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In the present work we use nonrelativistic many body physics techniques to generalize the
classical limit of quantum systems in such a way as to incorporate statistical mixtures. Finite
temperature effects are thus incorporated in a natural way. We give a detailed account of the
thermodynamics of the SU(3) Lipkin model and then derive the classical thermal (chaotic)
dynamics of the system. The most remarkable features of our analysis are twofold: firstly the
appearance of a new degree of freedom essentially connected to thermal effects, i.e., for high
enough temperatures. Secondly we give a quantitative characterization of the temperature
effects on the chaotic volume of the system. Thermal effects are shown to be responsible for
novel nonlinear contributions to the dynamics and to consistently counterbalance the inter-
action part of the dynamics. This is the case in the context both of thermodynamics and of
the thermal dynamics and we believe it to be true in general. � 1998 Academic Press

I. INTRODUCTION

The discovery of chaotic phenomena with manifestly universal characteristics in
so many different areas of science can undoubtedly be considered as one of the
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most fascinating challenges of this century. In particular Mathematics and Physics
have largely contributed to unveiling the origins and consequences of such general
and interdisciplinary phenomenon. In this context a most remarkable achievement
in what concerns the understanding the structural manifestations of chaos is the
KAM theorem [1], proposed and proved originally by Kolmogorov in 1954 and
later revised and proved in detail by Arnold (1963) and Moser (1962). On the other
hand a lot of our present knowledge of the phenomenon is due to the impressive
technological development in computer sciences which allowed for the numerical
studies of non linear problems and the detailed investigation of specific models.

Chaotic behavior has been subject of intense investigation in physics. The two
main branches of investigation are chaos in dissipative systems [2, 3] and hamiltonian
chaos [4�6]. The present work belongs to the latter. We aim at an extension of the
idea of the classical limit as traditionally understood, as a variational independent
particle approximation. Independent particle states are the so called generalized
coherent states [7�10]. A natural extension consists in the use of independent
particle statistical mixtures as the set of variational density matrices and allows for
the study of finite temperature effects on classically chaotic systems, which remains
yet relatively unexplored. The previously obtained results by the present authors are
restricted to Dicke's maser model [11, 12] for which, due to its too simple mathe-
matical structure, the thermal effects on the chaotic dynamics are rather trivial.
They amount to a scaling in the allowed phase space. In this case, therefore the
thermal dynamics can be completely mapped on the zero temperature dynamics.

The classical limit of Lie algebras, including SU(3), not in the context of coherent
states has recently been studied by different authors [13, 14]. In particular a specific
realization of the SU(3) algebra was given in [13] and a general prescription for
the definition of the classical dynamics of any Lie algebra in terms of Poisson
brackets, independent of the representation, was discussed in [14]. Using the
Lie�Poisson approach of ref. [14] and the method proposed in ref. [15, 16] in
order to include the effects of a heat bath, the thermodynamic properties of systems
described by algebraic Hamiltonians have been studied in [17].

In the present work, the variational states that lead to the extended classical
dynamics are chosen to be a set of mixed states which are unitarily equivalent to
the thermodynamical equilibrium state [18, 19]. Thus, the resulting dynamics will
be hamiltonian and through the variational states, temperature dependent. For this
reason the important first step consists in studying in detail the thermodynamics of
the model under question. We have implemented the discussed technique within the
context of an SU(3) version of the Lipkin�Meshkov�Glick1 model [20, 21]. This
model was proposed originally to test many-body techniques and more recently it
has been revisited in the context of ``quantum chaos'', semiclassical limit [22�27]
and the theory of large amplitude collective motion [28].

The two main reasons which lead to the choice of this model were: firstly its
mathematical structure is extremely rich and therefore contains, as we will show,
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highly nontrivial thermal effects such as the appearance of a new degree of freedom.
We investigate in detail the competition between dynamical effects coming from
coupling terms in the Hamiltonian and temperature effects. Secondly there is the
fact that the Lipkin model belongs to a class of exactly soluble models, Curie-Weiss
models [29] which possess the interesting property that the mean field approxima-
tion becomes exact when the expansion parameter (in this case the number of
particles of the system) tends to infinity [30, 31]. In other words the LMG model
has a mathematically well defined classical limit.

Several finite temperature approaches to the study of the properties and phase
transitions of the LMG model and other group theoretical Hamiltonians have been
performed including thermal boson mappings [32], finite-temperature Hartree�Fock
[33], corrections to the finite temperature mean field such as the static path
approximation [34] and the correlated finite temperature Hartree�Fock [35].

The thermodynamics of the model reveals two second order phase transitions
and therefore three distinct regimes which we call Strong Coupling Regime (SCR),
Intermediate Coupling Regime (ICR) and Weak Coupling Regime (WCR). In the
SCR the interaction part of the Hamiltonian plays a dominant role in determining
the thermodynamic properties. As temperature increases, the system goes over to
the ICR where the dynamical effects are partially neutralized by the thermal effects.
Finally, for high enough temperatures the phase transition to the WCR takes place
and the system is completely governed by thermal effects. This behavior is reflected
in the average values of the Casimir operators of the group in question: for low
temperatures, the SCR can be thought of as being completely characterized by the
symmetric representation of the group. As temperature increases, close to the phase
transition, other representations start to contribute.

