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E. Gonçalves
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1 Introduction

The INGARCH models, which constitute an integer-valued counterpart to the
conventional generalized autoregressive conditional heteroskedasticity mod-
els, were introduced by Heinen (2003); Ferland et al. (2006). Instead of con-
sidering the conditional variances as in the conventional GARCH model, they
assume the conditional means Mt := E[Xt | Xt�1, . . .] to satisfy a linear re-
cursion,

Mt = ↵0 +
Pp

i=1 ↵i Xt�i +
Pq

j=1 �j Mt�j , (1)

where ↵0 > 0 and ↵1, . . . ,↵p,�1, . . . ,�q � 0. Having specified the conditional
mean, the most common type of conditional distribution is the Poisson one,
i. e., Xt ⇠ Poi(Mt), leading to the Poisson INGARCH model, where exis-
tence and strict stationarity with finite first and second order moments can be
shown under the condition

Pp
i=1 ↵i +

Pq
j=1 �j < 1 (Ferland et al., 2006). The

Poisson INGARCH model was further investigated by several authors includ-
ing Fokianos et al. (2009); Weiß (2009); Neumann (2011). But also di↵erent
choices for the conditional distribution have been considered in the literature,
see, e. g., Xu et al. (2012); Zhu (2012); Gonçalves et al. (2015a,b) and the
discussion below. The INGARCH models exhibit an ARMA-like autocorrela-
tion structure, and they are particularly well-suited for time series of counts
showing overdispersion, i. e., which have a variance larger than the mean. In
particular, the case q = 0, referred to as an INARCH(p) model, has the same
autocorrelation structure as a usual AR(p) model. So the INARCH model,
which is the main focus of the present work, constitutes a count-data type of
autoregressive model.

The standard INARCH model has a conditional Poisson distribution and is
therefore conditionally equidispersed. Its unconditional distribution, however,
exhibits overdispersion, where the degree of overdispersion depends on the de-
pendence parameters ↵1, . . . ,↵p. To overcome this limitation, Xu et al. (2012)
proposed the family of dispersed INARCH models (DINARCH), which again
assume a linear relationship for the conditional mean, but with an additional
scaling factor ✓ > 0 for the conditional variance:

Mt = ↵0 +
Pp

i=1 ↵iXt�i, V [Xt | Xt�1, . . .] = ✓Mt. (2)

So the standard Poisson INARCH model is an instance of the DINARCH
model with ✓ = 1. A more comprehensive instance of the DINARCH model
is obtained from a family of INGARCH models that was recently developed
by Gonçalves et al. (2015a), who proposed to use a conditional compound
Poisson (CP) distribution (Johnson et al., 2005). The CP-INARCH model to
be considered in the sequel is defined by the conditional probability generating
function (pgf)

pgfXt|Xt�1,...(z) = exp
⇣

Mt
H0(1)

�
H(z)� 1

�⌘
with Mt according to (2), (3)

where H(z) denotes the pgf of the compounding distribution (assumed to be
normalized to H(0) = 0 for uniqueness). From Theorem 5 in Gonçalves et
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al. (2015a), we know that the above condition
Pp

i=1 ↵i < 1 again guarantees
the existence of a strictly stationary and ergodic solution to the CP-INARCH
model (3), and this solution has finite first and second order moments. The
CP-INARCH model constitutes an instance of the DINARCH model, where

V [Xt | Xt�1, . . .] = Mt

�
1 +H 00(1)/H 0(1)

�
| {z }

=✓

. (4)

Example 1 (Special CP-INARCH Models) Choosing H(z) = z, we obtain the
standard Poisson INARCH model. But also the NB-INARCH(p) model (nega-
tive binomial) proposed by Xu et al. (2012) is a special type of CP-INARCH(p)
model, where the compounding distribution is a log-series distribution (John-
son et al., 2005),

H(z, ✓) = 1�
ln
�
✓ + (1� ✓)z

�

ln ✓
with H 0(1, ✓) = �1� ✓

ln ✓
, H 00(1, ✓) =

(1� ✓)2

ln ✓
.

(5)
Hence, we simply have 1 + H 00(1, ✓)/H 0(1, ✓) = ✓. Further examples include
the INARCH model proposed by Zhu (2012) having a conditional generalized
Poisson (GP) distribution, and the one by Gonçalves et al. (2015b) having
a conditional Neyman type-A (NTA) distribution. The latter has a Poisson
compounding structure: the NTA(µ/�, �)-distribution is defined by the pgf
(Johnson et al., 2005)

pgf(z) = exp

✓
µ

�

�
e�(z�1) � 1

�◆
= exp

✓
µ
1� e��

�

⇣e�z � 1

e� � 1
� 1
⌘◆

, (6)

and for the NTA-INARCH model, the mean parameter µ is replaced by Mt.
The compounding pgf, H(z,�) = (e�z � 1)/(e� � 1) with H(k)(z,�) =
�k e�z/(e� � 1), is the one from the zero-truncated Poisson distribution and
therefore satisfies the normalization constraint H(0,�) = 0. In particular, we
have 1 +H 00(1,�)/H 0(1,�) = 1 + �.

In the sequel, we shall consider the problem of distinguishing between the
simple Poisson INARCH model and true CP-INARCH model, i. e., we are
confronted with the following hypotheses:

H0 : (Xt)Z is a Poisson INARCH process (i. e., H(z) = z);

H1 : (Xt)Z is a true CP-INARCH process (i. e., H(z) 6= z).
(7)

Note that hypotheses (7) refer to the conditional process distribution (given
the past). Therefore, such tests as proposed by Lee et al. (2017); Weiß et al.
(2017), which test for marginal overdispersion or zero inflation (with the null
being a marginal Poisson distribution), are not reasonable in our setup.

In Section 2, we develop a general approach for analyzing the conditional
compounding structure of a CP-INARCH model. This approach is then used
in Section 3 to develop a test procedure for the INARCH model, where the
test statistic involves the factorial moment of order r of Xt. For first-order
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autoregression, the normality of the test statistics’ asymptotic distribution
under the null hypothesis (7) is established either in the case of specified
parameters, or in that one, important in practice, where such parameters are
consistently estimated. As the test statistics’ law involves the moments of
inverse conditional means of the Compound Poisson INGARCH process, the
analysis of their existence and calculation is performed by two approaches.
For higher-order autoregressions, a bootstrap implementation is presented.
In Section 4, a simulation study is presented illustrating the finite-sample
performance of this test methodology in what concerns its size and power for
di↵erent values of r. Also a real-data example is provided. Section 5 concludes,
and Appendix A includes the detailed derivations.

2 Analyzing the Compounding Structure of CP-INARCH Models

Given the past observations Xt�1, . . ., the conditional CP model in (3) implies
that first a stopping count Nt is generated according to Poi

�
Mt/H

0(1)
�
, and

then (independently) the Nt i.i.d. counts Yt,1, . . . , Yt,Nt according to the com-
pounding model having the pgf H(z), also see Johnson et al. (2005). The next
observation is obtained as Xt = Yt,1 + . . .+ Yt,Nt .

To distinguish between the null hypothesis H0 and the alternative hypothesis
H1 according to (7), information about H(z) is required, the unique pgf of
the Yt,i. In fact, it su�ces to check if the mean H 0(1) of the compounding
distribution is equal to 1 (H0) or larger than 1 (H1). Hence, the mean statistic

1

T

TX

t=1

Yt,1 + . . .+ Yt,Nt

Nt
=

1

T

TX

t=1

Xt

Nt

would be a reasonable candidate to infer H 0(1). But we do not observe Nt in
practice, we only know that it has meanMt/H

0(1). Therefore, we may consider
a slightly modified version,

1

T

TX

t=1

Xt

Mt
,

which we expect to give values close to 1. Note that the summands Xt/Mt are
just the residuals "t as defined in Zhu & Wang (2010). To be more precise, for
an underlying INARCH(p) model structure, the statistic

bCp :=
1

T � p

TX

t=p+1

Xt

Mt
=

1

T � p

TX

t=p+1

Xt

↵0 +
Pp

i=1 ↵iXt�i
(8)

could be computed from the available data X1, . . . , XT and from the param-
eters ↵0, . . . ,↵p of the null model. Does this statistic allow to distinguish
between H0 and H1?
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Since the conditional mean E[Xt | Xt�1, . . .] = Mt for any CP-INARCH pro-
cess according to (2), we necessarily have

E


Xt

Mt

�
= 1, Cov


Xt

Mt
,
Xt�k

Mt�k

�
= 0 for k � 1,

which immediately follows by applying the laws of total expectation and co-
variance. For the variance, we obtain

V


Xt

Mt

�
= V


E[Xt | Xt�1, . . .]

