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Abstract  

 

Congenital Erythrocytosis (CE), also called congenital polycythemia, represents a rare 

and heterogeneous clinical entity. It is caused by deregulated red blood cell production 

where erythrocyte overproduction results in elevated hemoglobin and hematocrit levels.  
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Primary congenital familial erythrocytosis is associated with low erythropoietin (Epo) 

levels and generally results from mutations in the erythropoietin-receptor gene (EPOR). 

Secondary congenital erythrocytosis arises from conditions which cause tissue hypoxia 

thus resulting in increased Epo production. These include hemoglobin variants with 

increased affinity for oxygen (genes HBB, HBA1 and HBA2), decreased production of 

2,3-biphosphoglycerate due to mutations in the BPGM gene, or mutations in the genes 

involved in the hypoxia sensing pathway (VHL, EPAS1 and EGLN1). Depending on the 

affected gene CE can be inherited either in an autosomal dominant or recessive mode, 

with sporadic cases arising de novo. 

Despite recent important discoveries in the molecular pathogenesis of CE, the molecular 

causes remain to be identified in about 70% of the patients.  

With the objective of collecting all the published and unpublished cases of CE the 

COST action MPN&MPNr-Euronet developed a comprehensive internet-based database 

focusing on the registration of clinical history, hematological, biochemical and 

molecular data (http://www.erythrocytosis.org/). In addition, unreported mutations are 

also curated in the corresponding Leiden Open Variation Database (LOVD). 

 

Key Words: Congenital Erythrocytosis, molecular pathogenesis, online databases 

 

Background   

 

Absolute erythrocytosis is defined by an increased red cell mass as reflected by 

hemoglobin and hematocrit values above the normal range. They can be either primary 

(intrinsic to the red cell) or secondary (extrinsic to the red cell) and can be acquired or 

arise from genetic alterations. Polycythemia Vera (PV) is the most common type of 
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acquired primary erythrocytosis with somatic mutations in the JAK2 gene being 

responsible for almost 98% of the described cases (95% of the mutations involve the 

exon 14 with the p.Val617Phe, whereas only 3% involve the exon 12) (Cross, 2011). 

Acquired secondary erythrocytosis can develop from various diseases, such as cardiac, 

pulmonary or renal, or conditions of external hypoxia due to smoking and CO poisoning 

(reviewed by McMullin, 2008; Patnaik and Tefferi, 2009). 

 

Primary erythrocytosis, also known as Primary familial congenital polycythemia 

(PFCP) is associated with a sub-normal serum erythropoietin (Epo) level. It is caused by 

a molecular defect in the hematopoietic progenitor cells. Previously diagnosed cases 

have been found to possess germline gain-of-function mutations in the Epo receptor 

gene (EPOR) (Huang et al., 2010 and Table 1). 

 

In contrast, secondary congenital erythrocytosis (CE) is often characterized by 

inappropriately normal or raised serum Epo. It can be a consequence of tissue hypoxia, 

being caused by congenital defects such as hemoglobin variants with increased oxygen 

affinity due to mutations in the α- or β-globin genes (HBB, HBA2, HBA1) (Percy et al., 

2009) or defective bisphosphoglycerate mutase (BPGM) leading to 2,3-

biphosphoglycerate (2,3-BPG) deficiency (Hoyer et al., 2004). Secondary CE can also 

result from defects in components of the oxygen sensing pathway, and mutations in the 

genes that encode the hypoxia-inducible factor 2α (HIF-2α; gene EPAS1), HIF-prolyl 

hydroxylase 2 (PHD2, gene EGLN1) and the von Hippel-Lindau tumor suppressor 

(pVHL; gene VHL) have been reported (Lee and Percy, 2011) (Table 1). 

Presently, over 160 mutations (more than 100 causing high affinity Hb variants and the 

others in the EPOR gene and genes of the oxygen sensing pathway) have been described 
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associated with CE. However in about 70% of the patients the molecular causes were 

not identified. Thus, this condition is referred to as idiopathic erythrocytosis (IE). 

 

The oxygen-sensing pathway 

 

Red blood cell production is regulated by the glycoprotein hormone Epo which is 

mainly synthesized in interstitial tubular kidney cells. Epo production is increased under 

conditions of hypoxia due to anemia or decreased cellular oxygen tension.  

