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ABSTRACT. The use of enhancers to increase the drug molecules pen-
etration into target tissues is an usual technique in drug delivery. In
transdermal drug delivery, electric fields are often used to increase the
drug transport through the skin. In this paper we study a drug deliv-
ery mechanism from a reservoir which is in contact with the skin. We
assume that the drug transport in the coupled system is enhanced by a
small electric field that induces a convective field. We establish energy
estimates for the coupled system and we propose a semi-analytical dis-
crete coupled model that mimics the continuous model. The qualitative
behaviour of the system is illustrated.

1. INTRODUCTION

Intelligent drug delivery devices have been developed during the last
decades to deliver drugs in a controlled manner at specific locations. Some of
these systems use stimuli-responsive polymers (where the drug is entrapped)
that are able to respond to the modification of the external environment (like
electric fields, pH and temperature). Electric fields are an interesting type
of stimulus because they can be precisely controlled, and the drug delivery
responses can be predicted.

The use of electric fields as enhancers is popular in transdermal drug
delivery where iontophoresis ([1, 5, 6, 7, 9, 12]) and electroporation ([1, 3, 4,
14]) or a combination of both, are usual procedures. Drug delivery systems
for cancer treatment based on this technology were recently developed ([13]).
In this case, the device based on drug-encapsulated nanoparticles is remotely
controlled by an electric field to deliver the biological agent in the cancer
target tissue (electrochemotherapy, see [8]). Each of the above applications
involves complex phenomena. For instance, in transdermal drug delivery,
enhanced by an electric field, the drug and its solvent vehicle leaves the
polymeric matrix, enters the stratum corneum and is transported through
the skin to reach the circulatory system. In both media, the transport occurs
by passive diffusion, electromigration (migration of ions due to the electric
field) and electroosmosis (transport due the solvent movement) ([6, 10], [12]).

In an iontophoresis procedure, a small electric field is applied to the cou-
pled system to enhance the drug transport. If the drug molecules are posi-
tively charged, then the anode is in contact with the reservoir and the cath-
ode is in the opposite position. The anode will repel the positively charged
drug into the skin. If the drug is negatively charged it will be placed un-
der the cathode that will repel it into the skin.The generated electric field
induces a convective flux in the system that depends on the drug molecules
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valence, intensity of the electric field, temperature, electric conductivity of
both media and drug diffusion ([6, 7]). In this case, the anode is called the
active electrode and the cathode the passive electrode.

We are interested in studying transdermal iontophoretic applications con-
sisting of a coupled system having a reservoir containing a charged drug and
a tissue, see Figure 1.

Tontophoresis

device

Electrode

Reservoir Electrode

Skin

Blood stream } =

FIGURE 1. Drug delivery system for the skin enhanced by
an electric potential.

In this case, the polymeric reservoir is in contact with the skin which is a
multilayered tissue: epidermis (100um), dermis (2—3mm) and subcutaneous
tissue. These three layers have different hystological characteristics and
functions, however, to simplify the mathematical model, we represent the
skin as one layer. The electric field is generated by a potential of low intensity
applied during long periods of time. The drug transport occurs by passive
diffusion and convection caused by the potential gradient.

The main goal of this paper is the study of a mathematical model that
describes the drug transport through the reservoir and the target tissue,
under the effect of an electric field. In pursuing this, one of the main contri-
butions of this work is a stability analysis that allows to calculate an upper
bound for the L2-norm of the global (target tissue and reservoir) concen-
tration. This allows to derive an upper bound for the global mass of drug
in the system. As a consequence, a lower bound for the absorbed mass will
be established. The considered model is a two-layer simplification of the
multi-layered model introduced in [11], in the case of a perfect contact be-
tween reservoir and skin. The paper is organized as follows. In Section 2 we
present the coupled mathematical model. Solving the coupled problem for
the electric field, the convective field is explicitly given and the Laplace-drug
equations are replaced by convection-diffusion equations. Energy estimates
are obtained in Section 3. Such estimates are used to obtain lower bounds
for the released drug. A numerical method that mimics the qualitative be-
haviour of the continuous model is introduced and studied in Section 4. In
Section 5 we present some numerical results illustrating the behaviour of
the coupled system in different scenarios. In Section 6 some conclusions are
presented.
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2. THE LAPLACE-DRUG EQUATIONS

