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Abstract. We consider the initial-boundary value problem for the coupled Navier-
Stokes-Keller-Segel-Fisher-Kolmogorov-Petrovskii-Piskunov system in two- and three-dimensional
domains. The problem describes oxytaxis and growth of Bacillus subtilis in moving water.
We prove existence of global weak solutions to the problem. We distinguish between two
cases determined by the cell diffusion term and the space dimension, which are referred to
as the supercritical and subcritical ones. At the first case, the choice of the kinetic function
enjoys wide range of possibilities: in particular, it can be zero. Our results are new even at
the absence of the kinetic term. At the second case, the restrictions on the kinetic function
are less relaxed: for instance, it cannot be zero but can be Fisher-like. In the case of linear
cell diffusion, the solution is regular and unique provided the domain is the whole plane. In
addition, we study the long-time behaviour of the problem, find dissipative estimates, and
construct attractors.

[

[

1. Introduction
Let us fix a number T > 0 and a domain Ω ⊂ Rd, with d = 2, 3, which can be a bounded

open set locally located on one side of its C2-smooth boundary ∂Ω or the whole space Rd
itself. In the cylinder QT = (0, T )× Ω, we consider the following set of equations

∂tn+ u · ∇n−∆(nm) = −∇ · (χ(c)n∇c) + f(n), (1.1)

∂tc+ u · ∇c−∆c = −k(c)n, (1.2)

∂tu+ u · ∇u−∆u+∇p = −n∇φ, (1.3)

∇ · u = 0. (1.4)

Here c(t, x) : QT → R, n(t, x) : QT → R, u(t, x) : QT → Rd and p(t, x) : QT → R are
the oxygen concentration, cell concentration, fluid velocity, and hydrostatic pressure, respec-
tively. The scalar functions k, χ and f determine the oxygen consumption rate, chemotactic
sensitivity, and bacterial growth, resp., φ : QT → R is the potential produced by the action
of physical forces on the cells, and m ≥ 1 is the nonlinear diffusion exponent. The cases
m = 1 and f ≡ 0 are not excluded.

The system is complemented with the no-flux boundary conditions for nm and c, and the
no-slip condition for u,

∂nm(t, x)

∂ν
= 0,

∂c(t, x)

∂ν
= 0, u(t, x) = 0, x ∈ ∂Ω, (1.5)

and with the initial conditions

n(0, x) = n0(x), c(0, x) = c0(x), u(0, x) = u0(x), x ∈ Ω. (1.6)
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The model (1.1)–(1.4) with f ≡ 0 and m = 1 was suggested in [17] in order to describe the
combination of chemotaxis, metabolism, cell–cell signaling, buoyancy, diffusion, and mixing
in water drops full of aerobic bacteria (Bacillus subtilis). The coupled system consisting
of the equations of cell and oxygen balance and of the ones of fluid motion and continuity
is based on general considerations from the bioconvection theory (cf. [6] and [13]). The
nonlinear-diffusion variant of the model (i.e. when m > 1) was proposed in [4]. In this paper,
we also admit the proliferation/death term f in the cell balance equation (1.1). Note that
the convectionless chemotactic models taking into account the role of cell kinetics were put
forward in [10] (see also the review paper [7]), and studied, for instance, in [1, 11, 12, 19, 20].
The typical kinetic terms are f(n) = Kn(1−n) (Fisher’s one) and f(n) = Kn(1−n)(n−α)
(the Allee effect).

The known mathematical treatments of the problem (1.1)–(1.6) (without the kinetic
term) can be divided in two groups. The first one is concerned with the simpler Stokes-
Keller-Segel problem lacking the nonlinear inertial term in (1.3). The local in time weak
solutions are shown to exist in [9] at the case m = 1. For Ω = R2 and m = 1, there is
a global weak solution [5] provided c0 or φ are small in some norms, and under certain
restrictions on k and χ. For Ω = R2 and m = 2, the global weak solution exists [4] without
that additional hypotheses. The same is true for bounded Ω, d = 2 and m > 1 [16] or d = 3

and 1.81 < 7+
√

217
12

≤ m ≤ 2 [4], as well as for Ω = R3 and m = 4/3 with some assumptions
on k and χ [8]. Moreover, in the case of bounded convex Ω (d = 2, 3) and slightly weaker
restrictions on k and χ, the problem admits a global weak solution for m = 1 [21]. The
eventual convergence to the homogeneous state

(
n ≡

∫
Ω
n0/|Ω|, c ≡ 0, u ≡ 0

)
is shown in [4]

for bounded Ω and m = 2; however, this result is not entirely correct due to the presence of
steady-state solutions of the form (n ≡ 0, c ≡ const, u ≡ 0).

The second group studies the full Navier-Stokes-Keller-Segel problem with m = 1. The
existence of local weak solutions is treated in [2, 9]. The global weak solutions exist for
Ω = R2 [8]. Moreover, if the domain Ω ⊂ R2 is bounded and convex, the solution is regular
and unique [21] (a similar result in the whole plane is proved in [2]). Here, more [2] or less
[8, 21] restrictive assumptions are imposed on k and χ. Global solutions exist for Ω = R3

when the initial datum is a small smooth perturbation of the steady state (n0 = const, 0, 0)
([5], strong and unique) or when k/χ = const ([2], weak).

In this paper, we consider the problem (posed in [21]) of complete classification of all m
which allow for global solutions. It turned out to be suitable to deal with this problem in the
general setting (1.1)–(1.6) admitting the kinetic term f . Herewith, two cases, which we call
subcritical (1 ≤ m ≤ d+1

3
) and supercritical (m > d+1

3
), naturally arise. In both cases, we

prove existence of global weak solutions (Theorems 3.1 and 4.1). However, the choice of the
kinetic function in the supercritical case enjoys wider range of possibilities: in particular, it
can be zero. The typical kinetic terms mentioned above satisfy all the assumptions in both
sub- and supercritical cases. In the case Ω = R2 and m = 1, we prove existence of a unique
classical solution without the hypothesis of [2] that k/χ is almost a constant (our Theorem
4.2). Finally, in Section 5, we show that in the supercritical case there exist weak solutions
satisfying certain dissipative estimates (Theorem 5.1), and construct minimal trajectory and
global attractors of the problem in the framework of [22] (our Theorem 5.3).