Under normal oxygen tension, the alpha subunits of the hypoxia inducible factor (HIF-

1, 2 and 3) are hydroxylated by the dioxygenase PHD (PHD1, 2 and 3) and become a 

substrate for ubiquitination by pVHL, therefore being targeted for proteasomal 

degradation (Figure 1). Under low-oxygen conditions, PHD proteins are unable to 

modify HIF-α allowing it to escape pVHL recognition and subsequent degradation. 

HIF-α then forms an active transcriptional complex with HIF-β (ARNT) and up-

regulates expression of more than 200 genes, with one of the target genes being Epo. 

The major HIF-α isoform involved in the regulation of EPO is HIF-2α, which also 

regulates genes involved in essential processes required for cell survival under low 

oxygen tension, such as heme synthesis (ALAS2), globin chains production (GATA1) 

and iron regulation (TRF2, TF) (Wenger et al., 2005, Zhang et al., 2011; Zhang et al., 

2012; Lok and Ponka, 1999; Haase, 2010). Once Epo binds its cognate receptor there is 

initiation of an intra-cellular signaling cascade which inhibits apoptosis and 

simultaneously promotes the growth and differentiation of erythroid progenitors, 

thereby adjusting red blood cell mass to oxygen delivery requirements.  
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Erythrocytosis database 

CE is a rare disease where clinical data on patients is sparse and information on clinical 

progression is not available. Moreover, although causative variants have already been 

identified in eight different genes, causal mutations remain to be identified in about 

70% of the patients.  A systematic repository may to aid clarifying the pathogenic 

manifestations of this disease, and, therefore, the CE working group (WG3), established 

within the framework of the COST (European Cooperation in Science and Technology) 

action BM0902 MPN/MPNr-Euronet, developed an internet based erythrocytosis 

database (www. erythrocytosis.org; Bento et al., 2006). In order to include all the 

clinicians and scientists enrolled in the diagnosis of CE an EU CE consortium, which 

will later be extended to other non-EU countries, was created. 

The erythrocytosis database aims to collect and share clinical and laboratory 

information on patients with absolute erythrocytosis, either idiopathic or with an already 

established molecular diagnosis. The database, accessible only after validated 

registration, contains different types of data, including clinical, biochemical and 

molecular, which then can be annotated. To unauthenticated users only a landing page is 

available, explaining the aims of the registry and the guidelines of the EU CE 

consortium (ECE-C; Figure 2). 

As such, www.erythrocytosis.org is a comprehensive and reliable genotype–phenotype 

database that will fulfill the needs of clinical practitioners, who require reliable markers 

for disease diagnosis and prognosis. This database will also assist researchers who aim 

to establish genotype-phenotype correlations for the new mutations or genes discovered. 

Clinical and laboratory data collected at different times can be registered and compared. 

Statistical correlations can be achieved by matching all the required parameters. This 
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database will provide a knowledge base on which to develop guidelines and update 

diagnostic algorithms for new genetic testing and will accelerate the understanding of 

the clinical and molecular mechanisms underlying erythrocytosis. It is not a repository 

of the CE mutations already registered in the literature. Complete information on 

previously reported mutations can be obtained from the comprehensive Leiden open 

variation database (LOVD, www.lovd.nl; Fokkema et al., 2011). Since the curators of 

the erythrocytosis database are also curators of the CE LOVD databases there is an 

option for new reported mutations to be also reported and inserted into the LOVD 

database as a personal communication. 

Current status of the database 

At the time of submission only patients with mutations already identified have been 

registered in the database. It is planned that in a second phase data idiopathic 

erythrocytosis patients will be added. 

Of the 158 patients included in the database, 40 are carriers of a high affinity Hb 

variant, 26 are heterozygous for an EPOR mutation, 38 are homozygous or compound 

heterozygous for a VHL mutation, 15 are heterozygous for a mutation in VHL, 15 are 

heterozygous for an EPAS1 mutation and 24 are carriers of an EGLN1 mutation (Table 

2). Of these, three EPOR, three VHL and four EGLN1 mutations are reported here for 

the first time (Figures 3-6). 
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High Oxygen affinity hemoglobin variants 

Genes HBB, HBA2, HBA1 

 

The genes that encode the alpha (HBA) and beta (HBB) globin chains of hemoglobin, 

are located on chromosomes 16 (locus 16p13.3) and 11(locus 11p15.4) respectively. 

