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Abstract

The worst case complexity of direct-search methods has been recently analyzed when they
use positive spanning sets and impose a sufficient decrease condition to accept new iterates.
For smooth unconstrained optimization, it is now known that such methods require at most
O(n2ϵ−2) function evaluations to compute a gradient of norm below ϵ ∈ (0, 1), where n is
the dimension of the problem. Such a maximal effort is reduced to O(n2ϵ−1) if the function
is convex. The factor n2 has been derived using the positive spanning set formed by the
coordinate vectors and their negatives at all iterations.

In this paper, we prove that such a factor of n2 is optimal in these worst case complexity
bounds, in the sense that no other positive spanning set will yield a better order of n. The
proof is based on an observation that reveals the connection between cosine measure in
positive spanning and sphere covering.

Keywords: Direct search, worst case complexity, optimal order, sphere covering, positive spanning set,
cosine measure.

1 Introduction

In this paper, we focus on direct-search methods of directional type applied to an unconstrained
minimization problem

min
x∈Rn

f(x).

At each iteration of such a method, one typically evaluates the objective function using a finite
number of directions (often called “polling directions”) multiplied by a certain step size. No
derivatives or approximations thereof are required. If a point of lower objective function value is
found, it becomes the new iterate (the iteration is declared successful). Otherwise, the method
stays at the current point and the step size is decreased.

There are essentially two ways of ensuring convergence to stationary points for direct-search
methods of directional type: (i) by exploring integer lattices, insisting on generating points on
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grids or meshes (which refine only with the decrease of the step size) [19], or (ii) by imposing a
sufficient decrease condition (specified by a forcing function of the step size) to the acceptance
of a new iterate [15]. To our knowledge, only the latter approach has led to analyses of worst
case complexity (WCC).

In fact, Vicente [20] analyzed, for smooth functions, the WCC of direct-search methods for
which the polling directions are formed by positive spanning sets and new iterates are accepted
based on a sufficient decrease condition. A positive spanning set (PSS) is a set of non-zero
directions that spans Rn with non-negative coefficients. The WCC bounds given there depend
on the choice of the positive spanning set used at each iteration and on the forcing function
specifying the sufficient decrease. When the forcing function is the square of the step size, it
was proved in [20] that direct search drives the norm of the gradient of f below ϵ ∈ (0, 1) within
at most O(n2ϵ−2) function evaluations. In the convex case, Dodangeh and Vicente [9] improved
the bound in [20] to O(n2ϵ−1). Konečný and Richtárik [16] rederived these bounds, in a simpler
way, but for a restricted version of direct search where step size increases are not allowed.

A closer look at these WCC bounds reveals that they are of the form O(mκ−2ϵ−a), with
a ∈ {1, 2}, where m is an upper bound on the cardinality of the PSSs and κ is a lower bound
for their cosine measure (defined by (1) in Section 3). The factor n2 results from using the PSS
D⊕ = [I −I] formed by the coordinate vectors and their negatives at all iterations. In fact, D⊕
has 2n directions and a cosine measure of 1/

√
n, see [15].

In this paper, we show that there exists a universal constant c > 0 such that mκ−2 ≥ c n,
and consequently that the optimal order for these two WCC bounds in terms of n is indeed n2.
Our analysis is based on an observation that connects cosine measure in positive spanning and
the topic of sphere covering in Discrete Geometry (see Section 4 for more details).

The structure of the paper is as follows. In Section 2, we introduce the algorithmic details
of direct search. Section 3 summarizes the WCC bounds established in [20, 9]. Our main result
is given in Section 4, where we prove the optimality of the factor involving n in the bounds
O(n2ϵ−a), with a ∈ {1, 2}. The paper is concluded with some remarks in Section 5.

2 A class of direct-search methods

First we describe the direct-search method under analysis. Algorithm 2.1 below follows the lines
of the presentation in [7, Chapter 7].

Algorithm 2.1 (Directional direct-search method imposing sufficient decrease)

Initialization
Choose x0 with f(x0) < +∞, α0 > 0, 0 < β1 ≤ β2 < 1, and γ ≥ 1.