In what follows we assume that the reservoir and the target tissue are
isotropic media. This assumption allows the replacement of the 3D physical
model, reservoir in contact with the target tissue, by a 1D model. Let [0, ¢1]
be the reservoir and ({1, f2] the target tissue layer. We assume that the
left hand side of the reservoir is isolated and the drug molecules that attain
the boundary = = {3 are immediately removed. In the domains (0, ¢;) and
(£1,¢2) a diffusion process takes place enhanced by the electric field generated
by the applied electric potential ¢(V) at x = 0 and = = f5, respectively, ¢g
and ¢1. We assume that the polymeric matrix of the reservoir and the target
tissue have different electric conductivities o, and o5 (S/m), respectively.
We also assume that the diffusion coefficients of the drug in both media are
represented, respectively, by D, and Dy (m?/s).

The drug transport in the polymeric matrix occurs by passive diffusion
and convection induced by the electric field £ = —V¢. Let J, be the drug
mass flux. By the Nernst-Planck equation we have

(1) Jr, = —D, Ve, — vy,

where ¢, denotes the drug concentration (g/m?) in the polymeric matrix and
vy (m/s) stands for the mean velocity of the solvent vehicle in the reservoir.
Let Js represent the drug mass flux in the skin. By the Nernst-Planck
equation we have

(2) Js = —DsVeg — vscs + vgo1Cs,

where cs; denotes the drug concentration in the target tissue. The convective
velocity vse, caused by the electric field, represents the average velocity of
the solvent vehicle.

The convective velocities vg, k = 1,5, are given by the Nernst-Einstein
equation

D, zF DgzF
=Ry, VO T R
where z denotes the valence of the drug molecules, R the Faraday constant
(9.6485 x 10*Coulomb/mol), T; the temperature (K) in the medium 7, and
R de gas constant (8.31446.J/(Kmol)).

We assume that the electric field is generated by applying low poten-
tials during long periods of time. In these circumstances, the potential is
described by the Laplace equation. As both media present different con-
ductivity properties, two Laplace equations should be considered coupled
with the convection-diffusion equations for the drug transport. From the
previous considerations, the electric potentials in the reservoir, ¢,, and the
skin, ¢, are described by the two equations

oAby = 0 in (0, 01)
(3) { o) = do,

Vs — Vol

(TTSA(Z)S =0in (51,52)
@ { bu(b2) = 1,
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coupled with the transition condition

¢r(01) = ¢s(f1) (continuity of the potential)

()
0V (l1) = 0sVos(¢1) (continuity of the electric field).

We note that condition ¢s(f2) = ¢1, in (4), represents an approximation
of the real experimental condition. The potential ¢ is not applied in #o -
the interface between the skin and the blood system - but at the passive
electrode.

The time-space drug evolution is described by the mass conservation law

8;:+V-Jk:0,k:r,s,

coupled with the Nernst-Planck equations (1)-(2). Then, for ¢x, k =, s, we
obtain

der _ V- (vpe;) =V - (D,Ve,) in (0,41) x RT,
(6) ot
D, Ve, (0,t) + vee(0,t) =0, t € RT,
and
des — V- ((vs — vso1)cs) = V - (DsVes) in (£1,42) x RT,
(7) ot

Cs(fg,t) =0,te RT.

The boundary condition in (6) means that the system is insulated while
the boundary condition in (7) states that the drug is immediately removed
by the blood stream.

System (6)-(7) is complemented with the interface conditions

cr(l1,t) = cs(¢1,t) (continuity of the concentration),

(8)

Jr(1,t) = Js(£1,t) (continuity of the mass flux),
and the initial condition

Cr($,0) =Crpo, T € (ngl)y

(9)
cs(x,0) =0, x € ({1, 02).

Condition (9) means that there is initially a homogeneous drug distribu-
tion in the reservoir and that the target tissue is empty.