There are two HBA genes (HBA2 and HBA1; MIM 141850 and 141800) that have arisen 

by gene duplication. Both genes encompass three exons and encode a 142 amino acid 

protein (MW∼15 kDa) although the mRNA HBA2 transcript is 605 base pairs (bp) while 

the mRNA HBA1 transcript is 577 bp long. 

The HBB gene (MIM 141900) is also comprised of three exons with a transcript of 754 

bp long which encodes a 147 amino acid protein (MW∼16 kDa).  

The first described molecular defect associated with CE was in an 81-year-old man with 

a hemoglobin of 19.9 g/dl who was seen at the Hematology Clinic in Johns Hopkins 

Hospital by Samuel Charache (Charache et al., 1966).  A thorough family study 

revealed 15 other members with increased hemoglobin levels, all of them showing an 

abnormal hemoglobin band on electrophoresis. In addition, the oxygen dissociation 

curve was significantly displaced to the left, indicating increased oxygen affinity of 

hemoglobin. Structural analysis established that there was an alpha-chain variant with a 

substitution of leucine for arginine at position 92 and this variant was subsequently 

called Hb Chesapeake.  

Since then more than 100 mutations have been described in the globin genes, with the 

majority being present at the HBB locus, that give rise to high oxygen affinity 

hemoglobin variants. Mutations are dominantly inherited and there are only a few cases 

reported arising de novo.  
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Most of the high-affinity variants described thus far have substitutions at one of three 

regions that are crucial for hemoglobin function 1) the α1β2 interface; 2) the C-terminal 

end of the β-chain; 3) the 2,3-DPG binding site (reviewed in Thom et al., 2013) 

All the described Hb variants are compiled in a complete and updated database, Hb Var 

(http://globin.bx.psu.edu/hbvar/menu.html). Since only patients with new mutations are 

registered, it is not possible to estimate the real incidence and prevalence of the high 

affinity hemoglobin variants.  

 

BPGM  

 

The BPGM gene (MIM 613896; locus 7q33) extends over 22 kb and contains 3 exons. 

The first exon (130 bp) is not included in the coding DNA sequence (CDS) region, 

whereas the other two (1753 bp) encode a protein of 259 amino acids (MW ∼30 kDa). 

The BPGM enzyme is important in the regulation of hemoglobin’s affinity for oxygen 

because it controls the level of 2,3-BPG, which is generated in the Rapoport-Luebering 

Shunt, a bypass of glycolysis. When 2,3-BPG is bound to hemoglobin it decreases 

hemoglobin’s affinity for oxygen (Benesch et al.,1969). Consequently, it allows the 

efficient off loading of oxygen at respiring tissue. Deficiency of BPGM enzyme results 

in reduced synthesis of 2,3-BPG and red cell production is increased to compensate for 

less available oxygen. 

 

Reported cases in the literature of erythrocytosis due to BPGM mutations are very rare   

with only three variants being described. Compound heterozygosity for a missense 

mutation c.268C>T (p.Arg90Cys) and a small deletion c.61delC (p.Arg21Valfs*28) was 

found in four members of the same family (Rosa et al. 1978; Lemarchande et al., 1992).  
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Hoyer et al. (2004) reported a patient homozygous for a missense mutation c.185G>A 

(p.Arg62Gln).  

 

EPOR  

 

The EPOR gene (MIM 133171; locus 19p13.2) encodes the Epo receptor protein, which 

is a member of the cytokine receptor family. EPOR is composed of 8 coding exons. 

The primary transcript is 2056 bp long and encodes a protein of 508 amino acids 

(MW∼66 kDa). Alternatively spliced forms of the Epo receptor have been identified, 

one of which has a truncated cytoplasmic domain.  The shorted transcript is expressed at 

high levels in immature erythroid progenitor cells. In contrast, the expression of the full-

length receptor increases as progenitor cells mature (Nakamura et al., 1992). 