For k = 0, 1, 2, . . . do

1. Search step: Try to compute a point with f(x) < f(xk) − ρ(αk) by evaluating the
function f at a finite number of points. If such a point is found, then set xk+1 = x,
declare the iteration and the search step successful, and skip the poll step.

2. Poll step: Choose a positive spanning set Dk and an order for the set of poll points
Pk = {xk + αkd : d ∈ Dk}. Evaluate f at the poll points following that order. If
a poll point xk + αkdk is found such that f(xk + αkdk) < f(xk) − ρ(αk), then set
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xk+1 = xk + αkdk, and declare the iteration and the poll step successful. Otherwise,
declare the iteration (and the poll step) unsuccessful and set xk+1 = xk.

3. Mesh parameter update: If the iteration was successful, then maintain or increase
the step size parameter: αk+1 ∈ [αk, γαk]. Otherwise, decrease the step size parame-
ter: αk+1 ∈ [β1αk, β2αk].

End

In the poll step, the objective function is evaluated at points of the form xk + αkd for
directions d belonging to a PSS Dk. The poll step is successful if the value of the objective
function can be sufficiently decreased relatively to the step size αk, in the sense that there exists
a dk ∈ Dk such that f(xk+αkdk) < f(xk)−ρ(αk), where ρ(·) is a forcing function [15], meaning a
non-decreasing (typically continuous) function ρ : (0,∞) → (0,∞) satisfying limα↓0 ρ(α)/α = 0.
Typical examples of forcing functions are ρ(α) = Cαp (C > 0 and p > 1). Polling can be complete
(where the point with the lowest function value is then chosen) or opportunistic (moving to the
first point satisfying the sufficient decrease condition). The step size is possibly increased in
successful iterations, and is decreased at unsuccessful iterations by a factor uniformly bounded
away from 0 and 1.

The purpose of the search step is solely to improve the practical performance of the overall
algorithm. It is left unspecified since it does not interfere in the analyses of convergence or
complexity of the algorithm. It is the poll step that determines these properties and gives a
directional character to the algorithm.

3 Worst case complexity of direct search

To analyze the WCC of direct search, one needs to make some assumptions on the objective
function f , the forcing function ρ, and the positive spanning sets {Dk}. For convenience, we use
L(x0) to denote the level set {x ∈ Rn : f(x) ≤ f(x0)}, Xf

∗ to denote the set of all the minimizers
of f (possibly empty), and | · | to denote the cardinality of a set. The assumptions on f and ρ
are as follows.

Assumption 3.1 f is bounded from below by finf > −∞ and continuously differentiable in Rn,
and ∇f is Lipschitz continuous in Rn with a Lipschitz constant ν.

Assumption 3.2 ρ(α) = Cαp for some constants C > 0 and p > 1.

To state the assumptions on {Dk}, one must look at a key feature of a PSS, its cosine
measure [15]. Given a PSS D, its cosine measure is defined by

cm(D) = min
0 ̸=v∈Rn

max
d∈D

v⊤d

∥v∥∥d∥
. (1)

Since any PSS has a positive cosine measure, there is at least one direction in D making an
acute angle with any considered non-zero vector. Such a property is at the heart of the fact
that the norm of the gradient is of the order of the step size when an unsuccessful iteration
occurs [10, 15] (see also [7, Theorem 2.4 and inequality (7.14)]), which is critical for analyzing
global convergence and WCC of direct search. The assumption on {Dk} can be presented as
follows.
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Assumption 3.3 There exist positive constants κ, m, µ1, and µ2 such that

cm(Dk) ≥ κ, |Dk| ≤ m, and µ1 ≤ ∥d∥ ≤ µ2

for each k ≥ 0 and each d ∈ Dk.

Notice that a poll step takes at most m function evaluations. We suppose that the number of
function evaluations per search step is at most a multiple of m, which is not restrictive because
this step is optional.

Suppose that ϵ ∈ (0, 1). Let

kϵ = min{k ∈ N : ∥∇f(xk)∥ ≤ ϵ}.

Then the worst case complexity bounds obtained by Vicente [20] and Dodangeh and Vicente [9]
can be stated as follows.

