-B, UKH-G);, + (Flm+6’ UIm+6)h-

Since we can write

1 Um+1 —_ym Um+1 +ym
m+6 __ _
U™t = A (9 2) S+ ;> (3.12)
we get
1 Um+1 —_ym 2 ”Um+1”2 _ ”Um”2
At (6 — - h b (Dm0 25, 0™ )12,
( 2> arm ||, 2AL™ + 1Dk I
— (Fm+0 m+0) + (Fm+0 m+9) he
If 0 € [}, 1] we immediately obtain
l Um+1”'2‘ - ”Um”% +6y1/2 m+6 (12 m+6 yrm+6 m+6 yrm+6

+ "(Dz‘ ) 5xU ”h' S(FR ,UR )h+(F1 sUI )h~ (3-13)

2A¢m

Let us now look at the right-hand side of (3.13). Considering the decomposition (1.8-1.9) we can
write

ER U+ F, UP 0= Fr (2™, 0), UR 0+ (B 24, 0), U )
+ (Fue(', fn+6)U§n+6 m+6)h + (FLR( t'"+9) UIm+9 Um+6)
+ (JR('. tm+9, Um+9)U£'+9 m+0)
+ (JR(', tm+9, U'"+9)UI'"+9, U1m+0)h~
Since
TR, 2™, U™ UR*e, UR o < Trmax IUR 117,

and, with the necessary modifications, we obtain a correspondent inequality for
(R, L, Um Ut ymto), | then using the Cauchy-Schwarz inequality, we have

(FR2 Um0y, + (FP, Urt?), < IFRG, ™2, OV U 1 + IF G, 2™, 0) [ 1 T2 |1,
+ Frrmax | U™ 112 + Jremax U™ |2,

which leads to

1
FR UR O+ FH, U0 < 5 IF G ™, 00l + €101 + (Frimas + Trma) 101,
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where € £ 0. Then, from (3.13),

1™ *5 = U™

T a1/ SR A 72

1
< 4alFe " 012 + 2I1U™ 1|2 + (Frrmax + Jrma) 1U™ |12, (3.14)

and so

U5 = 1U™ 113
2Am

1
< 32 PG00 + U™ I + Frmax + Jrma) 1U™ 15 (3.15)
Using the definition of U™ we get
2 m112 2 my2 , A" +0 (12
(1 —40°A"K) U™ |l < A +4(1 — )" A"K) | U™ I}, + EIIF(',I"‘ ;O 55

form=0,...,M — 1, with K, given by (3.2). If (3.1) holds we get

1+4(1 —6)*A"K,
1 — 462 A K,

Iz < o™ + IF G, ™, 0)11;

2¢2(1 — 402 AK,)
- ” A"
<1 +40*+ 1 —-0)H¢ ' AK) | U™ + 26_2;“”" "+0,0)2.

Summing over m and using the discrete Duhamel principle (Chan & Shen, 1987, Lemma 4.1 in
Appendix B) we get

2€2¢

m=0

k—1
2 v 1
|UF|2 < O™ +U-0% Kt (n UClh+ 55 ||F(-,:'"+",0)||§Az'"> :

which proves the stability.
We now consider the case where 0 € [0, %). In this case we have

IU™*5 = 1U™ 11

o T IR 2 U,

1
< 1o IFGE 01+ EIU™ I + Framax + Trma) 1U™1

1 Um+1 —_ym 2
+ A" (— — 9) ' —| . (3.16)
2 Arm A
Since
2 2
gt —um | ogt - ug || Ut - (3.17)
Ao || A A |7 '
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and, following Aratjo et al. (2012), we deduce that

where 7n; & 0. Using (1.8-1.9) we get

I m+9|2

Um+1 —_ym 2 ”