Mt

�
+ E


V [Xt | Xt�1, . . .]

M2
t

�

= 0 +

✓
1 +

H 00(1)

H 0(1)

◆
E


1

M0

�

because of (4) and because of stationarity. Here, E
⇥
M�1

0

⇤
is an inverse mo-

ment with 0 < M�1
0  1/↵0. Altogether, the summands in (8) are always

uncorrelated such that we finally obtain:

E
⇥ bCp

⇤
= 1, V

⇥ bCp

⇤
=

1

T � p

✓
1 +

H 00(1)

H 0(1)

◆
E


1

M0

�
. (9)

(9) implies that the variance of bCp is inflated by 1+H 00(1)/H 0(1) (compared to

the null model with H 00(1) = 0). But the mean of bCp is always 1, independent
of the type of CP-INARCH(p) model.

Therefore, we consider a higher-order extension of the test statistic bCp from
(8) such that also its mean is a↵ected if violating H0. Considering that the
rth factorial moment (r 2 N) of the Poisson distribution Poi(µ) just equals µr

(Johnson et al., 2005), it follows that

E
⇥
(Xt)(r) | Xt�1, . . .

⇤
= Mr

t ,

where x(r) = x · · · (x� r + 1) denotes the falling factorial. So we define

bCp; r :=
1

T � p

TX

t=p+1

(Xt)(r)
Mr

t

=
1

T � p

TX

t=p+1

Xt(Xt � 1) · · · (Xt � r + 1)�
↵0 +

Pp
i=1 ↵iXt�i

�r ,

(10)
where bCp = bCp; 1. If (Xt)Z is Poisson INARCH(p) with given parameter values
for ↵0,↵1, . . . ,↵p (i. e., if H0 holds), we obtain with analogous computations
as for (9) that

E


(Xt)(r)
Mr

t

�
= 1, Cov


(Xt)(r)
Mr

t

,
(Xt�k)(r)
Mr

t�k

�
= 0 for k � 1.

To compute the variance, we need the following identity for falling factorials:

x2
(r) =

Pr
k=0

�
r
k

�2
k!x(2r�k).
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Then we obtain

V


(Xt)(r)
Mr

t

�
= V

"
E
⇥
(Xt)(r) | Xt�1, . . .

⇤

Mr
t

#
+ E

"
V
⇥
(Xt)(r) | Xt�1, . . .

⇤

M2r
t

#

= 0 + E

"
E
⇥
(Xt)2(r) | Xt�1, . . .

⇤

M2r
t

� 1

#

=

 
rX

k=0

✓
r

k

◆2

k!E
⇥
M�k

t

⇤
!

� 1 =
rX

k=1

✓
r

k

◆2

k!E
⇥
M�k

t

⇤
. (11)

Overall, under H0, i. e., for a Poisson INARCH(p) model, we obtain that

E
⇥ bCp; r

⇤
= 1, V

⇥ bCp; r

⇤
=

1

T � p

rX

k=1

✓
r

k

◆2

k!E
⇥
M�k

t

⇤
. (12)

The following example considers the case of the alternative H1.

Example 2 (Second Order Statistic) Let us consider the second order statistic
bCp; 2, i. e., the case r = 2. Under H0, (12) implies

E
⇥ bCp; 2

⇤
= 1, V

⇥ bCp; 2

⇤
=

1

T � p

⇣
4E
⇥
M�1

0

⇤
+ 2E

⇥
M�2

0

⇤⌘
.

If, in contrast, the Poisson assumption is violated (H1), then also the mean be-
comes sensitive to such a violation. For an underlying CP-INARCH(p) model,
we have

E
⇥
(Xt)(2) | Xt�1, . . .

⇤

= V [Xt | Xt�1, . . .] + E[Xt | Xt�1, . . .]2 � E[Xt | Xt�1, . . .]

(4)
= Mt

✓
1 +

H 00(1)

H 0(1)

◆

| {z }
=✓

+M2
t �Mt = M2

t + (✓ � 1)Mt,

such that

E
⇥ bCp; 2

⇤
= E


(Xt)(2)
M2

t

�
= 1 + (✓ � 1)E

⇥
M�1

0

⇤
.

Therefore, bCp; 2 might be a useful statistic to distinguish between H0 and H1

in practice.
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3 Testing the CP-INARCH’s Compounding Structure

In the following, we use the statistic bCp; r from (10) to test hypotheses (7). Note
that its computation requires to specify the parameter values for ↵0,↵1, . . . ,↵p;
so if no such values are available, they need to be estimated from the same time
series data that is also used for computing the test statistic. To be able to exe-
cute the test (in either scenario), knowledge about the distribution of bCp; r un-
der the null is required. In Sections 3.1 and 3.2, we show that in the first-order
autoregressive case (p = 1), even a closed-form analytic solution for bC1; r’s
asymptotic distribution can be derived, provided that the asymptotics of the
used estimators are available. In this context, we shall alos discuss certain
inverse moments of a Poisson INARCH(1) process, see Section 3.3. In gen-
eral, i. e., for p > 1 or for di↵erent estimators, a bootstrap implementation is
required, which is discussed in Section 3.4.

3.1 Case of Specified Parameters

In Sections 3.1 to 3.3, we concentrate on the case of first-order autoregression,
i. e., on the case p = 1. According to (7), H0 assumes the two-parametric
Poisson INARCH(1) model given by

Xt

�� Xt�1, Xt�2, . . . ⇠ Poi(↵0 + ↵1 ·Xt�1). (13)

Though being a rather simple model, it has already found a number of real
applications, e. g., to monthly claims counts (Weiß, 2009), to download counts
(Zhu &Wang, 2010), to counts of iceberg orders (Jung & Tremayne, 2011), and
to monthly strike counts data (Weiß, 2010). A Poisson INARCH(1) process is
a stationary, ergodic Markov chain (Ferland et al., 2006; Zhu & Wang, 2011)
with simple Poisson probabilities as the transition probabilities. According
to Neumann (2011), it is �-mixing (and hence also ↵-mixing) with exponen-
tially decreasing weights. All moments of a Poisson INARCH(1) process exist
(Ferland et al., 2006), and they can be determined according to the recursive
scheme provided by Weiß (2009, 2010), see equation (22) below.

For the first-order version of the DINARCH model (2), unconditonal mean
and variance are given by (Xu et al., 2012, 4.3)

µ =
↵0

1� ↵1
and �2 =

✓

1� ↵2
1

· ↵0

1� ↵1
. (14)

So ✓ allows to control the degree of overdispersion independently of ↵1.

Let us investigate the distribution of the statistics bC1; r introduced in the
previous Section 2 under H0, in the case of the Poisson INARCH(1) model
with specified parameter values for ↵0,↵1. We denote the (inverse) moments

qk,l := qk,l(↵0,↵1) := E
h Xk

0

(↵0 + ↵1 X0)l

i
for k, l � 0. (15)
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The moments qk,l from (15) are just the stationary marginal moments for
l = 0, and for l > 0, they are easily computed numerically from the stationary
marginal distribution of the Poisson INARCH(1) process (Xt)Z, see Section 3.3
below. The qk,l allow us to rewrite (12) as

E
⇥ bC1; r

⇤
= 1, V

⇥ bC1; r

⇤
= 1

T�1

Pr
k=1

�
r
k

�2
k! q0,k. (16)

As stated above, we know that the null model, the Poisson INARCH(1) model,
is ↵-mixing with exponentially decreasing weights and has existing moments
up to any order. So we apply the central limit theorem of Ibragimov (1962) to
obtain that the statistics bC1; r are even asymptotically normally distributed.
Hence, one could test the null of a Poisson INARCH(1) model against the al-
ternative of a true CP-INARCH(1) model based on the resulting approximate
normal distribution for bC1; r.

These asymptotics, however, only hold for the case of specified H0 parameters,
since these are required to compute the statistics bC1; r. In practice, however,
one usually has to estimate these parameters. Plugging-in these estimators
into the definition of bC1; r, we obtain a statistic with a di↵erent asymptotic
distribution than the one mentioned before. So to make the test applicable in
practice, further investigations are required.