Theorem 3.1 ([20, Theorems 2 and 3], [9, Theorem 4.2]) Under Assumptions 3.1, 3.2,
and 3.3, there exists a constant c1 such that

kϵ ≤ c1κ
−p̂ϵ−p̂, (2)

where p̂ = p/min{1, p− 1}.
If we assume additionally that f is convex, Xf

∗ is nonempty, and supy∈L(x0) dist(y,X
f
∗ ) < ∞,

then there exists a constant c2 such that

kϵ ≤ c2κ
−p̂ϵ1−p̂. (3)

The constants c1 and c2 are fully determined by f(x0), finf , ν, α0, β1, β2, γ, C, p, µ1, µ2, and,
in the case of c2, by supy∈L(x0) dist(y,X

f
∗ ). For the definitions of c1 and c2, we refer to [20, 9].

It is noticeable that κ appears in the bounds (2) and (3). The reason is that, in the worst case,
the smallest angle between −∇f(xk) and the directions in Dk is arccos(κ). In other words, κ
can be interpreted as the price to pay for the absence of gradient information. When p = 2, the
factor in κ is of the form κ−2 which is then equal to n if we use the PSS D⊕.

A similar phenomenon happens in the WCC of stochastic coordinate descent methods (see,
for instance, [12, 17]). In Nesterov [17], the randomized coordinate descent method (RCDM) has
an O(nbk

−1) global decaying rate for the expectation of f(xk)−f∗ (see (2.14) of [17], where nb is
the number of blocks in [17]). This is because, on average, the angle between −∇f(xk) and Sk is
arccos(1/nb), where Sk denotes the subspace corresponding to the coordinate block chosen at the
k-th iteration. Thus, nb can be seen here as the price to pay for the absence of the full gradient.
Although the methods are different, the factor κ−p̂ in (2) and (3) (which is equal to n when
we use p = 2 and D⊕ at each iteration) and the factor nb in the global rate of RCDM appear
for similar reasons. It is possible to reduce such a price (by putting more directions into Dk for
direct search; by using less blocks in RCDM), which will potentially lead to lower complexity of
iterations, but meanwhile increase the expense of each iteration. An important question is how
to maintain such a balance in order to have the algorithms exhibiting optimal overall measures of
performance? We will answer this question for direct search in Section 4. To do this, we consider
the WCC in terms of the number of function evaluations, which is a reasonable indicator for the
overall performance of direct search.

Let kfϵ be the number of function evaluations within kϵ iterations. Then it is easy to derive
bounds for kfϵ from Theorem 3.1.
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Corollary 3.1 Under Assumptions 3.1, 3.2, and 3.3, there exists a constant c3 such that

kfϵ ≤ c3mκ−p̂ϵ−p̂. (4)

If we assume additionally that f is convex, Xf
∗ is nonempty, and supy∈L(x0) dist(y,X

f
∗ ) < ∞,

then there exists a constant c4 such that

kfϵ ≤ c4mκ−p̂ϵ1−p̂. (5)

As pointed out in [20] it is obvious that the optimal choice for p in (4) is 2, which leads to
p̂ = 2 (and the same happens in (5)). Thus let us fix p = 2 henceforth.

It was also suggested in [20] to set Dk = D⊕ for all k ≥ 0. Since |D⊕| = 2n and cm(D⊕) =

1/
√
n, inequality (4) then becomes kfϵ = O(n2ϵ−2). In Section 4 (see Theorem 4.2), we will

show that O(n2ϵ−2) is the optimal order for the bound (4) and a similar conclusion holds for (5),
whose optimal order is O(n2ϵ−1).

4 The optimal order of the worst case complexity

In this section, we will discuss how to choose {Dk} so that the right-hand sides of (4) and (5) are
minimized. As mentioned in Section 3, one can increase κ by using more polling directions (see
definition (1)), which is favorable in terms of number of iterations (see Theorem 3.1). However,
such a strategy will increase the number of function evaluations at each iteration (in the worst-
case scenario). Hence there is a trade-off in the number of directions to use in the PSSs when
we consider the bounds for the number of function evaluations.