Arm

<A+ max
h ( 771)( min k)2 ye2, Dy

+ A+ DAFR 2+ f"*"ni),

I +9|2

Um+1 —_ym 2
———| < max Df.
Atm h ( + ’71) ( min A; )2 x,eQ;, Dm+0 ”(

+ A+ 07D + 53 )FCG, 7,02
+ (1 +07)A+ 1A + 13 Frrmax + Frma) U7
+ (4 070+ 1) 4 05D + T2 1U™112,

where 7, 73 % 0. Using the definition of U™*¢ and setting n; = 1, =13 = € we get

it il PPN L
Atm W (mink;)? e, Dm
+ (L + € D?|F(,m,0)|7

+20%(1 + € (1 + €)((1 + €)|Frmaxl* + A + € ) Tmax )N U™ 12

+2(1 = 0)* (1 + €)1 + €2 ((1 + €2)|Frmax|* + (1 + € ) [Jmax DI T™ 12

Then, considering the previous inequality in (3.16) and if (3.4) holds, we get
(1 — 40> A"K) | U™ I < (1 +4(1 — 6)*AF"K) | U™

1 1 ~
+2A1" (4? + A" (— - e) (1+e2)? ) IF (™1, 0)]12,

form=0,...,M — 1, with K, given by (3.3). If (3.1) holds, summing over m and using the discrete
Duhamel principle we get

2 2y 41
”Uk”i < e4(9 +(1-0)2) 'K t*

k-1
(n U°l; +2 ( 412 +T (% - e) a+ e'z)z) > ||F(-,t'"+",0)n,%At'") ,

m=0

which concludes the proof. d
REMARK 3.2 If F(x,,0) =0, we may prove that, for 6 € [}, 1], if

0<¢<1-402Ar"K,
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for some ¢ € R, with
K= FLRmax + JRmaxa

we get
U™ 2 < (1 + 402 + (A — )¢ AR U™ 2.

Summing over m and using the discrete Duhamel principle we obtain
”Uk ”}2, g e4(92+(1—9)2)§’711(tk " UO”%-
If, in addition, F;gmax and Jrmax are nonpositive, the method is unconditionally stable.

RemARK 3.3 For 6 € [0, %), the following particular cases are easily deduced from the previous
theorem.

1. If F(x,t,0) =0, the stability conditions are (3.1) and (3.4) with
Ke = Frrmax + Jrmax + A" (5 —0) (1 + € (A + €*)|Frmax > + (1 4 € %) max ).
2. If F1.(x,t) =0, the stability conditions are (3.1) and (3.4) with
Ke =Jrmax + €2+ A" (5 = 0) (1 + € (1 + €)[Tmax >
3. If J(x,t, U) = 0, the stability conditions are (3.1) and (3.4) with
Ko =Fppau + €2+ A" (L= 0) (1 + €)1 + )| Fprmal*.

COROLLARY 3.4 If Dirichlet boundary conditions and (3.5) hold, then for 8 € [%, 1] the stability condi-
tion is (3.1) with K¢ = Fgrmax + Jrmax (does not depend on €). In addition, if both Figmax and Jrmax are
nonpositive, the method is unconditionally stable. For 6 € [0, %) the stability conditions are (3.1) and
(3.4) with

Ke = Frrmax + Jrmax + A" (3 —0) (1 + €21+ €)(A + €)[Frmax|* + (1 + € ) Tmaxl).

Proof. According to the discrete Poincaré-Friedrichs inequality (Lemma A.1), there exists a constant
C(82), depending on £2, such that

CE2)IU™2 < 18:U™ 3.
So, for 6 € [3, 1], inequalities (3.5) and (3.14) imply

o™+ — o™
2A™

+EC() U™
1 m
< 7 lFG " 017+ 1U™ 2 4 (Frrmax + Jrma) [U™ |12 (3.18)
Considering €2 = 1 C(£2), then §C(£2) — €2 > 0 and we obtain

(1 — 42A7K)| U™ 2 < (1 + 4(1 — 02APK) | U™ + sé‘% IFC, 20,02,
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form=0,...,M — 1, with
K = Frmax + Jrmax-

Then, the stability condition is (3.1) with K, =K.
With the same arguments, for 6 € [0, %) and Dirichlet boundary conditions, we may prove that, if
(3.5) holds, the stability conditions are (3.1) and (3.4) with

K = Frrmax + Jrmax + A" (5 — 0) (1 + € (1 + €)((1 + €)|Frmaxl* + 1+ € Hax». O

CoRrOLLARY 3.5 If F(x,t,v) = Fy(x, t) and (3.5) hold then, for 6 € [%, 1], the method is unconditionally
stable and for 6 € [0, %) the stability condition is (3.4).