3.2 Case of Estimated Parameters

To derive an asymptotic approximation to the distribution of bC1; r under H0

but in the presence of estimated parameters, say, ↵̂0 and ↵̂1, we shall look at
the first-order Taylor approximation of

bC1; r(↵0,↵1) =
1

T � 1

TX

t=2

(Xt)(r)
(↵0 + ↵1 Xt�1)r

,

which has the partial derivatives

@

@↵0

bC1; r =
1

T � 1

TX

t=2

�r (Xt)(r)
(↵0 + ↵1 Xt�1)r+1

,

@

@↵1

bC1; r =
1

T � 1

TX

t=2

�r (Xt)(r) Xt�1

(↵0 + ↵1 Xt�1)r+1
. (17)

By conditioning, it follows that

E
h (Xt)(r)
(↵0 + ↵1 Xt�1)r+1

i
= q0,1, E

h (Xt)(r) Xt�1

(↵0 + ↵1 Xt�1)r+1

i
= q1,1, (18)

where we used the abbreviation from (15). So we approximate bC1; r(↵̂0, ↵̂1) by

eC1; r(↵̂0, ↵̂1) := bC1; r(↵0,↵1) � r q0,1
�
↵̂0 � ↵0

�
� r q1,1

�
↵̂1 � ↵1

�
, (19)
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and an approximation of the distribution of bC1; r(↵̂0, ↵̂1) is obtained by deriv-

ing the distribution of eC1; r(↵̂0, ↵̂1).

To obtain a closed-form analytic solution, we shall use the usual moment
estimators ↵̂0 := X̄

�
1 � ⇢̂(1)

�
and ↵̂1 := ⇢̂(1), the asymptotic distribution of

which is studied in Weiß & Schweer (2016). These estimators are also robust
with respect to violating H0, as they do not rely on a conditional Poisson
distribution (which would be the case for maximum likelihood estimators).
Using the bias approximations for ↵̂0, ↵̂1 given there, it immediately follows
that

E
⇥ bC1; r(↵̂0, ↵̂1)

⇤
⇡ E

⇥ bC1; r(↵0,↵1)
⇤
� r q0,1 E

⇥
↵̂0 � ↵0

⇤
� r q1,1 E

⇥
↵̂1 � ↵1

⇤

⇡ 1 � r
q0,1
T � 1

✓
1 + 3↵1

1� ↵1
↵0 +

2↵2
1(1 + 2↵2

1)

1� ↵3
1

◆

+ r
q1,1
T � 1

✓
1 + 3↵1 +

↵1

↵0

⇣
1 +

2↵1(1 + 2↵2
1)

1 + ↵1 + ↵2
1

⌘◆
. (20)

The derivation of the asymptotic variance of the approximate quantity (19),
however, is more demanding, see Appendix A.1 for the details. We finally
obtain the approximate variance �2

1; r/(T � 1) with

�2
1; r =

rX

k=1

✓
r

k

◆2

k! q0,k + r2 q20,1
↵0

1� ↵1

⇣
↵0(1 + ↵1) +

1 + 2↵4
1

1 + ↵1 + ↵2
1

⌘

� 2r2 q0,1 + r2 q21,1 (1� ↵2
1)
⇣
1 +

↵1(1 + 2↵2
1)

↵0(1 + ↵1 + ↵2
1)

⌘

� 2r2 q0,1q1,1
⇣
↵0(1 + ↵1) +

(1 + 2↵1)↵3
1

1 + ↵1 + ↵2
1

⌘
. (21)

So the test statistics bC1; r(↵̂0, ↵̂1) can now be applied in practice by choosing
the critical values from a normal distribution with mean and variance given
according to (20) and (21), respectively.

3.3 Inverse Moments

Before investigating the finite-sample performance of the proposed test, some
background on the (numerical) computation of the Poisson INARCH(1)’s in-
verse moments is required. Equation (15) defines the moments

qk,l = E
h Xk

0

(↵0 + ↵1 X0)l

i
for k, l � 0,

which are just the stationary marginal moments µk for l = 0. These can be
computed exactly in two steps. First, the marginal cumulants k are calculated
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according to the scheme provided by Weiß (2009, 2010). Denoting the Stirling
numbers of the first kind (Douglas, 1980, Appendix 9.1) by sk,j , it holds that

1 = ↵0
1�↵1

, k = �(1� ↵k
1)

�1 ·
Pk�1

j=1 sk,j · j for k � 2. (22)

In the second step, these cumulants are transformed into the moments µk via
(Smith, 1995)

µk =
Pk�1

j=0

�
k�1
j

�
k�j µj for k � 1. (23)

So it remains to consider the case l > 0. Applying the binomial sum formula
to Xk

0 = ↵�k
1

�
(↵0 + ↵1X0)� ↵0

�
k, we obtain

qk,l =
kX

j=0

✓
k

j

◆
(�1)k�j ↵

k�j
0

↵k
1

· E
⇥
(↵0 + ↵1 X0)

j�l
⇤
, (24)

where E
⇥
(↵0 + ↵1 X0)

j�l
⇤

=

(
q0,l�j if j < l,
Pj�l

i=0

�
j�l
i

�
↵j�l�i
0 ↵i

1 µi if j � l,

where the last expression again follows from the binomial sum formula. So
equation (24) implies that qk,l can be traced back to either the usual mo-
ments µk or to purely inverse moments of the form q0,l. So it su�ces to discuss
how to obtain the q0,l = E

⇥
(↵0 + ↵1 X0)�l

⇤
for l � 1, the value of which is

obviously bounded by 0 < q0,l < ↵�l
0 .

If only being interested in the numerical computation of q0,l (as required for ap-

plying the proposed bC1; r-test), the Markov chain approximation (Weiß, 2010)
can be used: we compute the Poisson INARCH(1)’s transition probabilities

pr|s := P (Xt = r | Xt�1 = s) = exp (�↵0 � ↵1 s) (↵0 + ↵1 s)
r / r!

for all 0  r, s  M (with M su�ciently large), define the matrix PM :=
(pr|s)r,s=0,...,M , and numerically solve the eigenvalue problem PM p = p (in-
variance equation) in p. The normalized eigenvector p (i. e., with non-negative
entries summing up to one) is used as an approximation for the marginal
probabilities

�
P (Xt = 0), . . . , P (Xt = M)

�>, and q0,l is approximated by the
sum

q0,l ⇡
MX

r=0

1

(↵0 + ↵1 r)l
· pr. (25)

The calculation of q0,l may also be performed following the method provided
in Adell et al. (1996) to calculate negative moments of nonnegative random
variables, and taking into account that the distribution of Xt given all the
past is Poisson with mean Mt = ↵0+↵1Xt�1. Let us begin by stating a result
relating the radius of convergence of the moment generating function of M1

with the values of the coe�cient ↵1.

Lemma 1 If the moment generating function of M1, mgfM1
(u) = E

⇥
exp(uM1)

⇤
,

is defined for every u 2 (u1;u2), where u1 < 0 < u2 with min {�u1, u2} = b,

then ↵1 < ln(b+1)
u for all 0 < u < b.
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Proof For u 2 (�b; b), we have

mgfM1
(u) = E

⇥
exp(uM1)

⇤
= E

h
E
⇥
exp

�
u (↵0 + ↵1X0)

�
| X�1

⇤i

= exp(u↵0)E
⇥
exp

�
M0 (exp(u↵1)� 1)

�⇤

= exp(u↵0)mgfM0

�
exp(u↵1)� 1

�
.

Then

�b < exp (u↵1)� 1 < b , �1 < u↵1 < ln (b+ 1) ,

and for all 0 < u < b, we obtain that ↵1 < ln(b+1)
u .

To find q0,l = E[M�l
t ] for l � 1, with Mt = ↵0 + ↵1Xt�1 = E[Xt | Xt�1], we

note that

q0,l = E


1

M l
t

�
=

1

↵l
0

E

2

4E

2

4
 

↵0
↵1

↵0
↵1

+Xt�1

!l

| Xt�2

3

5

3

5

=
1

↵l
1

E

2

64
+1X

n=0

(�1)n Mn
t�1

n!

nX

j=0

✓
n

j

◆
(�1)j

⇣
↵0
↵1

+ j
⌘l

3

75 .