The first mutation found in the EPOR gene was in a previously very successful Finnish 

sportsman and 29 family members as described by de la Chapelle et al. (1993). Since 

then more than 22 heterozygous variants have been found in patients with CE. All of 

these mutations are located in exon 8, which encodes the C-terminal negative regulatory 

domain of the protein. In total, 18 are frameshift mutations (due to small deletions or 

insertions) or nonsense mutations leading to cytoplasmic truncation of the receptor and 

loss of the C-terminal negative regulatory domain (Figure 3). These mutations induce a 

gain-of-function and are associated with Primary Congenital Familial Erythrocytosis 

(PFCP), which is also known as familial erythrocytosis type 1 (OMIM 133100; Table 

1). Of the remaining variants, three are missense mutations (c.1462C>T, c.1460A>G, 

c.1140G>A) in which the association with erythrocytosis has not yet been established. 
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VHL 

  

The VHL gene (MIM 608537) is located on chromosome 3 (locus 3p25.3) and spans 10 

kb. The VHL gene encodes a 4.7 kb mRNA translated from two translational initiation 

sites (+1 and +54). The larger protein consists of 213 amino acids (pVHL30 

MW∼30kDa), whereas the shorter protein consists of 160 amino acids (pVHL18), both 

are functionally active (Iliopoulos et al., 1998). pVHL is the substrate recognition 

subunit of an E3 ubiquitin ligase and interacts with elongin C and B and Cullin 2, in a 

complex referred as VCB-CUL2. 

There are more than 400 germline mutations in the VHL gene that have been first 

described associated with the VHL disease (OMIM 193300) (Nordstrom-O'Brien et al., 

2010). VHL disease is an autosomal dominantly inherited syndrome predisposing to the 

development of a panel of benign and malignant, highly vascularized tumors including 

hemangioblastomas, pheochromocytomas (or paragangliomas) and renal cell cancer, but 

VHL disease is outside the ambit of this article. The association of VHL disease with 

erythrocytosis was recently reviewed by Capodimonti et al. (2012). The association of 

CE VHL mutations with tumors will be discussed below in the section entitled “Risk of 

tumor development”.  

The first loss-of-function mutation in the VHL gene associated with CE was found in 

the Chuvash autonomous republic of Russia where polycythemia is an endemic 

disorder. Chuvash polycythemia was found to be caused by a homozygous c.598C>T 

(p.Arg200Trp) VHL mutation (Ang et al., 2002a, 2002b). Later, homozygosity for the 

VHL c.598C>T mutation was also observed in non-Chuvash patients and 16 additional 

VHL variants associated with CE have been described (Figure 4). Four of them 

presented in the homozygous state, whereas the other cases were compound 
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heterozygous or heterozygous. Although VHL associated erythrocytosis (CE type 2, 

OMIM 263400; Table 1) is considered a recessive disease some cases have been 

described where only one mutation was detected (see Carriers of VHL mutations with 

CE).  

 

 

EGLN1 (PHD2)   

 

There are three PHD isoenzymes (PHD1, PHD2 and PHD3), but PHD2 was found to be 

the key enzyme in catalyzing the prolyl hydroxylation of HIF-α, using oxygen as a co-

substrate (Kunz and Ibrahim, 2003; Percy et al., 2006). PHD2 is encoded by the EGLN1 

gene (MIM 606425), which is located on chromosome 1q42.1, and it is comprised of 

five exons. The EGLN1 mRNA is 7.097 bp long and translates into a 426 amino acid 

protein (MW∼46 kDa).  

Loss-of-function mutations in EGLN1 cause CE type 3 (OMIM 609820) (Table 1) with 

autosomal-dominant inheritance. Mutations were first described by Percy et al. (2006) 

who identified a heterozygous c.950C>G transversion in two generations from one 

family (3 family members). The mutation resulted in a p.Pro317Arg substitution in a 

highly conserved region of the protein (Figure 5). In vitro functional expression studies 

showed that the mutant protein had significantly decreased enzyme activity. Epo levels 

in the son and daughter were inappropriately normal, suggesting deregulated Epo 

production. Since then more than 22 patients were found to carry mutations in this gene, 

all of them heterozygous for one of the 16 previously reported mutations: 12 missense, 

2 nonsense, 1 small deletion and 1 small duplication (Figure 5). One of the missense 

mutations, c.471G>C (p.Gln157His) was found to co-exist with the JAK2 p.Val617Phe 



13 
 

somatic mutation, the latter probably being the cause of the disorder. Meanwhile, the 

c.471G>C mutation has been categorized as a SNP (rs61750991) with a frequency of 

around 2% in the normal population although some studies refer to a higher frequency 

(Astuti et al., 2011; Ladroue et al., 2012). Interestingly, one particular mutation 

(p.His374Arg) has been described in a patient with an erythrocytosis associated with a 

recurrent paraganglioma (Ladroue et al., 2009). 