Proof. 1f we consider Dirichlet boundary conditions, the result is included in the previous corollary. Let
us consider Neumann boundary conditions. According to the discrete Poincaré inequality (Lemma A.2),
there exists a constant C(S2), depending on $2, such that

CE)NU™ = U™ < 18U},
where
l_] v Uma ’
|-Q|( Dy
and 1 is a vector with all entries equal to 1. Then

— U I = CENT™I; < 18U I3

So, for 6 € [1, 1], inequalities (3.5) and (3.14) imply

1T g = U™ C(.Q) i i i
o E UM< 42||Fo( )24 U+ C@) 1T 2.

Considering €2 4’§C(.Q), then& C(2) — €% > 0 and we obtain

A

o™z < | u™)2 +
B " Ec@)

FoC, 292 + C(2) | T™ 2.

By Lemma A.3 we conclude that

2
- - A" C(82)
[|U +1“h |U ||h+m”F0(, +9)||;21 |9|1/2 (||U0||h+EOAtk||FO( tk+9)”h) .

Then, the method is unconditionally stable. d

3.2 Semiimplicit case

Let us now consider the case where © =0 and 6 = 1, that is the semiimplicit Euler method.
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THEOREM 3.6 Let us consider 4 =0, 6 =1 in the numerical method (2.2-2.3) with (2.4) or (2.5) and
suppose that (2.7-2.9) hold for all (x;, #"*!) € Q#. The numerical method is stable if, for some ¢ € R*
independent of discretization parameters,

0<¢<1-2A7K,, (3.19)
with
Ke = FrRrmax + %l-’maxl2 + 52, (3.20)

where € £ 0 is a constant arbitrarily chosen.

Proof. As for the previous theorem, to prove this result we will consider the unidimensional case
and Neumann boundary conditions. For higher dimensions or Dirichlet boundary conditions, the proof
follows the same steps. We shall study the stability of the semiimplicit finite difference scheme: find
U~ u(x;,t"),j=0,...,N,m=0,...,M, such that

m+1
U o UR] m,0,1 m+1 m,0,1 m+1 m01
A——S(DRJ 5URJ )—8(D SUIJ )+ Fgri,
m
j=0,...,Nym=0,....M — 1,
gt gm (3.21)
Ij yve Ij — ):(DZ"OJaxU;gnj-i.l)+3x(DZ;0’13xU[?+1)+FZ‘1,0’1,
| j=0,...,N,m=0,...,M — 1,

with initial condition (3.7) and homogeneous Neumann boundary conditions (3.8), where, for simplicity,
we write D’" .. _D;’-:-(11/2)e| _D,';'Jff)’l - iDZ".O’l. In (3.21) we need the extra points x_; =xo — hy and
XNi1 =Xy + hy_; and we define D’f’f)zl = Dg?.’o’l, Dﬁ’.o’l = DX’,{)’II. .
We consider the discrete L? inner products defined by (3.9-3.10) and their corresponding norms.
Multiplying both members of the first and second equations of (3.21) by, respectively, Up*! and
Um*!, according to the discrete inner product (-,-)s, and using summation by parts we obtain, as
for (3.13),

|U™H2 — |[u™||2
2A1™

+ 1(DEIHY25, U™ 12, < (FROT, Uty + FPOL, U, (3.22)

Let us now look to the right-hand side of (3.22). Considering (1.8-1.9) we obtain

EFEROLUR Y+ EEOL UM Y= FrC 00, URDn + FELC, 0, 0), U,
+ (FC, " HYURH  UR Y + Fre G, YU o,
+ (RG, L UMUR, UR Y, + GRC, ™, U™ U, U,
— GG UmUP, URt e+ GG e, um U, U,

So, using the Cauchy—Schwarz inequality, we have

URG, ", U™ UR, UR ™Y < T IUR N UR s
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and so
URG, ™, UMUR, URt Y, < L (e IURTH2 + 1 URIZ)

and, with the necessary modifications, we obtain a corresponding inequality for (Jr(:,#"*!, U™)
U", U, We also have, considering the Cauchy—Schwarz inequality,

—WG, L, UmUR, UR Y+ GG, UM UR, UYL < S (T lU™ IR + 1U™12) -
Then, for the right-hand side of (3.22), we have