Let us now consider that the moment generating function of M1, mgfM1
(u) =

E
⇥
exp(uM1)

⇤
, is defined for every u 2 (u1;u2) where u1 < 0 < u2 such that

the radius of convergence satisfies min {�u1, u2} = b > 2 (also see Lemma 1).
With these conditions, we have (see Appendix A.2)

q0,l = E


1

M l
t

�
=

1

↵l
1

+1X

n=0

(�1)n

n!
E[Mn

t�1]
nX

j=0

✓
n

j

◆
(�1)j

⇣
↵0
↵1

+ j
⌘l , (26)

that is, the change between the expectation and the infinite sum is allowed.
So according to the previous Lemma 1, ↵1 < ln(b+1)

u for all 0 < u < b. Thus,

if ↵1 � ln(b+1)
u > ln(b+1)

b with b > 2, the equality (26) may not be true. In
the Figure 1, we plot b according to the equation ln(b + 1)/b = ↵1 (lower
bound for the radius of convergence) against ↵1. This value b decreases with
increasing ↵1 and falls below 2 for ↵1 = ln(3)/2 ⇡ 0.549; the dashed line refers
to the above condition b > 2.

In Table 1, we present the values for q0,l with l = 1, 2, 3, 4 obtained with the
two approaches (25) and (26). In the latter case, the summation in n was
stopped if the di↵erence between successive summands felt below 10�8, or if
100 summands were reached. In the left block, the marginal mean is 2.5, in
the right, it is 5.0. We note the non-convergence of the approach (26) only for

↵1 > 0.6 > ln(3)
2 .
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Fig. 1 Solution b of equation ln(b+ 1)/b = ↵1 against ↵1.

↵0 ↵1 l q0,l by (25) n. s. q0,l by (26) ↵0 ↵1 l q0,l by (25) n. s. q0,l by (26)

2 0.2 1 0.4064081 11 0.4064081 4 0.2 1 0.2016350 11 0.2016350
2 0.1676993 11 0.1676993 2 0.0409823 12 0.0409823
3 0.0702093 12 0.0702093 3 0.0083949 12 0.0083949
4 0.0298009 12 0.0298009 4 0.0017328 12 0.0017328

1.5 0.4 1 0.4299554 18 0.4299554 3 0.4 1 0.2075920 20 0.2075920
2 0.1980567 19 0.1980567 2 0.0447126 21 0.0447126
3 0.0972296 20 0.0972296 3 0.0099853 22 0.0099853
4 0.0505194 20 0.0505194 4 0.0023098 22 0.0023098

1 0.6 1 0.4973967 48 0.4973967 2 0.6 1 0.2238847 56 0.2238847
2 0.3046319 52 0.3046320 2 0.0563205 60 0.0563205
3 0.2212899 55 0.2212899 3 0.0159104 62 0.0159104
4 0.1815225 57 0.1815225 4 0.0050165 64 0.0050165

0.5 0.8 1 0.8060558 100 2.247 · 1026 1 0.8 1 0.2940770 100 2.091 · 1027
2 1.1167550 100 1.706 · 1027 2 0.1322086 100 1.269 · 1028
3 1.9693380 100 7.069 · 1027 3 0.0845151 100 4.043 · 1028
4 3.7735840 100 2.155 · 1028 4 0.0672318 100 9.050 · 1028

Table 1 Approximations for q0,l with l = 1, 2, 3, 4 with approaches (25) and (26), where
“n. s.” is the number of summands used for (26).

3.4 Bootstrap Implementation

In cases where a closed-form analytic solution for the test statistic’s asymptotic
distribution is not available, it is recommended to use a parametric bootstrap
implementation. So more generally than in Sections 3.1 to 3.3, let us consider
the pth-order autoregressive case together with the statistic bCp; r from (10)
(and appropriate parameter estimators) to test the hypotheses (7). Let B
denote the number of bootstrap replications.

Solution 1 Let x1, . . . , xT be the available time series stemming from an
INARCH(p) process.

1. Assuming that the null holds, i. e., that the data generating mechanism is
a Poisson INARCH(p) process, estimate the parameters ↵0,↵1, . . . ,↵p as
↵̂0, ↵̂1, . . . , ↵̂p.

Compute the test statistic bCp; r(↵̂0, . . . , ↵̂p).
2. Using a Poisson INARCH(p) model with parameter values ↵̂0, ↵̂1, . . . , ↵̂p

as the data generating mechanism,
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– generate B bootstrap replicates x⇤
b,1, . . . , x

⇤
b,T of the time series, b =

1, . . . , B,
– and compute the respective parameter estimates ↵̂⇤

b,0, . . . , ↵̂
⇤
b,p as well

as test statistics bC⇤
b; p; r(↵̂

⇤
b,0, . . . , ↵̂

⇤
b,p).

3. Determine the critical value(s) from bC⇤
1; p; r, . . . ,

bC⇤
B; p; r, e. g., as the 1� ↵-

quantile in the case of an upper-sided test.
Apply this decision rule to the test statistic bCp; r(↵̂0, . . . , ↵̂p) computed in
Step 1.

In the subsequent simulation study, we shall investigate the finite-sample per-
formance of both the asymptotic implementation and the bootstrap imple-
mentation of our proposed test.

4 Simulation Study and Data Application

To analyze the quality of the approximate distribution (20), (21) of the statis-
tics bC1; r(↵̂0, ↵̂1) as well as the finite-sample performance of the proposed tests,
a simulation study has been done with 10 000 replications per scenario. The
results are discussed in Sections 4.1 and 4.2. The real-data example presented
in Section 4.3 exemplifies the application of the test in practice.

4.1 Performance of Asymptotic Approximation

We first analyze the quality of the approximate distribution (20), (21) of the
statistics bC1; r(↵̂0, ↵̂1). The results shown in Table 2 refer to simulated Poisson
INARCH(1) processes (13) (upper half: µ = 2.5; lower half: µ = 5.0). They
show mean and standard deviation as computed according to the approximate
formulae (20), (21), and compare these values with the corresponding sample
counterparts obtained from simulations. The simulated means are below the
theoretical value C1; r = 1 under the null, but the approximate formula (20)
accounts for the negative bias to some degree. The approximation (21) of the
standard deviation works rather well especially for the second-order statistic
bC1; 2; for higher orders r = 3, 4, the quality of approximation deteriorates with
increasing ↵.

4.2 Performance of bCp; r-Test

The most important criterion for the practitioner are the true rejection rates
(size, power) if applying the proposed test. First, let us continue with the
asymptotic implementation if using bC1; r(↵̂0, ↵̂1) as a test statistic. From each
simulated time series, upper-sided tests on the nominal level 5% were designed
and executed: the null was rejected if bC1; r(↵̂0, ↵̂1) exceeds the critical value
µ̂1; r + z0.95 �̂1; r, where z0.95 denotes the 95%-quantile of the standard normal
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E
⇥ bC1; 2 (̂·)

⇤ p
V
⇥ bC1; 2 (̂·)

⇤
E
⇥ bC1; 3 (̂·)

⇤ p
V
⇥ bC1; 3 (̂·)

⇤
E
⇥ bC1; 4 (̂·)

⇤ p
V
⇥ bC1; 4 (̂·)

⇤

↵0 ↵1 T appr simul appr simul appr simul appr simul appr simul appr simul

2 0.2 100 0.999 0.992 0.058 0.060 0.999 0.976 0.186 0.184 0.998 0.953 0.444 0.426
250 1.000 0.997 0.037 0.037 1.000 0.993 0.118 0.115 0.999 0.985 0.280 0.273
500 1.000 0.999 0.026 0.026 1.000 0.995 0.083 0.082 1.000 0.991 0.198 0.195

1000 1.000 0.999 0.018 0.018 1.000 0.997 0.059 0.058 1.000 0.995 0.140 0.139
1.5 0.4 100 0.996 0.990 0.064 0.066 0.994 0.981 0.206 0.207 0.992 0.964 0.501 0.504

250 0.998 0.997 0.041 0.041 0.997 0.992 0.130 0.130 0.997 0.985 0.316 0.313
500 0.999 0.998 0.029 0.029 0.999 0.995 0.092 0.093 0.998 0.990 0.223 0.225

1000 1.000 0.999 0.020 0.020 0.999 0.998 0.065 0.066 0.999 0.998 0.158 0.161
1 0.6 100 0.982 0.987 0.088 0.091 0.973 0.972 0.269 0.277 0.964 0.946 0.698 0.685

250 0.993 0.996 0.056 0.057 0.989 0.994 0.170 0.174 0.986 0.994 0.440 0.464
500 0.996 0.998 0.039 0.040 0.995 0.994 0.120 0.120 0.993 0.989 0.311 0.310