2. Preliminaries and notation
We use the brief notations Lp, W

β
p , Hβ = W β

2 , p ≥ 1, β ∈ R, for the Lebesgue and

Sobolev spaces on Ω with values in F = R or Rd or Rd
2

. Parentheses denote the bilinear
form

(u, v) =

∫
Ω

(u(x), v(x))F dx, u, v ∈ L1.

The norm in L2 is ‖u‖ =
√

(u, u). The symbol ‖u‖l, l ∈ N, will stand for the Euclidean
norm in Hl.

Let V be the set of smooth, divergence-free, compactly supported in Ω functions with
values in Rd. The symbols H, V , Vδ (δ > 0) denote the closures of V in L2, H

1, Hδ, resp.
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The symbols C(J ;E), Cw(J ;E), L2(J ;E) etc. denote the spaces of continuous, weakly
continuous, quadratically integrable etc. functions on an interval J ⊂ R with values in a
Banach space E. A pre-norm in the Frechet space C([0,+∞);E) may be defined by the
formula

‖v‖C([0,+∞);E) =

+∞∑
i=1

2−i
‖v‖C([0,i];E)

1 + ‖v‖C([0,i];E)

.

The symbol C will stand for a generic positive constant that can take different values in
different lines, whereas Ki, i = 1, 2, . . . , will be fixed positive constants.

We set 〈x〉 =
√

1 + |x|2 in the case Ω = Rd, and 〈x〉 = 1 for bounded Ω.
For any scalar function ξ, we denote ξ+ = max(ξ, 0) and ξ− = max(−ξ, 0).
Finally, we give here the following definition of weak solution.

Definition 2.1. A triple (n, c, u) is a weak solution to the problem (1.1)–(1.6) provided

n ≥ 0, c ≥ 0,

n ∈ L∞(0, T ;L1) ∩ L2(0, T ;L2) ∩ Lm(0, T ;Lm) ∩W 1
1 (0, T ; (W 1

∞)∗),

f(n) ∈ L1(0, T ;L1), ∇(nm) ∈ L1(0, T ;L1),

c ∈ L∞(0, T ;L∞ ∩H1) ∩ L2(0, T ;H2) ∩H1(0, T ; (H1)∗),

u ∈ L∞(0, T ;L2) ∩ L2(0, T ;V ) ∩W 1
1 (0, T ;V ∗),

and for any test functions ζ ∈W 1
∞, θ ∈ H1, ψ ∈ V one has

d

dt
(n, ζ)− (un,∇ζ) + (∇(nm),∇ζ)− (χ(c)n∇c,∇ζ) = (f(n), ζ), (2.1)

d

dt
(c, θ)− (uc,∇θ) + (∇c,∇θ) + (k(c)n, θ) = 0, (2.2)

d

dt
(u, ψ)−

d∑
i,j=1

(
uiuj ,

∂ψj
∂xi

)
+ (∇u,∇ψ) + (n∇φ, ψ) = 0 (2.3)

a.e. on (0, T ), and equalities (1.6) hold in the spaces (W 1
∞)∗, (H1)∗, V ∗, resp.

3. The supercritical case
In the supercritical case, the existence of weak solutions is provided by

Theorem 3.1. Let m > d+1
3

. Let φ ∈ L1(0, T ;L1,loc) with ∇φ ∈ L2(0, T ;L∞). Let k, χ and
f be continuously differentiable functions, χ′ ≥ 0, k ≥ 0, k(0) = 0, f(0) ≥ 0 (but f(0) = 0
for Ω = Rd) and

f(y) ≤ f(0) + Cy (3.1)

for y ≥ 0.
Let n0 ∈ L1 ∩ Lmax(1,m/2), n0 lnn0 ∈ L1, 〈·〉n0(·) ∈ L1, c0 ∈ H1 ∩ L∞, n0 ≥ 0, c0 ≥ 0,

u0 ∈ H. Then problem (1.1)–(1.6) possesses a weak solution.
Proof. Let us show that a solution (n, c, u) to (1.1)–(1.6) satisfies the following formal a

priori bound:

‖u‖L∞(0,T ;L2) + ‖n lnn‖L∞(0,T ;L1) + ‖〈·〉n‖L∞(0,T ;L1) + ‖∇c‖L∞(0,T ;L2)

+ ‖∇u‖L2(0,T ;L2) + ‖n‖L2(0,T ;L2) + ‖nm/2‖L2(0,T ;H1) + ‖c‖L∞(0,T ;L∞)

+ ‖f(n)‖L1(0,T ;L1) + ‖f(n) lnn‖L1(0,T ;L1) + ‖c‖L2(0,T ;H2) ≤ C. (3.2)

Note that here and below in the proof the generic constant C may depend on T .
Letting ζ ≡ 1 in (2.1), we get

d

dt
‖n(t)‖L1 =

∫
Ω

f(n(t, x)) dx, (3.3)
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so

d

dt
‖n(t)‖L1 + ‖f−(n)‖L1 = ‖f+(n)‖L1

≤
∫
Ω

f(0) dx+ C‖n(t)‖L1 ≤ C(1 + ‖n(t)‖L1), (3.4)

whence
‖n‖L∞(0,T ;L1) + ‖f−(n)‖L1(0,T ;L1) ≤ C. (3.5)

But
‖f+(n)‖L1(0,T ;L1) ≤ C(1 + ‖n‖L1(0,T ;L1)) ≤ C(1 + ‖n‖L∞(0,T ;L1)). (3.6)

Thus,
‖f(n)‖L1(0,T ;L1) ≤ C. (3.7)

Putting θ = cp−1, p ≥ 2, in (2.2), we obtain

1

p

d

dt
‖c(t)‖pLp

≤ 0,

and thus
‖c‖L∞(0,T ;Lp) ≤ ‖c(0)‖Lp . (3.8)

Passing to the limit as p→∞, we derive

‖c‖L∞(0,T ;L∞) ≤ C. (3.9)

Hence,
‖χ(c)‖L∞(0,T ;L∞) + ‖k(c)‖L∞(0,T ;L∞) ≤ C. (3.10)

Note that the fact of non-negativity of c and n is standard and follows from the parabolic
comparison principle.