 

EPAS1  (HIF-2α) 

 

The HIF transcription factor has three isoforms, HIF-1α, HIF-2α and HIF-3α. HIF-1α 

was first identified as a mediator of Epo induction in response to hypoxia in vitro 

(Wang & Semenza, 1995), however HIF-2α was later confirmed as the primary 

transcription factor that induces Epo expression (Scortegagna et al., 2003; Warnecke et 

al., 2004; Hickey et al., 2007, Percy et al., 2008a). The degradation of HIF-2α occurs 

via the hydroxylation of the residues Pro 405 and Pro 531. 

The EPAS1 gene (MIM 603349), which encodes the transcription factor HIF-2α, is 

located on chromosome 2p21, contains 16 exons and spans at least 120 kb. The 5160 bp 

long EPAS1 mRNA is translated into an 870 amino acid protein (MW∼96 kDa).   

Gain-of-function mutations in exon 12 of EPAS1 are another cause of familial 

erythrocytosis (type 4, OMIM 611783), showing autosomal-dominant inheritance 

(Figure 6). The first EPAS1 mutations found in erythrocytosis patients were the 

missense mutations p.Gly537Trp, p.Gly537Arg, p.Met535Val and p.Pro534Leu (Percy 

et al. 2008a, 2008b, Percy et al., 2009). Martini et al. (2008) described another 

pathogenic mutation, p.Met535Ile, and more recently, three additional missense 

mutations have been described, p.Asp539Glu, p.Met535Thr, p.Phe540Leu (van Wijk et 
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al., 2010, Percy et al. 2012). In total, 22 patients (8 sporadic cases and 4 families) have 

been reported harboring mutations in this gene, all of them heterozygous. Recently 

Lorenzo et al. (2012) identified a germline heterozygous missense mutation c.1121T>A 

(p.Phe374Tyr) in exon 9 in a polycythemic patient who developed 

pheochromocytoma/paraganglioma. This variant was already reported in the NCBI 

dbSNP database (rs150797491) with a minor allele frequency of 0.1%. Somatic 

mutations associated with paraganglioma and erythrocytosis have been described 

(Zhuang et al., 2012;Yang et al., 2013) but they are not within the scope of this paper. 

 

Biological Significance  

 

The identification of CE causal mutations in the HIF pathway genes has established the 

PHD2:HIF-2α:VHL pathway as the key regulator of adaptation and survival of both 

cells and the whole organism to hypoxia through Epo regulation (Lee and Percy, 2011). 

 

It was previously noted that in some instances VHL disease was accompanied by 

erythrocytosis but these secondary erythrocytoses were due to Epo production by the 

tumor itself and disappeared after tumor removal. Hence, they resolved after tumor 

removal.   

The first insight into CE came from the studies on Chuvash polycythemia patients 

where the p.Arg200Trp mutation in the VHL gene led to an autosomal recessive form of 

erythrocytosis. The VHL p.Arg200Trp loss-of-function mutation results in diminished 

ubiquitination of the HIF transcription complexes and less proteasomal regulation in 

normoxia. 
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Further studies screening individuals with erythrocytosis for defects in HIF-1α, HIF-2α 

and the three isofroms of PHD hydroxylases detected mutations in only PHD2 and HIF-

2α genes (Percy et al., 2006; Percy et al., 2008a; Percy et al., 2008b). These results 

indicated that PHD1 and PHD3 isoforms were unable to compensate for the loss of 

PHD2 function and there was no redundancy in the oxygen sensing pathway. 

Furthermore, the different isoforms of HIF and PHD exhibited different specific 

functions. 

 

The HIF-1 transcription complex was described as the main regulator of Epo from 

binding studies and for a decade this was believed to be the case. However, the results 

from erythrocytosis studies caused a paradigm shift resulting in HIF-2α now being 

recognized as the main isoform that controls Epo. This was borne out by mice and RNA 

interference studies (Scortegagna et al., 2003; Warnecke et al., 2004). It is now 

acknowledged that HIF-1α and HIF-2α regulate different target genes (reviewed by 

Mole and Ratcliffe, 2008). 

 

Inherited mutations in HIF-2α are all located close to the site of prolyl hydroxylation at 

Pro531 and this region is crucial for the binding of PHD2 for hydroxylation and VHL 

for ubiquitination of HIF-2α (Furlow et al., 2009). Functional analysis of a series of 

HIF-2α mutations has shown that in most cases the binding of both PHD2 and VHL is 

decreased, except for the p.Met535Val mutation, whereas VHL binding is retained. 