1000 0.998 0.999 0.028 0.028 0.997 0.997 0.085 0.086 0.996 0.996 0.220 0.234
0.5 0.8 100 0.876 0.958 0.219 0.180 0.813 0.942 0.616 0.840 0.751 0.926 1.933 3.401

250 0.951 0.984 0.138 0.136 0.926 0.977 0.388 0.418 0.901 0.967 1.219 1.472
500 0.975 0.992 0.098 0.098 0.963 0.995 0.274 0.320 0.951 1.010 0.861 1.311

1000 0.988 0.995 0.069 0.069 0.982 0.994 0.194 0.197 0.975 0.996 0.609 0.643

4 0.2 100 1.000 0.995 0.029 0.030 0.999 0.988 0.089 0.088 0.999 0.977 0.196 0.192
250 1.000 0.999 0.018 0.019 1.000 0.997 0.056 0.057 1.000 0.994 0.124 0.124
500 1.000 0.999 0.013 0.013 1.000 0.998 0.040 0.040 1.000 0.996 0.087 0.086

1000 1.000 1.000 0.009 0.009 1.000 0.998 0.028 0.028 1.000 0.996 0.062 0.062
3 0.4 100 0.998 0.996 0.030 0.032 0.997 0.986 0.094 0.093 0.996 0.973 0.207 0.199

250 0.999 0.998 0.019 0.020 0.999 0.995 0.059 0.059 0.999 0.990 0.131 0.128
500 1.000 0.999 0.014 0.014 0.999 0.997 0.042 0.042 0.999 0.995 0.092 0.092

1000 1.000 1.000 0.010 0.010 1.000 0.999 0.030 0.029 1.000 0.998 0.065 0.064
2 0.6 100 0.993 0.994 0.037 0.039 0.990 0.987 0.108 0.114 0.986 0.977 0.242 0.276

250 0.997 0.997 0.023 0.023 0.996 0.995 0.068 0.068 0.994 0.991 0.152 0.151
500 0.999 0.998 0.016 0.016 0.998 0.997 0.048 0.048 0.997 0.995 0.108 0.108

1000 0.999 0.999 0.012 0.012 0.999 0.998 0.034 0.034 0.999 0.998 0.076 0.076
1 0.8 100 0.960 0.984 0.077 0.070 0.940 0.978 0.191 0.215 0.919 0.971 0.455 0.531

250 0.984 0.994 0.048 0.047 0.976 0.992 0.120 0.154 0.968 0.997 0.287 0.772
500 0.992 0.996 0.034 0.034 0.988 0.995 0.085 0.089 0.984 0.996 0.203 0.238

1000 0.996 0.999 0.024 0.025 0.994 0.998 0.060 0.063 0.992 0.999 0.143 0.169

Table 2 Mean and standard deviation of bC1; r(↵̂0, ↵̂1): approximation by (20), (21) vs.
simulated values.

distribution, and where µ̂1; r, �̂1; r were computed according to (20), (21) by
plugging-in the obtained parameter estimates. The fraction of rejections among
the replications was computed for each scenario, which expresses the empirical
size under the null of the Poi-INARCH(1) model, and the empirical power
otherwise. As the alternative model, the NB-INARCH(1) model by Xu et al.
(2012) with di↵erent levels of the dispersion parameter ✓ > 1 was used, see
(5) in Example 1, i. e., the counts were generated according to the recursive
scheme

Xt

�� Xt�1, Xt�2, . . . ⇠ NB

✓
↵0 + ↵1 Xt�1

✓ � 1
,
1

✓

◆
with ✓ > 1. (27)

The obtained results are summarized in Table 3.

If we look at the size values (highlighted in gray) in Table 3, we see that the
empirical size usually agrees quite well with the nominal level 0.05. An excep-
tion is the fourth-order statistic for large ↵ and small T , where the empirical
size values are visibly smaller than 0.05. So up to now, there is not much
di↵erence between the orders r = 2, 3, 4 under the null (except for large ↵).
Hence, the crucial question is about the power of these tests with respect to
the alternative (27). From Table 3, it can be seen that the power values quickly
increase with increasing T , and the power is generally better for lower values
of the dependence parameter ↵1. It can also be seen that the respective power
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bC1; 2(↵̂0, ↵̂1); ✓ = bC1; 3(↵̂0, ↵̂1); ✓ = bC1; 4(↵̂0, ↵̂1); ✓ =
↵0 ↵1 T 1 1.2 1.4 1.6 1 1.2 1.4 1.6 1 1.2 1.4 1.6

2 0.2 100 0.051 0.354 0.720 0.901 0.051 0.328 0.667 0.874 0.051 0.272 0.561 0.786
250 0.049 0.636 0.966 0.999 0.053 0.581 0.947 0.997 0.056 0.478 0.878 0.985
500 0.051 0.874 0.999 1.000 0.052 0.829 0.998 1.000 0.057 0.717 0.988 1.000

1000 0.049 0.989 1.000 1.000 0.055 0.975 1.000 1.000 0.056 0.927 1.000 1.000
1.5 0.4 100 0.053 0.337 0.691 0.893 0.054 0.305 0.644 0.855 0.049 0.244 0.532 0.755

250 0.053 0.608 0.956 0.999 0.055 0.561 0.929 0.996 0.053 0.448 0.848 0.979
500 0.051 0.848 0.999 1.000 0.058 0.805 0.997 1.000 0.060 0.680 0.983 1.000

1000 0.052 0.984 1.000 1.000 0.060 0.969 1.000 1.000 0.061 0.905 1.000 1.000
1 0.6 100 0.063 0.305 0.617 0.830 0.050 0.266 0.579 0.805 0.036 0.193 0.448 0.668

250 0.061 0.522 0.910 0.991 0.060 0.487 0.888 0.987 0.047 0.353 0.760 0.942
500 0.059 0.748 0.993 1.000 0.057 0.722 0.989 1.000 0.048 0.555 0.944 0.997

1000 0.056 0.944 1.000 1.000 0.060 0.932 1.000 1.000 0.058 0.803 0.999 1.000
0.5 0.8 100 0.054 0.206 0.443 0.642 0.040 0.189 0.412 0.617 0.019 0.111 0.277 0.456

250 0.056 0.336 0.695 0.891 0.052 0.325 0.696 0.894 0.025 0.186 0.493 0.745
500 0.057 0.522 0.891 0.985 0.062 0.503 0.896 0.989 0.032 0.294 0.696 0.923

1000 0.056 0.729 0.990 1.000 0.061 0.735 0.993 1.000 0.042 0.457 0.917 0.996

4 0.2 100 0.049 0.362 0.737 0.918 0.048 0.344 0.707 0.905 0.047 0.307 0.647 0.866
250 0.053 0.647 0.972 0.999 0.053 0.621 0.964 0.998 0.057 0.557 0.934 0.995
500 0.050 0.886 1.000 1.000 0.052 0.858 0.999 1.000 0.053 0.801 0.997 1.000

1000 0.048 0.990 1.000 1.000 0.050 0.984 1.000 1.000 0.054 0.967 1.000 1.000
3 0.4 100 0.059 0.358 0.712 0.914 0.050 0.338 0.693 0.901 0.049 0.296 0.627 0.850

250 0.056 0.632 0.968 0.999 0.051 0.610 0.960 0.999 0.054 0.539 0.927 0.995
500 0.053 0.867 0.999 1.000 0.049 0.846 0.999 1.000 0.055 0.788 0.997 1.000

1000 0.053 0.989 1.000 1.000 0.050 0.981 1.000 1.000 0.053 0.960 1.000 1.000
2 0.6 100 0.067 0.334 0.661 0.870 0.054 0.317 0.657 0.867 0.048 0.269 0.574 0.811

250 0.056 0.568 0.942 0.996 0.058 0.565 0.942 0.997 0.053 0.488 0.897 0.991
500 0.051 0.813 0.998 1.000 0.056 0.809 0.998 1.000 0.058 0.730 0.992 1.000

1000 0.058 0.969 1.000 1.000 0.056 0.973 1.000 1.000 0.057 0.941 1.000 1.000
1 0.8 100 0.065 0.239 0.486 0.708 0.054 0.242 0.520 0.760 0.037 0.187 0.421 0.667

250 0.062 0.364 0.747 0.930 0.058 0.410 0.826 0.969 0.043 0.318 0.724 0.927
500 0.056 0.540 0.934 0.996 0.059 0.634 0.974 0.999 0.048 0.508 0.927 0.996

1000 0.060 0.763 0.995 1.000 0.063 0.863 1.000 1.000 0.055 0.745 0.997 1.000

Table 3 Simulated rejection rates for upper-sided test bC1; r(↵̂0, ↵̂1), nominal level 5%,
under H0: Poi-INARCH(1) model (✓ = 1), and H1: NB-INARCH(1) model (✓ > 1).

values are larger in the lower half of the table, where we have a larger marginal
mean. Comparing the power among the di↵erent orders r = 2, 3, 4, Table 3
shows a rather clear picture. The fourth-order test is always worse than the
second-order test, and with very few exceptions (↵0 = 1, ↵1 = 0.8), the same
conclusion also holds between the third- and second-order test. This desirable
increase in the rejection rates with increasing ✓ is caused by increases in both
the mean and the standard deviation of bC1; r(↵̂0, ↵̂1) (the actual values are
omitted in Table 3). Taking these power results together with the described
properties under the null, it appears to be preferable to use the second-order
test bC1; 2(↵̂0, ↵̂1) in practice.