3. THE DRUG DELIVERY

Solving the potential problems (3), (4) and (5) we easily obtain

o
¢7’(x) - El 4 %(62 - gl)
o %
o5 b1+ 7= (b — 4)

where d¢ = ¢1 — ¢y is the potential difference. From (10) and (2) we deduce
the convective velocities

T+ ¢g, T € [0,61],
(10)
¢s(w) =

(33 _£2) + o1, € [gl,fg].
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. D, zF 0P

" RT, 01+ %(62 —El)
11
(11) . D.zF o, o)

RT, 0.l + %tz — ) "
We introduce now the weak formulation of the initial boundary value coupled
problem (6), (7), (8) and (9). To do that we define the following space
V ={w e HY(0,43) : w({3) = 0}.
The weak solution for the previous problem is a function ¢ € L2(R*, V)N
CH(R™*, L%(0,43)) such that
(12)  (d(t),w) + (ve(t), Vw) = —(DVe(t), Vw), t e R, Vw €V,
where (-,-) denotes the usual inner product in L?(0, f3), and
(13) c(0) = ¢p0 in [0,41], ¢(0) =0 in (€1, fo].
Then the drug distribution is defined by
cr(t) = c(t) in [0,61], cs(t) = c(t) in [£1, L]
In (12), D and v are defined by
D= Dr7 WS (0561)7 v = Up, T € (0,61),
- st HARS (51762)5 - Vs, T S (61582)'

To study the stability of the weak problem we recall the following Friedrichs-
Poincaré inequality

52
(14) lw]* < 52 [Vw|?, we V.

An energy estimate for ¢(t) was established in [11], which we recall in The-
orem 1.

Theorem 1. Ifc € LR, V)NCY(R*, L?(0,45)) is a solution of (12), (13)
then

2
— % mi =r,s D +7méxk:r,s “k )t
15) el < ol Am PRI o) s m,
From Theorem 1, the stability (as well as uniqueness of solution) of the
IBVP (12), (13) can be concluded.
The upper bound (15) can be used to study the qualitative behaviour of
the drug mass inside of the coupled system and the absorbed drug. Let

Lo
M(t) = A/O c(t)dz, t € R,

be the total drug mass in the coupled system, where A represents the area
of a square cross section and /A is the distance between the passive and

active electrodes, see Figure 2.
As

M(t) < VEA @),

we obtain from Theorem 1 an upper bound for this mass.
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)

Blood stream

FIGURE 2. Simplified representation of the problem (A, rep-
resents the active electrode and P, the passive one).

Corollary 1. Under the assumptions of Theorem 1,

maxXg_,. ¢ vz

_L i :’I‘SD +7 L
(16) M(t)sﬁ?Ae( g “'“k—rvsf’k%Hc<o>|r,teR3.
Moreover, if

MaXg—r vi 2

17 ORl

(17) ming—, D]% < E%

then

(18) lim M(t) =0 exponentially.

t—ro0
Let P., the Péclet number, be defined by

maXg=r s |vg

P, = lo.

mink:r,s Dk
Condition (17) means that if the Péclet number is less than /2 then we can
easily compute the time ¢* such that the drug mass in the coupled system
is less than a positive limit L. In fact, from (16), t* satisfies

(19) > 2 1 ( L )
= n .
T tnings Dy + e AV O]
2

2ming—, s Dy

As A\/l5 || c(0)]| represents the initial mass in the system, we always have
L < A5 ||c(0)|| and consequently, estimate (19) is physically sound.
Let Myps(t) be the absorbed mass at time t € RT,

Mass(t) = M(0) — M(0).
It follows from (16) that

(20)
o D ks O ) ¢
Myps(t) > M(0) — A\/Ee( 2 ming— b+ Tminy — rsDk)

e, t € Ry
To obtain a second estimate for M (t), we need to improve estimate (15).
Taking in (12) w = ¢(t) we have

(21) || :—2H\Fvc H — 2(veft), Ve(t)).
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From (21) we deduce

d .
()2 < =2 min Dy [ Ve + 2 mas o ()| Ve

that leads to
d .
D et < (—2 min D + V2o ma |vk|) Ive(t)]?.