Let us illustrate this trade-off with a few examples. We know that a minimal positive basis
with uniform angles in Rn has n + 1 directions and a cosine measure of 1/n [15] (see also [7,
Corollary 2.6 and Exercise 2.7.7]). If we apply this PSS to Algorithm 2.1 (with ρ(α) = Cα2),
then the bound in (4) will become O(n3ϵ−2). But if we use D⊕, the bound is O(n2ϵ−2). In this
case, increasing the number of directions improves the WCC bound. This is not always true.
For example, if we use a PSS with n4 directions, then the bound will become at least O(n4ϵ−2).

According to the definitions of κ and m, in order to minimize the right-hand sides of (4)
and (5) (notice that p̂ = 2), we need to solve

min
D∈D

|D|
cm(D)2

, (6)

where D is the set of all PSSs in Rn. In two dimensions, problem (6) is not difficult, and one can
easily prove that the PSSs with five directions and uniform 2π/5 adjacent angles are optimal.
When we go to higher dimensions, determining the optimal PSSs for problem (6) is not that
easy. It is not clear what are the solutions to this problem when n ≥ 3. But we are able to show
that D⊕ is approximately optimal for problem (6) in the sense that

min
D∈D

|D|
cm(D)2

≥ c5
|D⊕|

cm(D⊕)2
(7)

for some constant c5 > 0 not depending on n or on any specific PSS. In fact, we will prove the
following result.
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Theorem 4.1 There exists a universal constant c > 0 such that

|D|
cm(D)2

≥ c n2 (8)

for each n ≥ 1 and each PSS D in Rn.

Inequality (7) will then follow directly from (8) with c5 = c/2. We illustrate inequality (8) in
Figure 1 for the particular case where n = 2 and the vectors of the PSSs make uniform adjacent
angles (a case where it is known that one can pick c = 1).

3 4 10

4 = n2

8 = |D⊕|
cm(D⊕)2

m = |D|

Figure 1: Illustration of inequality (8) in R2 for PSSs making uniform adjacent angles. The plot
depicts the values of |D|/ cm(D)2 for |D| = 3, 4, . . . , 10.

To prove Theorem 4.1, we first observe in Lemma 4.1 a connection between cosine measure
in positive spanning and sphere covering. For that purpose, let us define

C(x, ϕ) =
{
y ∈ Sn−1 : d(y, x) ≤ ϕ

}
,

where Sn−1 is the unit sphere in Rn, x is a fixed point on Sn−1, ϕ is a constant in [0, π], and
d(·, ·) is the geodesic distance on Sn−1. We will call C(x, ϕ) a spherical cap centered at x with
geodesic radius ϕ (see Figure 2). The result says essentially that for any PSS (with normalized
vectors) one can cover the unit sphere by the union of the spherical caps centered at its vectors
and of geodesic radius equal its cosine measure (see also Figure 2).

Lemma 4.1 Suppose that D = [d1 · · · dm] is a PSS in Rn consisting of unit vectors. If cm(D) =
κ, then

Sn−1 ⊆
m∪
i=1

C(di, arccos(κ)). (9)

In other words, Sn−1 is covered by the spherical caps centered at di (i = 1, 2, . . . ,m) with geodesic
radius arccos(κ).

Proof. According to definition (1), for any v ∈ Sn−1, there exists an i ∈ {1, 2, . . . ,m} such
that

v⊤di ≥ cm(D) = κ. (10)
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ϕ

x

Spherical cap C(x, ϕ)

d1d3

d2

d4

π
4

S1 ⊆
∪4

i=1C(di, π/4)

Figure 2: The thick arc of the left picture represents a spherical cap in R2. The right picture
depicts the covering of the unit sphere given in Lemma 4.1 for D⊕ when n = 2.

Since the radius of the sphere is 1, the geodesic distance between v and di is equal to the angle
between them. Hence inequality (10) implies that

d(v, di) ≤ arccos(κ),

which is equivalent to
v ∈ C(di, arccos(κ)).