Next, we investigate the bootstrap implementation of the test, as described
in Section 3.4. This approach is computationally much more demanding than
the above asymptotic implementation. So to be able to still manage 10 000
Monte-Carlo replicates, we used the warp-speed method by Giacomini et al.
(2013) to perform the simulation experiments.

As a first experiment, we considered again the first-order autoregressive case
together with moment estimators, but now using the bootstrap implementa-
tion. So while the critical value was computed before as µ̂1; r + z0.95 �̂1; r by
utilizing normality, we now compute it as the 95%-sample quantile from the
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bC1; 2(↵̂0, ↵̂1); ✓ = bC1; 3(↵̂0, ↵̂1); ✓ = bC1; 4(↵̂0, ↵̂1); ✓ =
↵0 ↵1 T 1 1.2 1.4 1.6 1 1.2 1.4 1.6 1 1.2 1.4 1.6

1.5 0.4 100 0.047 0.308 0.660 0.883 0.046 0.292 0.630 0.846 0.046 0.250 0.541 0.753
250 0.050 0.579 0.959 0.998 0.050 0.534 0.927 0.994 0.051 0.424 0.846 0.976
500 0.049 0.842 0.999 1.000 0.047 0.794 0.998 1.000 0.045 0.660 0.980 1.000

1000 0.045 0.982 1.000 1.000 0.044 0.965 1.000 1.000 0.040 0.891 1.000 1.000
0.5 0.8 100 0.063 0.192 0.371 0.540 0.062 0.206 0.414 0.613 0.048 0.201 0.408 0.606

250 0.063 0.296 0.607 0.827 0.057 0.302 0.649 0.854 0.055 0.279 0.610 0.824
500 0.058 0.394 0.808 0.963 0.064 0.415 0.847 0.979 0.062 0.352 0.766 0.954

1000 0.052 0.615 0.969 1.000 0.048 0.641 0.981 1.000 0.048 0.517 0.918 0.998

Table 4 Simulated rejection rates for bootstrap implementation of upper-sided test
bC1; r(↵̂0, ↵̂1), nominal level 5%, under H0: Poi-INARCH(1) model (✓ = 1), and H1: NB-
INARCH(1) model (✓ > 1).

bC1; 2(↵̂0, ↵̂1); ✓ = bC1; 3(↵̂0, ↵̂1); ✓ = bC1; 4(↵̂0, ↵̂1); ✓ =
↵0 ↵1 T 1 1.2 1.4 1.6 1 1.2 1.4 1.6 1 1.2 1.4 1.6

1.5 0.4 100 0.051 0.320 0.708 0.904 0.051 0.290 0.644 0.851 0.049 0.248 0.559 0.763
250 0.052 0.601 0.959 0.999 0.051 0.538 0.918 0.996 0.052 0.429 0.841 0.978
500 0.060 0.857 0.999 1.000 0.053 0.797 0.997 1.000 0.051 0.660 0.982 1.000

1000 0.049 0.986 1.000 1.000 0.047 0.970 1.000 1.000 0.049 0.900 1.000 1.000
0.5 0.8 100 0.047 0.216 0.473 0.712 0.051 0.214 0.445 0.661 0.053 0.213 0.419 0.616

250 0.049 0.401 0.820 0.969 0.051 0.327 0.687 0.912 0.050 0.290 0.609 0.836
500 0.047 0.659 0.983 1.000 0.044 0.495 0.917 0.992 0.042 0.379 0.823 0.962

1000 0.048 0.895 1.000 1.000 0.048 0.739 0.995 1.000 0.048 0.542 0.954 0.998

Table 5 Simulated rejection rates for bootstrap implementation of upper-sided test
bC1; r(↵̂0;ML, ↵̂1;ML), nominal level 5%, under H0: Poi-INARCH(1) model (✓ = 1), and
H1: NB-INARCH(1) model (✓ > 1).

bootstrap replicates of the test statistic. Results are shown in Table 4; to save
some space, we now only display the results of µ = 2.5 and ↵1 = 0.4, 0.8.
Comparing with the respective rejection rates in in Table 3 for the asymp-
totic implementation, we see evry similar results for ↵1 = 0.4. For the large
↵1 = 0.8, we see slightly increased sizes (remember that the critical values are
computed di↵erently), which is welcome only for the fourth-order statistic.
But altogether, both implementations work similarly well.

For the remaining scenarios to be discussed, an asymptotic implementation is
not available, so the bootstrap implementation is the only option. We start
by still considering the first-order autoregressive case, but now together with
conditional maximim likelihood (ML) estimation. Comparing the results of Ta-
ble 5 with those of Tables 3 and 4, we see a similar performance for ↵1 = 0.4,
but an even improved performance for the large ↵1 = 0.8. In particular, while
the conclusions were a bit di↵use with respect to Table 4, if using ML estima-
tion, the use of the second-order statistic (r = 2) is preferable throughout.

At this point, let us discuss the problem of extreme autocorrelation in some
more detail. We have seen that increasing autocorrelation level ↵1 leeds to
reduced power and sometimes even to worse size values (moment estimation,
especially r > 2). Although not being a particularly realistic scenario, let us
increase ↵1 even beyond 0.8. The size values in Table 6 show that the higher-
order statistics (r = 3, 4) together with moment estimation are even stronger
a↵ected if ↵1 = 0.9, whereas the second-order statistic or ML-based statistics
still work well for such a strong dependence level.
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bC1; 2(↵̂0, ↵̂1) bC1; 3(↵̂0, ↵̂1) bC1; 4(↵̂0, ↵̂1)
MMa MMb MLb MMa MMb MLb MMa MMb MLb

0.5 0.8 100 0.054 0.063 0.047 0.040 0.062 0.051 0.019 0.048 0.053
250 0.056 0.063 0.049 0.052 0.057 0.051 0.025 0.055 0.050
500 0.057 0.058 0.047 0.062 0.064 0.044 0.032 0.062 0.042

1000 0.056 0.052 0.048 0.061 0.048 0.048 0.042 0.048 0.048
0.25 0.9 100 0.057 0.043 0.043 0.029 0.041 0.052 0.006 0.033 0.046

250 0.058 0.058 0.047 0.042 0.057 0.052 0.011 0.029 0.047
500 0.053 0.061 0.050 0.046 0.058 0.046 0.021 0.035 0.050

1000 0.053 0.055 0.047 0.057 0.054 0.053 0.038 0.049 0.054

Table 6 Simulated sizes for upper-sided test bC1; r(↵̂0, ↵̂1), nominal level 5%, if using mo-
ment estimation together with asymptotic implementation (“MMa”) or bootstrap imple-
mentation (“MMb”), or if using ML estimation together with bootstrap implementation
(“MLb”).

bC1; 2 bC2; 2(↵̂0, ↵̂1, ↵̂2); ✓ = bC1; 3 bC2; 3(↵̂0, ↵̂1, ↵̂2); ✓ = bC1; 4 bC2; 4(↵̂0, ↵̂1, ↵̂2); ✓ =
↵0 ↵1 ↵2 T 1 1 1.2 1.4 1.6 1 1 1.2 1.4 1.6 1 1 1.2 1.4 1.6

1.125 0.3 0.25 100 0.105 0.047 0.309 0.663 0.889 0.105 0.052 0.270 0.582 0.832 0.095 0.052 0.237 0.503 0.745
250 0.164 0.050 0.589 0.956 0.999 0.152 0.049 0.522 0.909 0.993 0.131 0.049 0.410 0.813 0.972
500 0.264 0.048 0.847 1.000 1.000 0.246 0.056 0.772 0.995 1.000 0.197 0.053 0.632 0.970 1.000