We now take ζ = 1 + lnn in (2.1), θ = −∆c in (2.2), and ψ = u in (2.3), arriving at

d

dt

∫
Ω

n lnndx+
4

m
(∇(nm/2),∇(nm/2))− (χ(c)∇c,∇n) = (f(n), 1 + lnn), (3.11)

1

2

d

dt
(∇c,∇c) + (uc,∇∆c)− (∇c,∇∆c)− (k(c)n,∆c) = 0, (3.12)

1

2

d

dt
(u, u) + (∇u,∇u) + (n∇φ, u) = 0. (3.13)

Integrating by parts, we rewrite (3.11) as

d

dt

∫
Ω

n lnndx+
4

m
‖∇(nm/2)‖2

+ (χ′(c)∇c, n∇c) + (χ(c)∆c, n) = (f(n), 1 + lnn), (3.14)

and observe that

− (uc,∇∆c) =

d∑
i,j=1

(
∂ui
∂xj

, c
∂2c

∂xi∂xj

)
+

(
ui,

∂c

∂xj

∂2c

∂xi∂xj

)

=

d∑
i,j=1

(
∂ui
∂xj

, c
∂2c

∂xi∂xj

)
+

1

2

(
ui,

∂

∂xi

[
∂c

∂xj

]2
)

=

d∑
i,j=1

(
∂ui
∂xj

, c
∂2c

∂xi∂xj

)
. (3.15)
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Now, (3.12) reads as

1

2

d

dt
‖∇c‖2 −

d∑
i,j=1

(
∂ui
∂xj

, c
∂2c

∂xi∂xj

)
+ (∆c,∆c)− (k(c)n,∆c) = 0. (3.16)

When Ω is bounded, due to classical regularity issues for the Neumann problem for the
Poisson equation,

‖c(t)‖2 ≤ C(‖∆c(t)‖+ ‖c(t)‖). (3.17)

For the whole space, integrating by parts, we obtain

‖c(t)‖2 =

√√√√(c, c) +

d∑
i=1

(
∂c

∂xi
,
∂c

∂xi

)
+

d∑
i,j=1

(
∂2c

∂xi∂xj
,

∂2c

∂xi∂xj

)

≤

√√√√(c, c) + 2

d∑
i=1

(
∂c

∂xi
,
∂c

∂xi

)
+

d∑
i,j=1

(
∂2c

∂xi∂xj
,

∂2c

∂xi∂xj

)

=

√√√√(c, c)− 2(c,∆c) +

d∑
i,j=1

(
∂2c

∂xi∂xi
,

∂2c

∂xj∂xj

)
= ‖c(t)−∆c(t)‖ ≤ ‖c(t)‖+ ‖∆c(t)‖.

(3.18)

Hence, in both cases,

‖c(t)‖2 ≤ C(‖∆c(t)‖+ 1), t ∈ (0, T ). (3.19)

Applying (3.19) and the Cauchy inequality with epsilon to (3.16), we get

d

dt
‖∇c‖2 + 2K1‖c‖22 ≤ C +K2‖∇u‖2 +K3‖n‖2. (3.20)

Observe that both for n > 1 and n ≤ 1 (since f is C1-smooth),

[f(n) lnn]+ ≤ Cn| lnn|. (3.21)

Therefore, (3.14) yields

d

dt

∫
Ω

n lnndx+
4

m
‖∇(nm/2)‖2 + ‖[f(n) lnn]−‖L1

≤ C + C‖n‖L1 + C‖n lnn‖L1 +K1‖c‖22 +K4‖n‖2. (3.22)

Multiply (3.13) by 2K2 and add with (3.20) and (3.22):

d

dt
‖∇c‖2 +

d

dt

∫
Ω

n lnndx+K2
d

dt
‖u‖2

+K1‖c‖22 +K2‖∇u‖2 +
4

m
‖∇(nm/2)‖2 + ‖[f(n) lnn]−‖L1

≤ C + C‖n lnn‖L1 +K5‖n‖2 +K6‖u∇φ‖2. (3.23)

If Ω = Rd, put ζ(x) = 〈x〉 in (2.1) (this test function is unbounded, but (2.1) still holds
since we are dealing with strong solutions now):

d

dt
‖n〈·〉‖L1 = (un,∇〈·〉) + (nm,∆〈·〉) + (χ(c)n∇c,∇〈·〉) + (f(n), 〈·〉). (3.24)

Let us estimate the terms in the right-hand side:

(un,∇〈·〉) ≤ C(‖u‖2 + ‖n‖2), (3.25)
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(nm,∆〈·〉) ≤ C‖nm/2‖2, (3.26)

(χ(c)n∇c,∇〈·〉) ≤ C(‖n‖2 + ‖∇c‖2), (3.27)

(f(n), 〈·〉) ≤ C‖〈·〉n‖L1 , (3.28)

whence

3
d

dt
‖n〈·〉‖L1 ≤ K7(1 + ‖u‖2 + ‖n‖2 + ‖nm/2‖2 + ‖∇c‖2 + ‖〈·〉n‖L1). (3.29)

If Ω is bounded and 〈x〉 ≡ 1, (3.29) is a trivial consequence of (3.4).
Let us show that

‖n‖2 + ‖nm/2‖2 ≤ 2

(K5 +K7)m
‖∇(nm/2)‖2 + C. (3.30)

Indeed, let m ≤ 2. Let β = 2
m

for d = 2 and β = 6
3m−1

for d = 3. In both cases β < 2.
Then, using the Gagliardo-Nirenberg inequality, we proceed as

‖n‖2 + ‖nm/2‖2 ≤ C(‖n‖2 + ‖n1/2‖2) = C(‖nm/2‖4/mL4/m
+ ‖n‖2L1

)