EROL UR D+ ELUP O < IFRG ™ O IANTR l + IE G ™ O AT [
+ Frmaxc[U™ 15 + 5 (VRmax + i) 10715 + 1017,

which leads to

m, m m. m 1 m
FERLUR D+ FPOL U O < S IF G e L 0) 1 + €10
1
+ (Fuemax + §|Jmax|2> o™ 05 + 1U™ 15,

where € & 0. Then, from (3.22),

U™ *5 = 1U™ 11
2Atm

1
+ (D25 g2, < 2 1FCs 1,02 + 2| Umt?
1
+ (FLRM + §|Jmax|2) U™+ [U™7, (3.23)
and so

o™z — o™z 1 -
b h g 4?nF(-,z"'*“‘,O)n,%+e2||U 2

2A™
1
- (Fm,m - 5|Jmax|2) lo™2 + |u™|2. (3.24)
Using the definition of U™ we get
m+12 my 2 Atm +1 2
(1= 24K U™ < (L4 240 U1+ 5 IF G 2, O)lIE, (3.25)

form=0,...,M — 1, with K, given by (3.20). If (3.19) holds, summing over m and using the discrete
Duhamel principle we get

k—1
: 1
IUF|2 < Xtk (||U°||,€+ = > :IIF(-,t’”H,O)II,Z,At'"),
m=0

which concludes the proof. (|
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REMARK 3.7 If F(x,t,0) =0, we may prove that if

0<¢<1—2A1"K, (3.26)

for some ¢ € R, with

K = Frrmax + 5 Vmax |, (3.27)

we get
[U™2 < (A + 240 + K)¢ Y| U2,
form=0,...,M — 1, and so
1U*|2 < L0087 | o) 2,

If, in addition, K < 0, then the method is unconditionally stable.
REMARK 3.8 If we consider the Dirichlet boundary conditions and (3.5) holds, the stability condition is

(3.26) with K given by (3.27). In addition, if Fny. = 0 and Fygmax is nonpositive, the method is uncondi-
tionally stable. We may conclude this result with the same arguments as in Corollary 3.4.

At=0.1 At=0.2 At=0.25
6 : 5 o
O  Theoretical 40
q e N ical
5 umerica 15
4 o] o} 30
© 10
3f o
s Oo o) 20
e 0
2 % 5 o é o ®
1 % °, 00! 10 o
¢ Oo 0% e o) Ce
“\__’ ......°'299°. 4»...009099°
0 0 0
0 1 2 3 0 1 2 3 0 1 2 3
At=0.3 - _
120 X 105 At=0.375 X 104 At=0.5
12
100 2
10
&0 15 8
60
1 6
40
o 4
20 5 e 05 o
[ ]
OlLOO.'...Q 0 e -o o o o o 06— o o o o
0 1 2 3 0 1 2 3 0 1 2 3

FiG. 1. Case 1: evolution in time of numerical norm || U"’Ilf‘ and the theoretical upper bound (3.25) for several time steps Atz. No
plot on the theoretical upper bound means there exists no £ that satisfies (3.19).
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REMARK 3.9 If F(x,t,v) = Fy(x, 1), the method is unconditionally stable. We may conclude this result
with the same arguments as in Corollary 3.5.

4. Numerical examples

In this section we will illustrate the stability results using appropriate numerical examples. We start
by noticing that the stability condition for the explicit method has already been illustrated in Aratjo
et al. (2012), though without a reactive term. Since the numerical results are very similar, we will
leave the explicit scheme out of this illustration, referring the reader to Araidjo et al. (2012) for
details. We will also leave out of this section the illustration of the stability of the implicit scheme,
since we expect that the choice of linearization method may further influence the results. In this way,
we will focus the numerical illustrations on the stability of the semiimplicit scheme with Neumann
boundary condition, since the stability condition (though similar to the Dirichlet case) is slightly more
complex.

ug T At=0.1 u';" t A t=0.1 ug‘ CAt=0.2 u:" P At=0.2

UQ - A t=0.375 Ul": At=0.375 U™ At=05 U:" :At=05
50T L J-‘ R ot

N ; 20:.-- e 40: Lo Tl B0 : S e
-100:---~ < v i ‘

2 2

0o

FIG. 2. Case 1: real and imaginary parts of the approximation U™ for the final time T = 3 for several time steps At.
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Let us consider equation (1.4) with