1000 0.416 0.048 0.982 1.000 1.000 0.372 0.053 0.959 1.000 1.000 0.294 0.049 0.867 0.999 1.000
0.375 0.6 0.25 100 0.093 0.047 0.201 0.423 0.639 0.098 0.053 0.221 0.446 0.610 0.092 0.047 0.214 0.419 0.579

250 0.158 0.050 0.377 0.772 0.944 0.147 0.051 0.307 0.647 0.876 0.143 0.053 0.282 0.596 0.819
500 0.235 0.050 0.604 0.966 0.999 0.197 0.050 0.460 0.874 0.984 0.170 0.050 0.352 0.750 0.936

1000 0.389 0.050 0.865 1.000 1.000 0.309 0.053 0.676 0.986 1.000 0.236 0.048 0.485 0.892 0.991

Table 7 Simulated rejection rates for bootstrap implementation of upper-sided test
bC1; r(↵̂0;ML, ↵̂1;ML), nominal level 5%, under H0: Poi-INARCH(2) model (✓ = 1), and

H1: NB-INARCH(1) model (✓ > 1). Columns bC1; r present sizes if falsely assuming Poi-
INARCH(1) model.

Finally, let us consider higher-order autoregressions. More precisely, we con-
sider a bootstrap implementation of the INARCH(2) case together with ML
estimation, see the results in Table 7. The model parametrizations are chosen
such that still µ = 2.5 and ⇢(1) = 0.4, 0.8, but ↵2 = 0.25 > 0. First, we
check the e↵ect of a model misspecification: although being concerned with
second-order autoregression, a Poisson INARCH(1) model is fitted to the sim-
ulated data and statistic bC1; r is computed. Table 7 shows that such a model
misspecification leads to strongly increased sizes (especially for large T ), so
it is important to carefully identify the correct model order (which, in turn,
is also more reliably done for large T ). If correctly assuming an INARCH(2)
model, size and power values are similar to those in Table 5, although the
power is slightly better in the latter case. Table 7 again indicates that using
the second-order statistic is to be recommended for practice.

4.3 Real-Data Example

Let us conclude our empirical investigations with a real-data example. For this
purpose, we consider the earthquakes counts discussed in Section 5.1 of Zhu
(2012), which is a time series of length T = 107 providing the annual counts
of major earthquakes (magnitude � 7) for the years 1900–2006. As shown by
Zhu (2012), the data exhibit a rather strong autocorrelation ⇢̂(1) ⇡ 0.570 and
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Model Estimation bC·; 2 crita critb bC·; 3 crita critb bC·; 4 crita critb

INARCH(1) MM 1.036 1.011 1.014 1.117 1.035 1.036 1.257 1.081 1.073
ML 1.037 1.012 1.119 1.036 1.260 1.076

INGARCH(1, 1) ML 1.034 1.087 1.109 1.140 1.238 1.214

Table 8 Earthquakes counts: test statistics and critical values (crita: asymptotic implemen-
tation; critb: bootstrap implementation) using moment estimation (MM) or ML estimation.

also strong overdispersion (µ̂ ⇡ 19.36, �̂2 ⇡ 51.09). Zhu (2012) concluded that
either INARCH(1) or INGARCH(1, 1) models might be appropriate.

Assuming first an underlying INARCH(1) structure, we apply all the previ-
ously discussed implementations of the bC1; r-test with r = 2, 3, 4. Ignoring the
fact that we are doing multiple testing, all tests are designed on a 5% level as
before. For the bootstrap implementations, we use B = 1000 replicates. The
obtained values of the test statistics as well as of the critical values are shown
in the upper part of Table 8, leading to a clear result: the null of a Poisson
INARCH(1) model has to be rejected. With di↵erent arguments, Zhu (2012)
obtained the same conclusion, and he preferred to use the GP-INARCH(1)
model from Example 1 instead.

But Zhu (2012) also presented INGARCH(1, 1) models as a further alternative
for describing the data, which is based on the equation Mt = ↵0 + ↵1 Xt�1 +
�1 Mt�1 for the conditional means. Our statistic bCp; r from (10) cannot be
applied in this case, since it is limited to pure autoregression. In fact, the com-
putation of the conditional mean Mt, as required for the denominator of the
statistic, requires the complete past of the process, not only the last p obser-
vations. As a feasible solution, we propose the following modification: when
fitting a Poisson INGARCH(1, 1) model to the data (by using ML estimation),
follow the suggestion by Ferland et al. (2006) and treat the initial conditional
mean as a further parameter, leading to the estimate m̂1. Compute the re-
maining conditional means recursively from m̂t = ↵̂0+ ↵̂1 xt�1+ �̂1 m̂t�1, and
finally the modified test statistics

bC1,1; r :=
1

T � 1

TX

t=2

(xt)(r)
m̂r

t

.

Here, we obtain the estimates ↵̂0 ⇡ 2.699, ↵̂1 ⇡ 0.392, �̂1 ⇡ 0.470 and m̂1 ⇡
9.123. Critical values are again computed from a parametric bootstrap with
B = 1000 replications. The results in Table 8 do not give a unique picture:
bC1,1; 2, bC1,1; 3 do not lead to a rejection, whereas bC1,1; 4 is slightly larger than
its critical value. So it appears that a Poisson INGARCH(1, 1) model is much
better able to handle both the autocorrelation and overdispersion in the data
than a Poisson INARCH(1) model does, but the bC1,1; 4-test indicates that
a model with additional conditional dispersion might do even better. It is
interesting to point out that Zhu (2012) considered a GP-INGARCH(1, 1)
model as being best suited to describe these data. On the other hand, one
should be careful with the interpretation in view of the multiple testing.
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5 Conclusions

The INGARCH models have known, since their introduction by Heinen (2003);
Ferland et al. (2006), great extension and development namely through the as-
sumption of new conditional distributions in alternative to the Poisson one,
initially considered by those authors. Recently, Gonçalves et al. (2015a) intro-
duced a wide class of this type of models, the CP-INGARCH with compound
Poisson conditional distribution, which includes the main INGARCH models
present in literature and, particularly, the simple Poisson INGARCH ones.

In order to contribute to the distinction between a simple Poisson INARCH
model and a true CP-INARCH, we proposed in this paper a test for such
hypotheses based on the form of the probability generating function of the
compounding distribution related to the model conditional law. The normal-
ity of the test statistics’ asymptotic distribution, for the particular case of a
INARCH(1) process, was established either in the case, where the model pa-
rameters are specified, or when such parameters are consistently estimated.
This involves the moments of inverse conditional means of CP-INARCH pro-
cess, the analysis of their existence and calculation was conducted using two
methods. For higher-order models, a bootstrap implementation of the proposed
test was presented.
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A Derivations

A.1 Derivation of Formula (21)

To obtain the asymptotic variance of the approximate quantity eC1; r(↵̂0, ↵̂1) from (19), we
start by defining the vectors

Y
(r)
t :=

⇣ (Xt)(r)

(↵0 + ↵1 Xt�1)r
� 1, Xt � f1, X2

t � f2 � f2
1 , XtXt�1 � ↵1 f2 � f2

1

⌘>
(A.1)

with mean 0, and by deriving a central limit theorem for (Y
(r)
t )Z.

Lemma 2 Let (Xt)Z be a stationary INARCH(1) process, define Y
(r)
t as in formula (A.1).