≤ C + C‖∇(nm/2)‖β‖nm/2‖4/m−βL2/m
+ C‖nm/2‖4/mL2/m

= C + C‖∇(nm/2)‖β‖n‖2−mβ/2L1
+ C‖n‖2L1

≤ C(1 + ‖∇(nm/2)‖β)

≤ 2

(K5 +K7)m
‖∇(nm/2)‖2 + C. (3.31)

If m > 2, employing the Lp-interpolation, Young and Gagliardo-Nirenberg inequalities, we
have

‖n‖2 +‖nm/2‖2 ≤ C(‖n1/2‖2 +‖nm/2‖2) ≤ C(1+‖∇(nm/2)‖
2m

m+2 ‖nm/2‖
4

m+2

L1
+‖nm/2‖2L1

)

≤ 1

(K5 +K7)m
‖∇(nm/2)‖2 +C‖nm/2‖2L1

+C =
1

(K5 +K7)m
‖∇(nm/2)‖2 +C‖n‖mLm/2

+C

≤ 1

(K5 +K7)m
‖∇(nm/2)‖2 + C‖n‖

m
m−1

L1
‖n‖

m2−2m
m−1

Lm
+ C

≤ 1

(K5 +K7)m
‖∇(nm/2)‖2 + C‖nm/2‖

2m−4
m−1 + C

≤ 1

(K5 +K7)m
‖∇(nm/2)‖2 +

1

2
‖nm/2‖2 + C, (3.32)

which implies (3.30).
Since (n lnn)− ≤ C

√
n, it is easy to check (cf. [2] in the unbounded case) that

‖n lnn‖L1 ≤ K8 + 2‖〈·〉n‖L1 +

∫
Ω

n lnndx. (3.33)

Adding (3.29) with (3.23), and taking into account (3.7),(3.30) and (3.33), we get

d

dt
‖∇c‖2 +

d

dt

∫
Ω

n lnndx+ 3
d

dt
‖〈·〉n‖L1 +K2

d

dt
‖u‖2

+K1‖c‖22 +K2‖∇u‖2 +
2

m
‖∇(nm/2)‖2 + ‖[f(n) lnn]−‖L1

≤ C(1 + ‖∇φ‖2L∞)

×

1 +K8 + ‖∇c‖2 +

∫
Ω

n lnndx+ 3‖〈·〉n‖L1 +K2‖u‖2
 . (3.34)
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Gronwall’s inequality and (3.33) yield

‖∇c‖2 + ‖n lnn‖L1 + ‖〈·〉n‖L1 +K2‖u‖2

≤ 1 +K8 + ‖∇c‖2 +

∫
Ω

n lnndx+ 3‖〈·〉n‖L1 +K2‖u‖2 ≤ C, (3.35)

and (3.34) gives

K1‖c‖2L2(0,T ;H2) +K2‖∇u‖2L2(0,T ;L2)

+
2

m
‖∇(nm/2)‖2L2(0,T ;L2) + ‖[f(n) lnn]−‖L1(0,T ;L1) ≤ C. (3.36)

To conclude the proof of (3.2), it remains to remember (3.7),(3.21) and (3.30).
Note that

‖∇(nm)‖L1(0,T ;L1) ≤ 2‖∇(nm/2)‖L2(0,T ;L2)‖nm/2‖L2(0,T ;L2) ≤ C. (3.37)

Now we estimate the time derivatives. Using (2.1), (3.2) and (3.37), we infer the following
bound:

T∫
0

∣∣∣∣ ddt (n, ζ)
∣∣∣∣ dt
≤

T∫
0

|(un,∇ζ)|+ |(∇(nm),∇ζ)|+ |(χ(c)n∇c,∇ζ)|+ |(f(n), ζ)| dt

≤ C‖ζ‖W1
∞
. (3.38)

In the same manner we derive from (2.2), (2.3), (3.2) that

T∫
0

∣∣∣∣ ddt (c, θ)
∣∣∣∣2 dt ≤ C‖θ‖21, (3.39)

T∫
0

∣∣∣∣ ddt (u, ψ)

∣∣∣∣ dt ≤ C‖ψ‖1. (3.40)

We still require some more estimates. Firstly, let m < 2. We find

‖∇n‖mLm(0,T ;Lm) = ‖|∇n|m‖L1(0,T ;L1)

= ‖(nm−1|∇n|)2−m(n
m−2

2 |∇n|)2m−2‖L1(0,T ;L1)

≤ ‖(nm−1|∇n|)2−m‖L 1
2−m

(0,T ;L 1
2−m

)‖(n
m−2

2 |∇n|)2m−2‖L 1
m−1

(0,T ;L 1
m−1

)

= ‖(nm−1∇n)‖2−mL1(0,T ;L1)‖(n
m−2

2 ∇n)‖2m−2
L2(0,T ;L2)

≤ C‖∇(nm)‖2−mL1(0,T ;L1)‖∇(nm/2)‖2m−2
L2(0,T ;L2) ≤ C. (3.41)

In the case m > 2, let ζ = n
m−2

2 in (2.1). Then we derive

2

m

d

dt
‖nm/2‖L1 +

8m(m− 2)

(3m− 2)2
(∇(n

3m−2
4 ),∇(n

3m−2
4 ))

− m− 2

m
(χ(c)∇c,∇(nm/2)) + (f−(n), n

m−2
2 ) = (f+(n), n

m−2
2 ). (3.42)
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Therefore, by the Cauchy-Bunyakovsky-Schwarz and Young inequalities,

d

dt
‖nm/2‖L1 + ‖∇(n

3m−2
4 )‖2 + (f−(n), n

m−2
2 )

≤ C

‖∇c‖2 + ‖∇(nm/2)‖2 + ‖nm/2‖L1 +

∫
Ω

f(0)m/2 dx

 . (3.43)

Gronwall’s lemma and (3.2) imply

‖nm/2‖L∞(0,T ;L1) + ‖∇(n
3m−2

4 )‖L2(0,T ;L2) + ‖f(n)n
m−2

2 ‖L1(0,T ;L1) ≤ C. (3.44)