=r,s =

Assuming (17) we obtain

d 2 2 2
— le®)]|” < [ =2 min D; 20 — et
i1 101 < (~2in Dyt Vata ) 2 Jel0)]
and finally
—lmin:rsD +mezrs )t
e el LA PRy e
From the previous considerations we conclude that under condition (17),
we have

2 2
— -5 ming—, s D;+ V2 maxg—r, s |Vg|
g2 > [ >

(23) M(t) < A\/Ee( )% e(0)]|, t € RY.

As we have )

P
76—\@36+120, VP, > 0,

we conclude that the upper bound of (16) for the drug mass in the reservoir-
target tissue is greater or equal than the upper bound in (23). Furthermore,
in this case, the instant t* such that M (t) < L corresponding to (19) is given
by

2 L
(24) t* > In ( ) ,
_E% ming—, s Dy, + %2 maxg—p s ”Uk’ A/l [|e(0) ]
2

where the lower bound in (24) is smaller than the lower bound in (19). From
(24) we obtain
(25)

t

—lmin:TSD —1—@111)(274S )
Mops(t) > M(0) — A\/£26< g itk Dick Gy maxksr.a [on] )2 1c(0)], t € Ry
We finally observe that estimates (20) and (25) can be used to study the

dependence of the lower limits for absorbed mass on the parameters that
determine the iontophoresis.

4. A DISCRETE MODEL

In this section we present a finite difference method that presents the
same qualitative behaviour of the continuous model. We fix a mesh size h
in [0, ¢2] and we define the following grid I, = {z;, i =0,...,N}:

xg =0, x1:$0+§, ri=xi_1+h,i=1,...,N, xny=14¥
h
i — {0+ —
9 3 TM 1+ 2 3
where {1 = zpr_1 /9. Let 71 = —%. By I} we denote the grid I, U{z_;}. By
D_,,D. and Dy we denote the backward, first order centered and second

Tp—1/2 = TM—-1+
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order centered finite difference operators, respectively. By My and Mo we
represent the average operators

1 .
M4vh(:vj) = Z (Uj+1 + 2’()]' =+ ’Ujfl) , ] = 1,... ,N -1,

and
1 .
MQUh(xj) = 5 (Uj +Uj71) yJ=1,...,N,

respectively. We consider that Dovp(xpr—1) is based on a nonuniform grid

and defined using the grid points xp; 2, xpr—1 and Tpr-1/2- Similarly, D.vp(xpr—1)
is defined using the nonequally spaced grid points zp—2 and zp7_1/5. We
also introduce the boundary operator D,

Dyvp(z0) = DypDevy (o) + vr Myvp(20).

Let cp(t) be a grid function defined in the grid points I U{zp_1/2} that
satisfies the following system of differential equations
(26)
ci(t) —v(w;)Deci(t) = D(x;)Daci(t), i =0,...,M —1,M,M +1,...,N —1,

)

where vy, = v, if i < M — 1, and vy = vs otherwise, coupled with the
following algebraic conditions

(27) { %(ctfs(t:)(g,o) =0

(28)
DD _yepr—1/2(t) +veMacp(t)(xpr—1/2) = DsD_genr(t) + vsMacp (t)(zar).

We assume that at the initial time we have
(29) ¢i(0)=¢r0,1=0,...,M -1, ¢,(0)=0,i=M,...,N—1.

The boundary conditions (27) are the discretizations of the boundary
conditions of the differential problem. Moreover, the interface condition
(28) is a discrete version of (8). The semi-discete problem (26)-(29) can be
rewritten in the following equivalent form

¢, (t) = Lpep(t), t > 0,
(30) { cZ(O) is dZﬁf;led by (29).

To study the qualitative behaviour of the semidiscrete approximation
cp(t) defined by (30) we introduce now the convenient functional environ-
ment following [2].

We introduce the following discrete L?(0, £5) inner product (-, ), for grid
functions defined in I; and null on xy,

h M—2 3
(up, vn)n = ZUO"UO + Z hujvj + ZhuM_lvM_l
j=1

(31) N1

3
+ZhUMUM+ Z hujv;.
j=M+1
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By ||-||;, we denote the norm induced by this inner product. For grid func-
tions defined in Iy U {xy;_1/2} we use the following notations

M-1
h
(U, V)t = 5t + E hujv; + o UM-1/20M~1/2
=2

h N
+§UMUM+ Z hujv;.