Thus diminishing PHD2 binding alone is sufficient to cause impairment of the oxygen 

sensing pathway and dysregulation of Epo synthesis. 
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At the physiological level, VHL mutations have more profound consequences, not just 

affecting hemopoiesis but also metabolism and exercise capacity, as both HIF-1α and 

HIF-2α proteins are stabilized in normoxia (Formenti et al., 2010). Consequently, a 

broader range of target genes is up-regulated in subjects carrying VHL mutations 

compared to those with HIF-2α mutations, further highlighting the differing functions of 

the HIF-α isoforms. 

 

Clinical Significance of Mutation Identification  

 

The elevated number of red blood cells and high hematocrit with a consequent 

hyperviscosity, may result in CE patients presenting with symptoms and signs ranging 

from headaches, dizziness, epistaxis and exertional dyspnea to pruritus after bathing. 

Moreover, thrombotic and hemorrhagic events leading to premature morbidity and 

mortality have been reported. Clinical symptoms are effectively relieved by 

phlebotomy, but the increased risk of cardiovascular morbidity is not necessarily 

ameliorated by maintaining a normal hematocrit (Van Maerken, 2004). 

 

The Chuvash cohort, who is homozygous for the VHL R200W mutation, has been most 

extensively studied clinically.  Homozygous patients have been compared with a spouse 

control group and age sex matched community controls some of whom were VHL 

heterozygotes. Survival in the Chuvash patients was found to be reduced compared to 

the control groups and there were higher rates of arterial and venous thromboses 

(Gordeuk et al., 2006).  No increase in cancers was seen in the Chuvash polycythemia 

cohort. Clinically those with Chuvash polycythemia had lower blood pressures than the 

heterozygotes while the heterozygotes had lower blood pressures than the controls 
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(Gordeuk et al., 2004). Homozygotes were observed to have more venous varicosity 

than control groups.  There have been no reports of CE type 2 (VHL mutations) patients 

developing tumors, except for two cases of isolated hemangioblastoma (Woodward et 

al., 2007). 

 

Cardiopulmonary physiology has been studied in Chuvash polycythemia patients 

compared to two control groups. Participants were studied at baseline and then 

subjected to hypoxia. Mild hypoxia induced a greater increase in ventilation in the 

Chuvash patients compared to the controls and they did not tolerate moderate hypoxia. 

They had abnormally high pulmonary artery pressures and hypoxia provoked a further 

abnormal rise. Physiological studies showed that Chuvash patients appeared to be in a 

situation characteristic of acclimatisation to the hypoxia resulting from high altitude 

(Bushuev et al., 2006; Smith et al., 2006). These patients should be regularly monitored 

for cardiopulmonary function. 

 

Studies in the original Chuvash population revealed that the occurrence and severity of 

thromboembolic events was independent of the intensity of a possible phlebotomy 

treatment (Gordeuk et al., 2004). Therefore, particularly in patients with pulmonary 

hypertension (PHT) discernable risks of phlebotomy treatment have to be calculated 

very carefully with regard to a possible negative influence of iron deficiency on PHT 

(Craig et al., 2012; Sable et al., 2012).  

 

EGLN1 and EPAS1 mutations are mostly described in single case reports and there is 

little clinical information available. However, there are a few thromboembolic events 

reported occurring at young ages which are likely to be of significance in association 
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with the mutations (Percy et al., 2008a). Pulmonary hypertension has also been 

described in individuals with the EPAS1 p.Gly537Arg mutation (Gale et al., 2008). The 

underlying physiological changes are similar to those observed in patients with Chuvash 

polycythemia (Formenti et al., 2011) 

 

Several cases with EGLN1 and EPAS1 mutations developed paraganglioma and this will 

be discussed in the section entitled “Risk of tumor development in patients with CE”.  