We find, via a reasoning similar to (3.32), that

‖n
3m−2

4 ‖L2(0,T ;L2) ≤ C‖∇(n
3m−2

4 )‖L2(0,T ;L2) + C ≤ C. (3.45)

Now, test (2.1) by the function ζn
m−2

2 , ζ ∈W 1
∞:

2

m

(
d

dt
nm/2, ζ

)
+

8m(m− 2)

(3m− 2)2
(∇(n

3m−2
4 ), ζ∇(n

3m−2
4 )) +

4m

3m− 2
(∇(n

3m−2
4 ), n

3m−2
4 ∇ζ)

− m− 2

m
(χ(c)∇c, ζ∇(nm/2))− (χ(c)∇c, nm/2∇ζ) = (f(n), ζn

m−2
2 ). (3.46)

Using (3.2), (3.44), (3.45), it is easy to deduce from (3.46) that

T∫
0

∣∣∣∣ ddt (nm/2, ζ)
∣∣∣∣ dt ≤ C‖ζ‖W1

∞
. (3.47)

Note that (3.38) is equivalent to (3.47) for m = 2.
Having bounds (3.2), (3.37)–(3.41), (3.44), (3.47) in hand, we can prove the existence of

weak solution via approximation of (1.1)–(1.6) by a more regular problem, and consequent
passage to the limit. We omit a major part of the details (see [2, 4, 5, 16] for similar issues),
and restrict ourselves on the peculiarities of passage to the limit in the porous-medium-like
and growth terms. For definiteness, we consider the case of bounded Ω (the unbounded case
is very similar, merely the spaces Lp should be replaced by Lp,loc).

The growth term f can be approximated by a sequence of bounded functions fN = fN
|f |+N ,

N ∈ N. Let (nN , cN , uN ) be the corresponding sequence of solutions and (n, c, u) be the limit
(intended to be the weak solution).

Due to (3.2), without loss of generality (passing to a subsequence, if necessary) n
m/2
N →

nm/2 weakly in L2(0, T ;H1). Assume first that m ≥ 2. In view of (3.47), we can employ

the Aubin–Lions–Simon lemma [15] to get n
m/2
N → nm/2 strongly in L2(0, T ;L2) (here and

below we always mean “up to a subsequence”). On the other hand, for m < 2, nN → n
weakly in Lm(0, T ;W 1

m) in view of (3.41) and (3.2). Due to (3.38), by the Aubin–Lions–

Simon lemma we conclude that nN → n strongly in Lm(0, T ;Lm), whence n
m/2
N → nm/2

strongly in L2(0, T ;L2) again. Hence, in both cases,

∇(nmN ) = 2n
m/2
N ∇(n

m/2
N )→ 2nm/2∇(nm/2) = ∇(nm)

weakly in L1(0, T ;L1).
Finally, let us show that fN (nN ) → f(n) in L1(0, T ;L1). By the Vitali convergence

theorem, it suffices to see that fN (nN ) → f(n) in measure on (0, T ) × Ω and |fN (nN )| are

uniformly integrable. We have n
m/2
N → nm/2 in L2(0, T ;L2), thus nN → n a.e. in (0, T )×Ω.

Therefore

fN (nN )− f(n) = −f(nN )|f(nN )|
|f(nN )|+N

+ f(nN )− f(n)→ 0
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a.e. and hence in measure. Due to (3.2), ‖fN (nN ) lnnN‖L1(0,T ;L1) ≤ C. Thus,∫
|fN (nN )|>M

|fN (nN )| dx dt

≤ C sup
|fN (nN )|>M

| lnnN |−1 ≤ C sup
|f(nN )|>M

| lnnN |−1 → 0 (3.48)

as M → +∞.

4. The subcritical case
The subcritical case requires an additional assumption on the kinetic function:

Theorem 4.1. Let 1 ≤ m ≤ d+1
3

. Suppose that

f(y) + Cfy
2 ≤ f(0) + Cy (4.1)

with some positive Cf independent of y ≥ 0, and the remaining assumptions of Theorem 3.1
hold. Then problem (1.1)–(1.6) possesses a weak solution.

Proof. Let us describe the differences with the proof of Theorem 3.1. We still need to
secure inequality (3.2). Firstly, (3.3), apart from yielding (3.4), gives

d

dt
‖n(t)‖L1 + Cf‖n‖2 ≤ C(1 + ‖n(t)‖L1), (4.2)

whence
‖n‖L2(0,T ;L2) ≤ C. (4.3)

Since m ≤ 2,

‖nm/2‖L2(0,T ;L2) ≤ C(‖n1/2‖L2(0,T ;L2) + ‖n‖L2(0,T ;L2)) ≤ C. (4.4)

Thus, we do not need (3.30), which only holds in the supercritical case, but instead of (3.34)
we have

d

dt
‖∇c‖2 +

d

dt

∫
Ω

n lnndx+ 3
d

dt
‖〈·〉n‖L1 +K2

d

dt
‖u‖2

+K1‖c‖22 +K2‖∇u‖2 +
4

m
‖∇(nm/2)‖2 + ‖[f(n) lnn]−‖L1

≤ C(1 + ‖n‖2 + ‖nm/2‖2 + ‖∇φ‖2L∞)

×

1 +K8 + ‖∇c‖2 +

∫
Ω

n lnndx+ 3‖〈·〉n‖L1 +K2‖u‖2
 . (4.5)

Gronwall’s lemma, (4.3), (4.4) and (3.33) imply (3.35), (3.36) and (3.2).
In the whole-plane case, the problem possesses a unique global regular solution:

Theorem 4.2. Let Ω = R2, m = 1, f , χ and k are C3-smooth, f ′(y) + |f ′′(y)| ≤ C for
y ≥ 0, ∇φ ∈ W 2

∞ (and independent of t), n0 ∈ H2, c0 ∈ H3, u0 ∈ H3, and the remaining
assumptions of Theorem 4.1 hold. Then there exists a unique classical solution to (1.1)–(1.6),
satisfying

n ≥ 0, c ≥ 0,

n ∈ L∞(0, T ;H2) ∩ L2(0, T ;H3), (4.6)

c ∈ L∞(0, T ;H3) ∩ L2(0, T ;H4), (4.7)

u ∈ L∞(0, T ;H3) ∩ L2(0, T ;H4). (4.8)