J=M+1
and
[onlln,+ =/ (0n, vR)n,+-
We remark that (-,-), and (-,-)p 4 satisfy
(32) —(Doup,vp)p = (D—ztun, D_zvp)n +,

for all grid functions up, vy, defined in I U{zy;_y/o} where up, and vy, satisfy
(27), (28) for v, = vy = 0. Condition (32) mimics the correspondent con-
tinuous relation and it is the basic compatibility requirement for (-,-);, and
(*,)h+- We observe that existence of the transition point where (28) holds
increases the complexity of the analysis and the need of auxiliary results
that will have an important role in what follows.

The following discrete Poincaré inequalities have an important role in
what follows.

Theorem 2. For grid functions vy, defined in Ip U {mM,l/Q} and null on
the boundary point xn we have

2 2
(33) lonlli < 65 1 D—zonlly ,
and
2 2
(34) || h,4 < g% ||Df:vvh||h,+ :

Proof. To simplify the presentation we denote by h;,i = 1,..., N + 1, the
distance between two consecutive points of the grid I, U {z);_; /2}. As we
have

N
vj== Y hiDvi,j=0,...,N -1,
i=j+1
we obtain
2 .
’U?' S 62 ||D7xvh||h,+a] = Oa"'aN_ ]-a

that leads to (33).
The proof of inequality (34) follows the same steps.

If uy, is defined in Iy, U{zpr_1/9, null at 2 =z and satisfies
(35)  DypD_gupr_12 + v Moup(wpr—1/2) = DsD—yuns + vs Moup (1),
then

(36) ||uh||}217+ < Chor HUhIIi,
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with

Cror = ( L pmal(D— bu)% (D, + Z”S)Q})

3 (Dy + Dy + (v, — vy))’
provided that h satisfies the following condition

h
(37) D, + D, + Z(vr —vg) # 0.

It can be showed that L is nonsingular for a certain class of coupled prob-
lems.

Theorem 3. If

(38) P, < /2,

then the finite difference operator Ly is nonsingular in the space
Vio = {on def. in I U {xpr_1 2} : Dyvp(ao) = 0, vp(zn) = 0, vy, satisfies (35)} .
Proof. Using summation by parts we establish

(39) (—=Lnun, up)n > k{g}lg Dy [|D—pun |} - — (Ma(vvn), D_ptip)p -
We have successively

—(Ma(vup), D—gup)n+ < i&ax lvg| [lunllp, 4 |1 D-aunllp 4

(40) )
< 7 max k| |1 D—zunllp 4 -
From (39), (40) and using (33) we get
2 . 62 2
(41) (—Lnun. un) z@(kn% Dy~ 5 max uil?)

that concludes the proof.

We remark that the previous bound (41) leads to

(Lpup, up)n 2
(42) max AU UR)h 52(

1
5 min Dy, — —= max ]ka)
0#£up €V H’LLhHh

r,s \/5 k=r,s
We recall that the logarithmic norm of the linear operator Lj, (or its
matrix representation) u[Ly] induced by the inner product (-, -);, is given by

[Lh]: lim ||I+TL}LH}L—1
T—07t T
and satisfies
L
,U/[Lh] — max ( huhazéh)h
0#£upeVy Huh”h
Consequently
2 lo
i) <~ (i D 5 o el”)

As ¢p(t) satisfies (26)-(28), it follows

cn(t) = etbre,(0),t >0,
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which leads to
len®)ln < lle™ ™ [allen(0)]|n, t > 0.