  

CE patients with high oxygen affinity hemoglobins usually are generally asymptomatic 

but hyperviscosity symptoms and thromboembolic episodes have been reported and 

related to the high hematocrit (Fairbanks et al., 1971; Weatherall et al, 1977). However, 

phlebotomy is not simple solution since erythrocytosis in these patients is primarily a 

requirement due to general tissue hypoxia. Therefore, phlebotomy treatment will be 

limited to single symptomatic events. In severe symptomatic cases regular exchange 

transfusion may have to be considered. Cases have been described showing unusual 

incidences of spontaneous abortion in female carriers caused by the lower oxygenation 

of the fetus resulting from either the alteration in the physiological oxygen gradient 

affinity between foetal and maternal blood or by placental infarction caused by the high 

viscosity of the mother’s blood (Koller et al., 1980, Bento et al., 2000).  

 

In conclusion, the raised hematocrit and increased viscosity associated with CE may 

lead to a number of clinical complications including increased thromboembolic events 

at young ages but in the absence of good clinical data and follow up it is difficult to 

obtain a true picture of the clinical situation. At present, it is not possible to make clear 

treatment recommendations. However, the identification of the underlying genetic 
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defect aids avoidance of possible pitfalls in the treatment (e.g. phlebotomy in 

hemoglobinopathies), organization of adequate monitoring (e.g. for PHT in VHL and 

EPAS1 cases) and to counsel the patient. 

 

Carriers of VHL mutations with CE   

    

Although CE type 2 is considered a recessive disease the occurrence of individuals 

heterozygous for VHL mutations with erythrocytosis has been described. Eleven 

independent cases of erythrocytosis patients heterozygous for VHL mutations were 

reported in the literature. In contrast, other carriers of the same VHL mutation exhibited 

normal hematological parameters. In the case of heterozygous carriers with 

erythrocytosis the presence of other VHL mutations or a VHL null allele or deletion that 

could affect the apparently wild-type VHL allele had been ruled out and no mutations in 

the other genes associated with CE were found (Pastore et al., 2003; Bento et al., 2005; 

Percy et al., 2003a; Randi et al., 2005; Cario et al., 2005; Perrotta et al., 2006; Percy et 

al., 2007).  

In addition 15 patients with erythrocytosis but only heterozygous VHL mutation are 

registered in the erythrocytosis database (Table 2). It is interesting that in two of these 

cases, twin brothers heterozygous for the p.Arg200Trp mutation, the wild type allele 

showed an unexplained low expression of VHL (data not shown). 

The use of next generation sequencing (NGS) will be a useful tool in the identification 

of novel candidate genes associated with the development of erythrocytosis.  
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Risk of tumor development in patients with CE 

 

The risk of patients with germline mutations in the HIF pathway (VHL, EGLN1, 

EPAS1) to develop tumors need to be considered, knowing the crucial role that hypoxia 

plays during tumorigenesis. 

In inherited cancer diseases associated with the loss of tumor suppressor genes, the 

mechanisms of tumor development imply that the first event leads to a loss of function 

sufficient to induce a selective pressure, which results in the loss of the second allele. 

Germline heterozygous mutations in the VHL gene predispose to the development of 

multiple tumors which have subsequently lost the remaining wild type allele. 

Concerning the VHL p.Arg200Trp mutation, the heterozygous carriers never develop 

malignant tumors and parents of the patients with Chuvash polycythemia are healthy. 

Two rare cases have been described with erythrocytosis that developed 

hemangioblastomas, which are benign tumors (Woodward et al., 2007). It is possible to 

hypothesize that the p.Arg200Trp mutation is not sufficiently deleterious to allow a 

selective pressure and initiate tumorigenesis. Indeed, the VHL p.Arg200Trp mutation is 

considered as less severe than classical VHL mutants (Ang et al., 2002; Rathmell et al., 

2004) and a recent comprehensive functional study of this mutant showed that it is  

similar to the wild type protein (Gardie et al., in preparation). Therefore, the risk of 

patients carrying the p.Arg200Trp mutation to develop malignant tumors can be 

estimated as very limited. However, stringent follow up is recommended for patient 

carring other VHL mutations in which the severity of the loss of function has not been 

precisely determined (Figure 4). 

The VHL mutations associated with CE are all missense mutations, except for one 

truncating mutation, VHL p.Glu10X. This particular mutation is located between the 
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two translation initiation codons and has the capacity to produce a pVHL19 isoform still 

able to regulate HIF. 