This is sufficient to conclude the proof as v is arbitrary. □

We remark that Lemma 4.1 holds even when D is not a PSS. In such a case, cm(D) is not
positive and thus arccos(cm(D)) not acute, but the covering is still a valid one. We also notice
that cm(D) is actually the largest κ that satisfies (9). In other words,

cm(D) = max
{
κ : Sn−1 ⊆

m∪
i=1

C(di, arccos(κ))
}
,

which can be seen as an equivalent definition of cosine measure using the language of sphere
covering.

To prove Theorem 4.1 we need to establish an appropriate upper bound for the cosine measure
cm(D) in terms of the dimension n and the number of directions in D. In light of Lemma 4.1,
that is equivalent to find a lower bound for ϕ (or an upper bound for cos(ϕ)) in terms of n
and m when Sn−1 is covered by m equal spherical caps with geodesic radius ϕ. Such a bound is
fortunately already established in the research community of Discrete Geometry. The conclusion
of the following lemma is proved by Tikhomirov [18] for n+ 1 ≤ m ≤ 2n. The case m ≥ 2n was
established much earlier (for more details see [1], [2, Chapter 6], [4], [5, Corollary 9.5], [6], [13]
and [18])1.

Lemma 4.2 ([18]) Any covering of Sn−1 by m ≥ n + 1 spherical caps of geodesic radius ϕ
satisfies

cos(ϕ) ≤ ζ
√

n−1 log(n−1m)

for some universal constant ζ > 0.

1We are grateful to Professor Károly Böröczky, Jr. for drawing our attention to these references.
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With the help of Lemmas 4.1 and 4.2, we obtain the desired upper bound for the cosine
measure.

Lemma 4.3 Any PSS D in Rn satisfies

cm(D) ≤ ζ
√

n−1 log(n−1|D|) (11)

for the same constant ζ as in Lemma 4.2.

Proof. Without loss of generality, we assume that all the directions in D are normalized.
Then inequality (11) follows immediately from Lemmas 4.1 and 4.2. □

Theorem 4.1 is a straightforward consequence of Lemma 4.3, since√
n−1 log(n−1|D|) ≤

√
n−1(n−1|D| − 1) ≤ n−1|D|

1
2 .

Summarizing, in terms of the orders of n and ϵ, the right-hand sides of (4) and (5) are optimal
when setting p = 2 (a fact already known) and when Dk = D⊕ for all k ≥ 0 (a fact directly
resulting from Theorem 4.1).

Theorem 4.2 Under Assumptions 3.2 and 3.3, we have

mκ−p̂ϵ−p̂ ≥ c n−2ϵ−2,

where m and κ are defined in Assumption 3.3, p̂ = p/min{1, p − 1} (with p > 1), and c is the
constant in Theorem 4.1.

5 Final remarks

In Section 4, we established a lower bound for the optimal value of problem (6), but this problem
itself is still open. A closely related problem is

max
D∈D(m)

cm(D), (12)

where D(m) is the set of all the PSSs consisting of m directions in Rn (m ≥ n + 1). This
problem is also widely open. In the language of sphere covering, problem (12) is to find the most
“economical” covering of the sphere by m equal spherical caps. In the special case of m = 2n, it
is intuitive to conjecture that D⊕ is the solution to problem (12). This is clear when n = 2, but
it becomes non-trivial when n ≥ 3. The optimality of D⊕ for the case m = 2n is already proved
when n = 3 (see [11, Theorem 5.4.1]) and n = 4 (see [8, Theorem 6.7.1]), but it is open when
n ≥ 5 according to [3] (see also [2, Page 194] and [4, Conjecture 1.3]).

Instead of PSSs, Gratton et al. [14] propose to use random polling directions in Algorithm 2.1.
When minimizing a smooth (possibly non-convex) objective function, the resulting algorithm en-
joys an O(mnϵ−2) WCC bound for the number of function evaluations (with overwhelmingly high
probability), where m is the number of random directions used in each poll step. Such a bound,
when m is much smaller than n, is better than the optimal situation that we already proved for
the bound (4). The advantage was also observed in the numerical results of [14]. This compari-
son, more rigorously made given the contribution of our paper, suggests that randomization has
the potential to improve the efficiency of some classical algorithms.
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