Proof. We observe that

(∇ f(n),∇n) = (f ′(n)∇n,∇n) ≤ C‖∇n‖2, (4.9)
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and

(∆ f(n),∆n) = (f ′(n)∆n,∆n) + (f ′′(n)∇n∆n,∇n)

≤ C(∆n,∆n) + C‖∆n‖‖∇n‖2L4
≤ C‖∆n‖2 + C‖∆n‖2‖∇n‖. (4.10)

Having this at hand, one may check that the blow-up criterion

‖∇c‖L2(0,T ;L∞) = +∞ (4.11)

proven in [2] for f ≡ 0 remains valid in our situation, and at the absence of blow-up, i.e.
when

‖∇c‖L2(0,T ;L∞) < +∞, (4.12)

the solution is unique and its regularity is determined by (4.6)– (4.8). The argument showing
that (4.12) follows from (3.2) is a slight variation of the one ending the proof of Theorem
1.3 in [2].

5. Attractors In this section we study the long-time behaviour of problem (1.1)–
(1.5). We restrict ourselves to the supercritical case (cf. Remark 5.2 below). Since we cannot
establish uniqueness of the weak solutions, we treat the question via the theory of trajectory
attractors. More precisely, owing mainly to technical convenience, we use our version of the
theory [22, Chapter 4] instead of more classical approaches of Chepyzhov–Vishik [3] and Sell
[14]. However, we do not know if the latter ones are applicable to (1.1)–(1.5).

In order to simplify the presentation, we consider the autonomous case

∇φ ∈ L∞

(independent of t). However, similar results can be obtained in the non-autonomous case via
employment of the more involved theory of pullback trajectory attractors developed recently
in [18].

We start with recalling some basic framework from [22, Chapter 4].
Let E and E0 be Banach spaces, E ⊂ E0, E is reflexive. Fix some set

H+ ⊂ C([0,+∞);E0) ∩ L∞(0,+∞;E)

of solutions (strong, weak, etc.) for any given autonomous differential equation or boundary
value problem. Hereafter, the set H+ will be called the trajectory space and its elements will
be called trajectories. Generally speaking, the nature of H+ may be different from the just
described one.
Definition 5.1. A set P ⊂ C([0,+∞);E0) ∩ L∞(0,+∞;E) is called attracting (for the
trajectory space H+) if for any set B ⊂ H+ which is bounded in L∞(0,+∞;E), one has

sup
u∈B

inf
v∈P
‖T (h)u− v‖C([0,+∞);E0) →

h→∞
0.

Here T (h) stands for the translation (shift) operator,

T (h)(u)(t) = u(t+ h).

Definition 5.2. A set P ⊂ C([0,+∞);E0) ∩ L∞(0,+∞;E) is called absorbing (for the
trajectory space H+) if for any set B ⊂ H+ which is bounded in L∞(0,+∞;E), there is
h ≥ 0 such that T (t)B ⊂ P for all t ≥ h.
Definition 5.3. A set U ⊂ C([0,+∞);E0)∩L∞(0,+∞;E) is called the minimal trajectory
attractor (for the trajectory space H+) if

i) U is compact in C([0,+∞);E0) and bounded in L∞(0,+∞;E);
ii) T (t)U = U for any t ≥ 0;
iii) U is attracting;
iv) U is contained in any other set satisfying conditions i), ii), iii).
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Definition 5.4. A set A ⊂ E is called the global attractor (in E0) for the trajectory space
H+ if

i) A is compact in E0 and bounded in E;
ii) for any bounded in L∞(0,+∞;E) set B ⊂ H+ the attraction property is fulfilled:

sup
u∈B

inf
v∈A
‖u(t)− v‖E0 →

t→∞
0;

iii) A is the minimal set satisfying conditions i) and ii) (that is, A is contained in every
set satisfying conditions i) and ii)).
Proposition 5.1. Assume that there exists an absorbing set P for the trajectory space H+,
which is relatively compact in C([0,+∞);E0) and bounded in L∞(0,+∞;E). Then there
exists a minimal trajectory attractor U for the trajectory space H+.
Proposition 5.2. If there exists a minimal trajectory attractor U for the trajectory space
H+, then there is a global attractor A for the trajectory space H+, and for all t ≥ 0 one has
A = {ξ(t)|ξ ∈ U}.
Remark 5.1. As a matter of fact, the existence of an absorbing set P implies that U and
A also attract the trajectories in the weak-* topology of L∞(0,+∞;E) and weak topology
of E, resp. The reason is that, for any set B ⊂ H+ which is bounded in L∞(0,+∞;E) and
large h, the sets {T (h)u|u ∈ B} and {u(h)|u ∈ B} are bounded and thus relatively weakly-*
and weakly compact in L∞(0,+∞;E) and E, resp. This simple remark is important since
in the applications the space E0 can be comparatively weird.

We return to the bioconvection model, and make the following assumptions:
a) Ω is bounded.
b) m > d+1

3
.

c) φ ∈ L1, ∇φ ∈ L∞.
d) k, χ and f are continuously differentiable functions, χ′ ≥ 0, k ≥ 0, k(0) = 0.
e) The initial concentration of oxygen does not exceed some constant cO. This unusual

assumption is necessary for the presence of a compact attractor, at least when f(0) = 0.
Indeed, without an assumption of this kind no compact attractor may exist due to the
presence of steady-state solutions (n ≡ 0, c ≡ c0, u ≡ 0) with arbitrarily large constants
c0 independent of x. An alternative (which we do not like) is to fix the initial oxygen
concentration, and to only let n0 and u0 vary.

f) There exists a positive number γ so that

f(y) + 2γy ≤ C, y ≥ 0, (5.1)

Without loss of generality, we may assume that γ is sufficiently small so that

2γ ≤ K1, (5.2)

and
4γ‖u‖2 ≤ ‖∇u‖2, u ∈ V. (5.3)