Denote fk := ↵0/
Qk

i=1(1� ↵i
1) such that µ = f1 and �2 = f2: Then

1p
T

PT
t=1 Y

(r)
t

D�! N
�
0,⌃(r)

�
with ⌃(r) =

�
�
(r)
ij

�
given by

�
(r)
ij = E

⇥
Y

(r)
0,i Y

(r)
0,j

⇤
+

P1
k=1

⇣
E
⇥
Y

(r)
0,i Y

(r)
k,j

⇤
+ E

⇥
Y

(r)
k,i Y

(r)
0,j

⇤⌘
,

(A.2)

where Y
(r)
k,i denotes the i-th entry of Y

(r)
k , and where the entries �

(r)
ij of the symmetric

matrix ⌃(r) are given as follows:

�
(r)
11 =

Pr
k=1

�r
k

�2
k! q0,k (remember (15)), �

(r)
12 = r

1�↵1
,

�
(r)
13 = 2r f1

1�↵1
+ r2

1�↵2
1
+ r ↵1

(1�↵1)(1�↵2
1)
, �

(r)
14 = 2 r f1

1�↵1
+ r2 ↵1

1�↵2
1

+
r ↵2

1
(1�↵1)(1�↵2

1)
,

and �
(r)
22 =

f1

(1� ↵1)2
,

�
(r)
23 =

1+↵1+2↵2
1

(1�↵1)(1�↵2
1)

f2 +
2 f2

1
(1�↵1)2

, �
(r)
24 =

↵1(2+↵1+↵2
1)

(1�↵1)(1�↵2
1)

f2 +
2 f2

1
(1�↵1)2

,

�
(r)
33 =

1+2↵1+8↵2
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1+4↵4
1+6↵5

1
(1�↵2

1)
2 f3 +

2(3+4↵1+7↵2
1+4↵3

1)

1�↵2
1

f2
2 +

4 f3
1

(1�↵1)2
,

�
(r)
34 =

↵1(2+5↵1+8↵2
1+10↵3

1+3↵4
1+2↵5

1)

(1�↵2
1)

2 f3 +
2(1+6↵1+6↵2

1+4↵3
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1)

1�↵2
1

f2
2 +

4 f3
1

(1�↵1)2
,

�
(r)
44 =

↵1(1+3↵1+8↵2
1+8↵3

1+8↵4
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(1�↵2
1)
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.

Proof With the same arguments as in Section 2 of Weiß & Schweer (2016), Theorem 1.7

of Ibragimov (1962) is applicable. Furthermore, the expressions for �
(r)
kl with k, l � 2 are

already known from Theorem 2.2 in Weiß & Schweer (2016), and �
(r)
11 was derived before

in the context of formula (11). Hence, to prove Lemma 2, it remains to compute the entries

�
(r)
12 , �

(r)
13 and �

(r)
14 of the asymptotic covariance matrix ⌃(r).

We start with some auxiliary expressions. We have

Q
(r)
1 := E

h
(Xt)(r) Xt

Mr
t

i
= E

h
E[(Xt)(r+1)+r (Xt)(r) | Xt�1,...]

Mr
t

i
= E[Mt + r] = f1 + r.

(A.3)
Similarly, using that

E[M2
t ] = ↵2

0 + 2↵0↵1 f1 + ↵2
1 (f2 + f2

1 ) = (↵0 + ↵1 f1)
2 + ↵2

1 f2 = f2
1 + ↵2

1 f2,
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it follows that

Q
(r)
2 := E

h
(Xt)(r) X2

t
Mr

t

i
= E

h
E[(Xt)(r+2)+(2r+1) (Xt)(r+1)+r2 (Xt)(r) | Xt�1,...]

Mr
t

i

= E[M2
t + (2r + 1)Mt + r2]

= r2 + f2
1 + ↵2

1 f2 + (2r + 1)f1 = r2 + 2r f1 + f2 + f2
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(A.4)

Finally,

Q
(r)
1,1 := E

h
(Xt)(r) XtXt�1

Mr
t

i
= E

h
Xt�1 E[(Xt)(r+1)+r (Xt)(r) | Xt�1,...]

Mr
t

i

= E
⇥
Xt�1 (Mt + r)

⇤
= (r + ↵0) f1 + ↵1 (f2 + f2

1 )

= r f1 + ↵1 f2 + f1 (↵0 + ↵1 f1) = r f1 + ↵1 f2 + f2
1 .

(A.5)

Now we can start with computing �
(r)
1j for j = 2, 3, 4. For k � 1, we always have

E[Y
(r)
k,1 Y

(r)
0,j ] = E

⇥
E[Y

(r)
k,1 Y

(r)
0,j | Xk�1, . . .]
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= E
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Y

(r)
0,j E[Y
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| {z }
=0

⇤
= 0. (A.6)

Let us compute �
(r)
12 first. For k � 1, by conditioning and using that Mk = ↵0 + ↵1 Xk�1,

we have
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Mr
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= ↵k

1 r,

which also holds for k = 0. Together with (A.6), it follows that

�
(r)
12 =

1X

k=0

E[Y
(r)
0,1 Y

(r)
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1X

k=0

r ↵k
1 =

r

1� ↵1
.

Concerning �
(r)
13 , first note that the 2nd non-central moment of the Poisson distribution

implies

E[X2
t | Xt�1, . . .] = M2

t +Mt = ↵2
1 X

2
t�1 + ↵1(2↵0 + 1)Xt�1 + ↵0(↵0 + 1).

Then we compute by successive conditioning that
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Finally, combining the previous derivations, we compute �
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14 as
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0,1 Y

(r)
k,4 ] = ↵1 E

⇥ (X0)(r)
Mr

0
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0
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1

= ↵1
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⌘
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�

for k � 1, while

E[Y
(r)
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1
(A.5)
= r f1.

Therefore,

�
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� 1
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k
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↵1
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2k
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�
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�
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1
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This completes the proof.

In the next step, we apply the Delta method to derive the joint distribution of ( bC1; r, ↵̂0, ↵̂1)>.

Corollary 1 Let (Xt)Z be a stationary INARCH(1) process. Then the distribution of

( bC1; r, ↵̂0, ↵̂1)> is asymptotically approximated by a normal distribution with mean vector

(1,↵0,↵1)> and covariance matrix 1
T�1 ⌃̃

(r)
, where
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Proof Define the function g : R4 ! R3 by

g1(y) := y1, g2(y) := y2
y3 � y4

y3 � y22
, g3(y) :=

y4 � y22
y3 � y22

. (A.7)

Note that g2
�
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1 ,↵1 f2 + f2
1

�
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�
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1 ,↵1 f2 + f2
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�
= ↵1.

From the proof of Theorem 4.2 in Weiß & Schweer (2016) (see p. 13 in Appendix B.4), we
know that the Jacobian of g equals
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such that D := Jg
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�
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Now, let us look at

⌃̃
(r)

=
�
�̃
(r)
ij

�
:= D⌃(r)

D

>,

where ⌃(r) is the covariance matrix from Lemma 2 above. The components �̃
(r)
22 , �̃

(r)
23 , �̃

(r)
33

are already known from formula (11) in Weiß (2010) (or from Theorem 4.2 in Weiß & Schweer

(2016)), and �̃
(r)
11 = �

(r)
11 obviously holds.

So it remains to compute �̃
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as well as
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This completes the proof.

Using Corollary 1, we are able to approximate the variance of bC1; r(↵̂0, ↵̂1) by the asymptotic

variance 1
T�1 �2

1; r of eC1; r(↵̂0, ↵̂1) according to (19):

�2
1; r = �̃
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11 + r2 q20,1 �̃
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So the proof of formula (21) is complete.

A.2 Derivation of Equality (26)

First, we note that if the random variable Z follows a Poisson distribution with mean �,
and if a > 0, we have for k = 1, 2, . . .

E
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,

using the Dominated Convergence Theorem and the following result (formula 16 on page 552
of Gradshteyn & Ryzhic (2007))
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(p+ kq)n+1 with p, q > 0.
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We note that for k = 1, the expression may be replaced by the equivalent one

E
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+1X

n=0

(�1)n

� (a+ n+ 1)
�n,

since
� (a+ 1)

� (a+ n+ 1)
=

a

n!

nX

j=0

⇣n
j

⌘ (�1)j

a+ j

as may be proved by recurrence.

Let us now consider that the moment generating function of M1, mgfM1
(u) = E [exp(uM1)],

is defined for every u 2 (u1;u2), where u1 < 0 < u2 such that min {�u1, u2} = b > 2. With
these conditions, we will prove that
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that is, the change between the expectation and the infinite sum is allowed. For this purpose,
let us consider s such that 0 < s < 1

2 min {�u1, u2} and the function
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with k 2 N0,

and h(x) := h1(x), we have for every x and for k = 1, 2, . . .
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since |t| < s, and also limk!1 hk (x) = h(x). Moreover,
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So, we may apply the Dominated Convergence Theorem and we obtain
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that is,
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for t 2 [�s; s]. The result is valid for t = 1 if and only s > 1, which is possible as
min {�u1, u2} > 2, and so (26) follows.


	Introduction
	Analyzing the Compounding Structure of CP-INARCH Models
	Testing the CP-INARCH's Compounding Structure
	Simulation Study and Data Application
	Conclusions
	Derivations