As we have

2 . Lo 2
_tﬁ (mmk:ms Dk—ﬁ maxg—r s |Vk| )

el <e 2 >0

)

we obtain the following result:

Theorem 4. Let cx(t) be a grid function defined in Iy U {xp_1/2} that
satisfies (26)-(29). If (37) and (38) hold then

e% (_ ming—, s Dg-+l2 maxg—p. s [v] )t
2

(43) et <e

Theorem 4 allow us to conclude the stability of the initial boundary value
problem (26)-(29). Let

len(O)l,,t € Ry

3
My () —co +th] +4h eyvi—1(t) + en(t Z he;(t) tERSr,
j=M+1

be the discrete drug mass in the coupled system. Theorem 4 can be used to
obtain an estimate for Mj,(t). In fact, under condition (38) we have

%(7 ming—, s Dy+{l2 maxp—, o |vk|)t

Mp(t) < e'2 len(O),, ¢ € Ry -

We also get a lower estimate for the absorbed mass M (t)

12( ming— reDk'i'eQman T‘S‘Ivk‘l)

(44) Maps(t) > M(0) — e len(O)ll, . t € B

Let us consider in the integration in time of the semi-discrete problem
(26)-(29) the implicit-Euler method. To do that we fix a time interval [0, 7]
where we introduce a time grid {t,,n = 0,...,Na¢} where t, — t,—1 =
At,n=1,...,Na¢, and NaAt =T. Let ¢f,n =0,..., Na¢, be defined by

M = e + AtD(z;) Dac 4+ AtD.(vic! ),
(45) i=0,...,M—1,M,M+1,...,N —1,
n:O,...,NAt—l,
(46) D, Dc.c} + Ma(vyc) =0, n=0,..., Nag,
C?V:O, TL:L...,NAt,

(47)
Dy Doy + Mo ((v6f) (2ar-12)) = DoDoschy + Mo (vich) (21)),
n = 1;---7NAt7

(48) A =c,i=0,....M—1, ) =0,i=M,...,N—1.

Under condition (38) we establish in the next result that the fully discrete
scheme (45)-(48) is unconditionally stable.
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Theorem 5. If Pe < /2 then the numerical concentration cp defined by
the implicit finite difference method (45)-(48) satisfies

c
(49) lepll, < e " |||, n=1,..., Nag,
where
(50) o= 2 D ol
— mm — max |v
f2 k=r,s K k=r,s k2
Also, if
1 2
51 B = D — — C
( ) 63 H_Hrns k mink:r,s Dy, nor;

is nonnegative or positive such that BAt < 1, then the finite difference
scheme (45)-(48) satisfies

nAt

(52) I, < "7 =5 ||, , n=1,..., Na,

Proof. From (45)-(48) we establish
(53) flen M, < leqll; — 24t m min Dy || D- RO
+ 2At mat [og| || ], 4 (Dol

(1) P. < 1:
Taking into account inequality (34) we get

n+1 . n+1
50 e < Il + 20 (- pin D+ e ) Do
As (38) holds, considering the inequality (33) in (54) we obtain
2
et 5 < Nl — At e
where C' > 0 is defined by (50), and consequently

1 2
95 it — I
£ 6571 < s 141
Finally, (49) easily follows from (55).
(2) Other case:
From (53) and (36) it can be shown the following

(56) | h+1Hh < h”h_QAt mm DkHD wch+1Hh+

(57) +2At,1333;|vklv Coor [, 1 D=2 ™
that leads to

(58) [l s < IRl + At(-2 min D+ ) [ Dol

(59) +At— max |vk| Chor Hcthth,

where € # 0.
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From (58), with 2 = gnin Dy, and using (33), we obtain
=r,s

(60) (1— ALB) |2 < 13

where B is defined by (51). If B < 0, then an estimate like (49)
holds, replacing C for |B|. Otherwise, if B > 0 is such that BAt < 1
then from (60) we get

n+1|2 1 o 012
(61) v < \1=ag ) el

Finally, inequality (52) easily follows from (61).
O

Theorem 5 means that the implicit method (45)-(48) is unconditionally
stable when P, < 1 or when B < 0. Otherwise, it is conditionally stable.

5. NUMERICAL RESULTS

In this section we illustrate the behaviour in different scenarios of the drug
concentration in the reservoir and target tissue as well as the released drug.
We consider ¢; = 1073, /5 = 2.5 x 1073(m), for a reservoir with 1(mm) of
thickness and a target tissue of 1.5(mm) of thickness and A = 1.