(x1,x) € (0,7) x 0, 7), te(0,T],

with initial and Neumann boundary conditions given, respectively, by
u(xi, xz,0) = cos(x;) cos(xz)
and ou ou ou ou
a—v(O,xz, = a—v(n,xz, 1= a—v(xl,O, 1= a—v(xl,n,t) =0.
Given a constant A € C, for
F(x1,x,1,v) = (A + 2i)v + 2v* — (sin®(x;) cos? (x,) + cos?(x;) sin®(x,)) e

and
D(x1,x2,t,v) =i+,

the exact solution is given by
u(x1,x2,1) = cos(x;) cos(xp) €.

A 1=0.05 At=0.1
100 - Uo =
O Theoretical o 40
80 e Numerical o
o
60 o 30
@]
(o]
20
40 o) O] ©
o o
20 OOOO 10 O e 0o 0o o
OOO e o ©
0" QQQQQQQQQ%S.ooooooooooooooooou 0" eo o000
0 0.5 1 1.5 0 0.5 1 1.5
A1=0.25 At=0.5
30
40
25
30 20
15
20 °
10 °
10
° ¢ 5 o
' . ® b
0 0
0 0.5 1 1.5 0 0.5 1 1.5

Fi1G. 3. Case 2: evolution in time of numerical norm || U’ "’II% and the theoretical upper bound (3.25) for several time steps Atz. No
plot on the theoretical upper bound means there exists no £ that satisfies (3.19).
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We also note that with this choice of reactive term F we have

Fo(x1,%2,1) = —(sin®(x;) cos®(x2) + cos®(x;) sin®(xp)) e
FL(x,t) =A+2i,
Fno(x,t,v) =20%  (and Fyp(x,,0) =0),
J(x,t,v) =207

We will now consider two different possibilities for the value of the constant A that will induce
different behaviours on the solution and therefore on the stability condition.

4.1 Casel:Fir<0

ForA = —1 + i, we have that F;p = —1 < 0. We will now consider the upper bound (3.25) (taking € = 1)
and compare it with the actual norm || U™ ||f,. We also note that if the time step At is such that there exists
no & > 0 so that (3.19) is satisfied, then no theoretical upper bound is known and the numerical solution
might become unbounded in time (even in cases where the solution is bounded).

u;‘:At-o.os U{":At-o.os ug‘:At-m u{":At.o.1
0 L0l &
; Ll “

u"' At=0.25 1 At=0.25

FIG. 4. Case 2: real and imaginary parts of the approximation U™ for final time T = 1.5 for several time steps At.
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The numerical results are shown in Figs 1 and 2. It can be seen that for smaller steps in time, the ratio
stays bounded by the theoretical upper bound. For higher time steps (namely for time steps that do not
satisfy the stability condition), there is no theoretical upper bound and the norm of the approximation
increases rapidly.

42 Case2:Fgr>0

For A=0.1+1, we have F;p=0.1>0. In this way, the condition (3.19) is harder to satisfy,
since now Frma 1S positive. Again we compare the theoretical upper bound (3.25) and the actual
norm | U™|2.

The numerical results are shown in Figs 3 and 4. It can be seen that though in some cases the
theoretical bound increases, the numerical results might stay bounded. Similarly to the previous case,
for higher steps in time, the approximation’s norm increases rapidly.

To better illustrate this phenomenon we also considered nonuniform meshes. To this end, we con-
sidered 50 points in each spatial direction randomly distributed (by a uniform distribution) to define
the spatial mesh. Moreover we considered 30 steps in time, corresponding to instants randomly cho-
sen in the interval [0,1]. The evolution in time of numerical norm || U '"||§ and the theoretical upper
bound (3.25) is given in Fig. 5 for four different cases. Again, similar behaviour is observed.