Let us specify the class of solutions to (1.1)–(1.5) to be considered within this section.
Definition 5.5. A triple (n, c, u) ∈ L∞(0,+∞;L1×H1×H) is an admissible weak solution
to problem (1.1)–(1.5) if it is a weak solution on each bounded interval [0, T ], and it satisfies
the inequalities

‖n‖L∞(t,t+1;L1) + ‖n lnn‖L∞(t,t+1;L1)

+ ‖n‖max(1,m/2)

L∞(t,t+1;Lmax(1,m/2))
+ ‖c‖2L∞(t,t+1;H1) + ‖u‖2L∞(t,t+1;H)

+ ‖n‖2L2(t,t+1;L2) + ‖n[max(4,3m−2)]/2‖L1(t,t+1;L1) + ‖c‖2L2(t,t+1;H2) + ‖u‖2L2(t,t+1;V )

≤ Γ[1 + e−γt(‖n(0)‖L1 + ‖n(0) lnn(0)‖L1

+ ‖n(0)‖max(1,m/2)
Lmax(1,m/2)

+ ‖c(0)‖21 + ‖u(0)‖2)], (5.4)
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‖c(t)‖L∞ ≤ cO (5.5)

for all t ≥ ln(‖n0‖L1
)

γ
, where Γ is a certain constant depending on ∇φ, k, χ, f , cO, γ and m

(it will be defined during the proof of Theorem 5.1).

As the following proposition shows, the class of admissible weak solutions is sufficiently
wide.

Theorem 5.1. Let (n0, c0, u0) be as in Theorem 3.1, and c0 ≤ cO. Then there exists an
admissible weak solution to (1.1)–(1.5) satisfying the initial condition (1.6).

Proof. It suffices to formally establish (5.4) and (5.5) for the solutions of (1.1)–(1.5), and
to pass to the limit as in the proof of Theorem 3.1.

Inequality (5.5) is straightforward, giving also (3.10).

We have

(f(y) + γy) ln y ≤ C, y > 0, (5.6)

and

(f(y) + γy)yp ≤ C, y ≥ 0, (5.7)

for any fixed p > 0. These inequalities follow from the observations that, for large y, f(y)+γy
is negative by virtue of (5.1), whereas, for small y,

(f(y) + γy)− ≤ (f(y)− f(0))− ≤ Cy

by the mean value theorem.

We deduce from (3.3) that

d

dt
‖n(t)‖L1 + γ‖n(t)‖L1 ≤ C, (5.8)

so

‖n(t)‖L1 ≤ C + e−γt‖n0‖L1 . (5.9)

For t ≥ ln(‖n0‖L1
)

γ
, we have

‖n(t)‖L1 ≤ C. (5.10)

Formulas (3.14) and (5.6) imply

d

dt

∫
Ω

n lnndx+
4

m
‖∇(nm/2)‖2 + γ

∫
Ω

n lnn

≤ C +K1‖c‖22 +K4‖n‖2, (5.11)

whereas (3.13) gives
1

2

d

dt
‖u‖2 + ‖∇u‖2 ≤ K9‖n‖2 +

γ

2
‖u‖2. (5.12)

Multiply (5.12) by 2K2e
γt and add with (3.20) and (5.11) multiplied by eγt:

d

dt
[eγt‖∇c(t)‖2] +

d

dt

∫
Ω

eγtn(t, x) lnn(t, x) dx+K2
d

dt
[eγt‖u(t)‖2]

− γeγt‖∇c(t)‖2 −K2γe
γt‖u(t)‖2

+K1e
γt‖c(t)‖22 +K2e

γt‖∇u(t)‖2 +
4eγt

m
‖∇(nm/2)(t)‖2

≤ Ceγt +K10e
γt‖n(t)‖2 +K2γe

γt‖u(t)‖2. (5.13)

Similarly to (3.30), we see that

‖n(t)‖2 ≤ 2

K10m
‖∇(nm/2(t))‖2 + C. (5.14)
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Taking into account (5.3) and (5.2), we conclude that

d

dt
[eγt‖∇c(t)‖2] +

d

dt

∫
Ω

eγtn(t, x) lnn(t, x) dx+K2
d

dt
[eγt‖u(t)‖2]

+
K1e

γt

2
‖c(t)‖22 +

K2e
γt

2
‖∇u(t)‖2 +

2eγt

m
‖∇(nm/2)(t)‖2 ≤ Ceγt. (5.15)

Integration in time implies

eγh‖∇c(h)‖2 +

∫
Ω

eγhn(h, x) lnn(h, x) dx+K2[eγh‖u(h)‖2]

+

h∫
0

K1e
γt

2
‖c(t)‖22 dt+

h∫
0

K2e
γt

2
‖∇u(t)‖2 dt+

h∫
0

2eγt

m
‖∇(nm/2)(t)‖2 dt

≤ C
h∫

0

eγt dt+ ‖c0‖21 + ‖n0 lnn0‖L1 +K2‖u0‖2. (5.16)

Therefore,

‖∇c(h)‖2 +

∫
Ω

n(h, x) lnn(h, x) dx+K2‖u(h)‖2

≤ C + e−γh(‖c0‖21 + ‖n0 lnn0‖L1 +K2‖u0‖2). (5.17)

This inequality, (5.5), (5.9) and (3.33) yield

‖c(h)‖21 + ‖n(h) lnn(h)‖L1 + ‖u(h)‖2

≤ C(1 + e−γh(‖c0‖21 + ‖n0‖L1 + ‖n0 lnn0‖L1 + ‖u0‖2)). (5.18)

Integrating (5.15) from h to h+ 1, we find

eγ(h+1)‖∇c(h+ 1)‖2 +

∫
Ω

eγ(h+1)n(h+ 1, x) lnn(h+ 1, x) dx+K2[eγ(h+1)‖u(h+ 1)‖2]

+

h+1∫
h

K1e
γt

2
‖c(t)‖22 dt+

h+1∫
h

K2e
γt

2
‖∇u(t)‖2 dt+

h+1∫
h

2eγt

m
‖∇(nm/2)(t)‖2 dt

≤ C
h+1∫
h

eγt dt+ ‖c(h)‖21 + ‖n(h) lnn(h)‖L1 +K2‖u(h)‖2. (5.19)