We analyze the dependence on the concentration with the applied poten-
tial and the reservoir and target tissue conductivities. The coupled system’s
parameters (see [3]) are taken as

e D, =107%(m?/s), Ds = 107'2(m?/s),

e 0, = 1.5(5/m), o5 = 0.015(S/m),

o T, =Ts =310.15(K)
and ¢(z,0) = 1,z € (0,01), ¢(x,0) = 0,z € (¢1,¢2). The S.I. units of
conductivity are Siemens per meter (S/m).

The scenarios are defined considering the valence z of the diffusion drug
equal to —1. The numerical results were obtained using the fully implicit
scheme (45)-(48). In Figure 3 we present the concentration profiles for differ-
ent values of d¢, d¢ = 0,0.02,0.5,2. As §¢ increases, the convective rate of
transport also increases and consequently, less drug concentration remains
in the reservoir and in the target tissue. This behaviour can be observed
from the plot of the absorbed mass in Figure 3. We also illustrate the influ-
ence of the electric conductivity coefficients. In Figure 4 we plot the drug
concentrations and the released mass for o, = 0.015. We observe that a
lower electric conductivity in the reservoir can lead to an increase of the
released mass. These results were obtained for d¢ = 0.5.

Figures 3 and 4 (right) suggest that the reservoir’s conductivity has a
large influence, on the total amount of released drug, than the potential d¢.
A number of simulations that has been carried on Table 1 which clarifies
the dependence of the total mass of absorbed over six hours, on the conduc-
tivity o, and the potential d¢. In these tables, My(6) represents the total
mass absorbed when d¢ = 0. The influence of o, explains why polymeric
conductivity is a major concern for manufacturers.

We finally present how estimate (44) can be useful. In Figure 5 we plot
the real absorbed mass, as well as lower bound (44), which can be used to
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FIGURE 3. Drug concentration in the coupled system, af-
ter 6 hours (left) and absorbed mass during the 6 hours of
treatment (right), for o, = 1.5, o5 = 0.015.

M;4(6)—Mo(6)

0¢ oy Mis4(6) Mo (6)
0 - 9.952.104 0
0.015 9.976-10~* 0.00241157
0.02 0.15 9.959 . 104 6.83-104
1.5 9.955.104 3.11-1074

0.015 9.999997 - 10~4 0.00483162
0.2 0.15 9.985957 - 1074 0.0034209
1.5 9.963522 - 10~4 0.00116656

0.015 1073 0.00483194

0.5 0.15 9.99788 - 10~4 0.00461911
1.5 9.96953 - 104 0.0017705

0.015 1073 0.00483194

2 0.15 9.9999999994 - 10~*  0.00483194
1.5 9.9872902264 - 10~*  0.00355482

TABLE 1. Behaviour of the total mass absorbed for six hours, Ms,(6)

design protocols for drug delivery in this context. The parameters chosen
for this particular simulation are Dy = D, = 1078, §¢ = 0.02 and o, = 0.15.
The remaining parameters are taken as in the previous simulations.

6. CONCLUSION

In this paper the mathematical model that describes the drug evolution
in the coupled reservoir-target tissue is studied when the drug transport is
enhanced by an applied electric field. We assume that the applied potential
is stationary and is described by a coupled system that admits an explicit
solution. As the electric field generates a convective field, the drug transport
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FIGURE 4. Drug concentration in the coupled system, af-
ter 6 hours (left) and absorbed mass during the 6 hours of
treatment (right), for o5 = 0.015, ¢ = 0.5.
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F1aure 5. Illustration of the absorbed mass lower bound (44).

occurs by passive diffusion, convection defined by the electric field and by
the solute transport when the charge of the drug is negative.

The convection-diffusion drug system was studied and its stability was
concluded under different assumptions on the parameters of the model. The
energy estimates were used to obtain estimates for the drug in the coupled
system and for the released drug. Such estimates can be used to design
iontophoretic systems with a prescribed behaviour.

A numerical method that mimics the continuous model was proposed.
The discrete interface conditions induces difficulties in the stability analysis.
To avoid such problems a convenient L? discrete norm and seminorm were
introduced and a discrete Poincaré inequality was proved. These ingredients
were crucial to establish discrete energy estimates for an implicit method.
The qualitative behaviour of the numerical solutions was explored.
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