O Theoretical o0t
®  Numerical
15
15}
10 o © - oo
o)
o ° ° © ©
5 o %o
0o O o ® & 5 05 @ & o
OO O Q) o) O
0%% 06 965 o So0ce wodo an . @S s 0 00se omb Be
0 ) ) ) ) 0 ) ) ) )
0 02 04 06 08 1 0 02 04 06 0.8 1
12
40 o
10 o o
3071 8
o
20 6
4 o o
o o %o S o© o
10 ® on ™o
6 ©o0 % ° @ 2/ Gebe oo ®
0 e@ie oF ¢ 60 o 90 Socesne 0
0 02 04 06 08 1 0 02 04 06 0.8 1

F1G. 5. Case 2: evolution in time of numerical norm || U™ ||ﬁ and the theoretical upper bound (3.25) for nonuniform time steps At.

No plot on the theoretical upper bound means there exists no & that satisfies (3.19).
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5. Conclusions

In this paper we have established the stability conditions for finite difference schemes in the context
of complex diffusion with reactive terms. We have extended a previous stability result (Aradjo et al.,
2012) to the semiimplicit scheme and to the presence of reactive terms in complex diffusion. In this way
we have shown that both the implicit and semiimplicit schemes are stable under some conditions on the
time step. We note that at a fixed time, there is always a small enough time step for which the method
is stable, since the stability condition is an upper bound for the time step. As usual, for the explicit
scheme, a stability condition that relates the magnitude of the time step and the spatial step size needs
to be satisfied. Finally we have illustrated the theoretical results with numerical examples.
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Appendix A. Technical results

LemMA A.1 (Discrete Poincaré-Friedrichs inequality) Let U be a discrete function defined on 2, given
by (2.1) such that U =0 on I" N §2, with I" the boundary of §2 given by (1.1). There exists a positive
constant C(S2) independent of U and 4 such that

C)IU2 <L 18U

Proof. Since ||U||? = ||Ug||? + ||Uy||? and ||8,U||2. = |18, Ux % + |18, Uq|%. the proof follows from the
equivalent result for the real case (see, e.g., Jovanovi¢ & Siili, 2014). O

LEMMA A.2 (Discrete Poincaré inequality) Let U be a discrete function defined on £2; given by (2.1),
with I" the boundary of £2 given by (1.1). There exists a positive constant C(£2) independent of U and
h such that

C)|U - U} < 18:U Iz,
where

- 1
=Tl ’1 ’
Y |9|(U h

and 1 is a vector with all entries equal to 1.
Proof. Let us consider U = Ug + iU;. We start by proving that
C()|Ur — Urll; < 18:Urllj-

To prove the result we will just consider the unidimensional case. The proof is similar for higher dimen-

sions. Since

_ 1
Ur = —— (U, Dp,
|£2]



STABILITY OF FINITE DIFFERENCE SCHEMES FOR COMPLEX REACTION-DIFFUSION 21 of 21

there exists some index j,, such that
|Ug; — Ur| < |Ugj — Ugjp s §=0,...,N.

Then, using the Cauchy—Schwarz inequality,

2

max {j:im'.\x} N
(Ug — Ur)* < > hdUpeap | <120 he(8Upe-1)? j=0,...,N.
£=min {j,jmax} =1
Summing over j we get
N-1 g ) ) N
> 5 (Wr = O)* + W = U0 <1217 D e (BxUpe-172)"
Jj=0 £=1
In the same way we have
N-1 N
> 5 (W= 00 + Uy = TP <121 Y he(cUre-1p)’,
j=0 £=1
which concludes the proof. a

LemMA A.3 (Discrete conservation property) Let U™ be the solution of (2.2-2.3) with (2.4) or (2.5). If
F(x,t,v) = Fo(x, ) the following discrete conservation property holds:

U™ Dp= U p+ Y AFF (- 14), D
k=0

Proof. To prove the result we will just consider the unidimensional case. For higher dimensions, the
proof follows the same steps.
Note that we have
Ugt' = UR + A AIURY + AU + Foit)

and
Ut = U + A (AsUR™ + AU + F),

where Ay, £ =1, 2,3, 4 are matrices that depend on D, U and on the spatial step sizes. Then, summing
according to the discrete inner product, and taking into account that (A4; Ul’{"”’, Dy= (A2 U{"*", D=
(AsUP*, 1), = (A, UM, 1), = 0, we get

(UR, Dn= (U, D+ »_ At (For(-, 49, 1),
k=0

and

U D= (U7, D+ Y A For (-, 2479), 1)y,
k=0

which concludes the proof. (|