Due to (3.33), (5.14) and (5.18), we arrive at

eγ‖∇c(h+ 1)‖2 + eγ‖n(h+ 1) lnn(h+ 1)‖L1 +K2e
γ‖u(h+ 1)‖2

+
K1

2

h+1∫
h

‖c(t)‖22 dt+
K2

2

h+1∫
h

‖∇u(t)‖2 dt+K10

h+1∫
h

‖n‖2 dt

≤ C(1 + e−γh(‖c0‖21 + ‖n0‖L1 + ‖n0 lnn0‖L1 + ‖u0‖2)). (5.20)
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Let m > 2. Then (3.42) and (5.7) imply

2

m

d

dt
‖n‖m/2Lm/2

+ γ‖n‖m/2Lm/2
+

8m(m− 2)

(3m− 2)2
‖∇(n

3m−2
4 )‖2

≤ C(1 + ‖∇c‖2 + ‖∇(nm/2)‖2). (5.21)

This, (5.16) and (3.33) yield (by [3, p. 35])

‖n(h)‖m/2Lm/2
≤ e−γmh/2‖n0‖m/2Lm/2

+ C

h∫
0

eγm(t−h)/2(1 + ‖c(t)‖22 + ‖∇(nm/2)(t)‖2) dt

≤ e−γh‖n0‖m/2Lm/2
+ C

h∫
0

eγ(t−h)(1 + ‖c(t)‖22 + ‖∇(nm/2)(t)‖2) dt

≤ C(1 + e−γh(‖n0‖m/2Lm/2
+ ‖c0‖21 + ‖n0‖L1 + ‖n0 lnn0‖L1 + ‖u0‖2)). (5.22)

Now, integration of (5.21) from h to h+ 1 gives

h+1∫
h

‖∇(n
3m−2

4 )(t)‖2 dt

≤ C(1 + e−γh(‖n0‖m/2Lm/2
+ ‖c0‖21 + ‖n0‖L1 + ‖n0 lnn0‖L1 + ‖u0‖2)). (5.23)

Similarly to (3.45), we deduce

h+1∫
h

‖n(3m−2)/2(t)‖L1 dt

≤ C(1 + e−γh(‖n0‖m/2Lm/2
+ ‖c0‖21 + ‖n0‖L1 + ‖n0 lnn0‖L1 + ‖u0‖2)). (5.24)

In view of (5.9), (5.18), (5.20), (5.22), (5.24) and (5.3), there exists Γ such that (5.4)
holds true.

We are going to construct the minimal trajectory attractor and the global attractor for
problem (1.1)–(1.5). In the sequel, we assume that

|f(y)| ≤ C(ym + 1), y ≥ 0, (5.25)

and m > 2. It seems that other supercritical values of m can also be treated, even without
(5.25), although m = 2 may be troublesome. For this purpose, one should observe that the
major part of the considerations in [22, Chapter 4] and [18] remains valid for non-reflexive
E.

We let

E = Lm/2 ×H1 ×H

and

E0 = W−δm/2 ×H
1−δ × V ∗δ ,

where δ ∈ (0, 1] is a fixed number. The trajectory space H+ is the set of all admissible
weak solutions to (1.1)–(1.5). It is contained in L∞(0,+∞;E). Moreover, without loss of
generality we may assume that it is contained in C([0,+∞); (W 1

∞)∗ × (H1)∗ × V ∗). By the
Lions-Magenes lemma [22, Lemma 2.2.6], L∞(0,+∞;E)∩C([0,+∞); (W 1

∞)∗×(H1)∗×V ∗) ⊂
Cw([0,+∞);E). Since the embedding E ⊂ E0 is compact, H+ lies in C([0,+∞);E0).
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Lemma 5.2. The time derivatives of admissible weak solutions satisfy the estimate

‖n′‖
L 3

2
− 1

m
(t,t+1;W−2

1 )
+ ‖c′‖2L2(t,t+1;(H1)∗) + ‖u′‖2L4/3(t,t+1;V ∗)

≤ Ψ(‖n‖L2(t,t+1;L2), ‖n‖L(3m−2)/2(t,t+1;L(3m−2)/2),

‖c‖L∞(t,t+1;H1), ‖u‖L∞(t,t+1;H), ‖u‖L2(t,t+1;V )) (5.26)

with some continuous function Ψ independent of t ≥ 0.
Theorem 5.3. The trajectory space H+ possesses a minimal trajectory attractor and a global
attractor.

Proof. Due to Propositions 5.1 and 5.2, it suffices to find an absorbing set for the trajec-
tory spaceH+, which is relatively compact in C([0,+∞);E0) and bounded in L∞(0,+∞;E).
Consider the set P of all triples (n, c, u) ∈ C([0,+∞);E0) ∩ L∞(0,+∞;E) such that (5.26)
and

‖n‖L∞(t,t+1;L1) + ‖n lnn‖L∞(t,t+1;L1)

+ ‖n‖max(1,m/2)

L∞(t,t+1;Lmax(1,m/2))
+ ‖c‖2L∞(t,t+1;H1) + ‖u‖2L∞(t,t+1;H)

+ ‖n‖2L2(t,t+1;L2) + ‖n(3m−2)/2‖L1(t,t+1;L1)

+ ‖c‖2L2(t,t+1;H2) + ‖u‖2L2(t,t+1;V ) ≤ 2Γ, (5.27)

hold for every t ≥ 0.
It is an absorbing set for the trajectory space H+ and is bounded in L∞(0,+∞;E). By

the Aubin–Lions–Simon lemma, the set {y|[0,M ], y ∈ P} is relatively compact in C([0,M ];E0)
for any M > 0. This implies (cf. [22, p. 183]) that P is relatively compact in C([0,+∞);E0).

Remark 5.2. Observe that (4.1) implies (5.1) for all positive γ, in particular, for the
ones at which (5.3) and (5.2) hold true. Thus, one can expect existence of attractors in the
subcritical case. We leave it as an open problem.
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