 

Regarding the other genes of the HIF pathway mutated in erythrocytosis (EGLN1, 

EPAS1), the evaluation of the risk of developing tumors is more complicated because of 

the restricted number of described cases and because of the closely related isoforms 

(PHD1, 3 and HIF-1α) which are theoretically able to compensate for the dysregulation 

of HIF. Nonetheless, the follow up of the patients carrying such mutations is highly 

recommended. Indeed, paragangliomas (tumors of the VHL disease spectrum) have 

already been described in patients carrying a particular EGLN1 mutation (H374R) and a 

EPAS1 mutation (p.Phe374Trp). The study of the patient with the EGLN1 p.His374Arg 

mutation indicated there was severe loss of function compared to mutations associated 

with erythrocytosis (Ladroue et al., 2012). Furthermore, examination of the 

paraganglioma from the patient indicated a loss of the remaining EGLN1 wild type 

allele in the tumor (Ladroue et al., 2008). EGLN1 is therefore a potential tumor 

suppressor gene as already been suggested (Kato et al., 2006; Lee, 2008). 

Regarding EPAS1 mutations, it should be noted that none of the germline mutations 

identified in patients with CE target the main hydroxylated prolines (Pro405 and 

Pro531). Nonetheless, mutations targeting the Pro531 have been described, but only at 

the somatic level in four cases of pheochromocytomas/paragangliomas (Favier et al., 

2012; Toledo et al., 2013). These observations suggest that total and excessive 

activation of HIF-2α may be necessary for tumorigenesis. 

Performing accurate comparative functional studies of the HIF pathway mutants is 

required in order to evaluate the risk of the carriers to develop tumors. 
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Diagnostic Strategies  

 

When diagnosing a patient with erythrocytosis it is important to exclude acquired 

secondary (pulmonary, renal and cardiac) or acquired primary (PV due to JAK2 

mutations) causes. 

The family history and the determination of serum Epo levels are very useful in the 

decision regarding which molecular tests should be performed first. If available, 

determination of p50 (percentage at which Hb is half saturated with oxygen) can be 

helpful in establishing the presence of a hemoglobin variant with high oxygen affinity.  

Sequencing of the candidate genes is mandatory for a definitive diagnosis. Based upon 

the serum Epo level and familial data, it is possible to establish an algorithm to decide 

which genes should be sequenced in each case of erythrocytosis (Figure 7). A 

comparable algorithm with a specific focus on diagnostics in affected children and 

adolescents has been published recently (Cario et al., 2013). 

 

Future Prospects  

 

Significant advances have been made during the past decade in the CE field with the 

identification of causal mutations in the EPOR gene and the elucidation of the genes 

directly implicated in the hypoxia sensing mechanism (VHL, EGLN1 and EPAS1). 

Presently, over 160 mutations have been associated with CE but despite this about 70% 

of the CE patients, and 12-35% of PFCP cases, still remain unexplained at the 

molecular level. The absence of erythrocytosis in a child heterozygous for a deleterious 

nonsense EPOR mutation (Kralovics et al., 1998) and the observation of individuals 

heterozygous for VHL mutations with erythrocytosis confirm that other genes or 

epistatic factors must be implicated in the clinical manifestation of CE. The coming use 
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of next-generation sequencing is expected to further expand the number of genes 

involved in CE. 

With the implementation of the internet-based erythrocytosis database, it is hoped that it 

will allow the establishment of clinical and genotype–phenotype correlations in larger 

groups of individuals.  

 

Mutation Nomenclature and Accession Numbers 

 

The mutation nomenclature used in this update follows the guidelines indicated by 

Human Genome Variation Society (HGVS) [den Dunnen and Antonarakis, 2003]. 

Mutation descriptions have been checked using the Mutalyzer program 

(https://mutalyzer.nl/). Nucleotide numbering is based on GenBank reference sequences 

NM_000518.4 for HBB, NM_000558.3 for HBA1, NM_000517.4  for HBA2, 

NM_199186.2 for BPGM, NM_000121.3 for EPOR, NM_000551.3 for VHL, 

NM_022051.2 for ENGL1, NM_001430.4 for EPAS1. 

 

Web Resources  

 

The URLs of resources used and/or cited in this work are the following: 

Single Nucleotide Polymorphisms database: http://www.ncbi. nlm.nih.gov/SNP/;  

Entrez Gene database:  http://www.ncbi.nlm. nih.gov/gene/; Online Mendelian 

Inheritance in Man (OMIM): http://www.ncbi.nlm.nih.gov/omim; LOVD databases: 

http://www.lovd.nl/2.0/; HbVar (http://globin.bx.psu.edu/hbvar)  
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