The study of the thermal dynamics is a very complex task, as opposed to the
integrable SU(2) version of the model, where thermal effects again amount to a
phase space scaling [36, 37]. The number of the fixed points in the SU(3) dynamics
is now fourteen (compared to four in the integrable case [24]). We have studied
the behavior of the fixed points as a function of the temperature for the SCR
regime.

We have also analysed the interplay between chaos and temperature: in the SCR
we find a scaling behavior and the thermal chaotic dynamics can be mapped onto
the zero temperature one. This trivial scaling behavior disappears, however, as the
temperature increases. In particular we show the appearance of a new (third) degree
of freedom which is essentially connected to thermal effects. In this case, although
Darboux theorem [1] guarantees the existence of pairs of canonically conjugate
variables, we have been unable to construct them by a useful method for practical
purposes, in spite of all our efforts. Fortunately this is not necessary to give a
quantitative characterization of the chaotic volume of the system. We have in these
cases (ICR, WCR) directly integrated Heisenberg's equations of motion for the
average values of the generators of the algebra, thus determining the Lyapunov's
exponents and defining the chaotic volume. According to this criterion we have
shown that the chaotic volume decreases as a function of temperature.

3FINITE TEMPERATURE EFFECTS
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The present work is organized as follows: in Section II we briefly sketch the
variational method used. Section III contains a definition of the SU(3) Lipkin
model. Its thermodynamical properties are contained in Section IV and the thermal
dynamics in Section V. Conclusions can be found in Section VI.

II. MEAN FIELD APPROXIMATION FOR MIXED STATES

Let H be the Hamiltonian for a N particles system. An arbitrary mixed state of
this system is described by a density matrix D such that

Tr(D)=1. (1)

The time evolution of D is governed by Liouville�von-Neumann equation

D4 =@[D, H], (2)

or equivalently

D(t)=e&@Ht D(0) e@Ht. (3)

A stationary state D0 satisfies

[H, D0]=0. (4)

The above condition can be formulated variationally. For this purpose we
consider a set of unitarily equivalent trial density matrices

D(t)=U(t) D0U-(t), (5)

where U(t) is an arbitrary unitary operator which is labelled by variational parameters.
The resulting dynamics will be hamiltonian.

Technically it is much simpler to work with the diagonal form of D0 ,

Ddg=V D0V -, (6)

where Ddg is a diagonal time independent density and V the adequate (also time
independent) unitary transformation. We can thus rewrite (5) as

D(t)=U(t) Ddg U-(t), (7)

provided U(t)=U(t)V -.
The mean field approximation consists in choosing Ddg and U(t) such that

Ddg=exp(A)�Tr(exp(A)) and U(t)=exp(@S(t)), (8)

4 TERRA ET AL.
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where A and S are Hermitian one body operators and the most general form of
U(t) is parametrized by a set of complex variables [:1 , :2 , ..., :n].

Statistical equilibrium is obtained by minimizing the free energy of the system, i.e.,

F=Tr(DH )+
1
;

Tr(D ln D), (9)

where ;=1�kBT. Here, kB is the Boltzmann's constant and T stands for temperature.
The first term on the r.h.s. is the internal energy and the last one the system's
entropy S=&kB Tr(D ln D).

The dynamical equations of motion for the set of the parameters [:1 , :2 , ..., :n]
are obtained by minimizing the action

I=|
t2

t1

L dt, (10)

where

L=@Tr(DdgUU4 -)&Tr(DdgUHU -). (11)

It is well known that this Lagrangian is variationally equivalent to the Liouville�von
Neumann equation for the time evolution of the density matrix, Eq. (2). We sketch
the proof of this fact. At any time t the density matrix D(t) can be written in terms
of the stationary density matrix D0 , as

D(t)=U-(t) DdgU(t), (12)

where U(t) is a unitary operator. We denote by $F an infinitesimal hermitean
time-dependent one-body operator satisfying

$U=&@U $F, $U-=@ $FU-.

We require that $I does not depend on $F(t), for t1<t<t2 . Then, simple algebra
shows that

|
t2

t1

dt Tr(D4 &@[D, H]) $F=0. (13)

Since $F is arbitrary and time dependent, the density matrix satisfies the Liouville�
von Neumann equation.

The variational approach will be illustrated in the next two sections.

III. THE MODEL

The model represents an interacting N fermions system distributed in three levels
or shells with degeneracy N=N. The level energies are denoted by =k (k=0, 1, 2).

5FINITE TEMPERATURE EFFECTS
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The particle states are characterized by two quantum numbers: k=0, 1, 2 which
specifies the shell, and m=1, 2, ..., N which specifies the degenerate state within the
shell. The Hamiltonian of the system is given by

H= :
2

k=0

=k _ :
N

m=1

a-
kmakm&+

1
2

:
2

k, l=0

Vkl :
N

m=1

:
N

m$=1

a-
km a-

km$alm$alm , (14)

where a-
km and akm are the creation and annihilation fermionic operators of a

particle at the level k in the state m. This is the most general definition of the model
but, as usual in the literature, we consider the following restrictions (see for
example [28] for a general discussion of the n-level LMG model):

v the levels are equally spaced and symmetrical around zero, i.e., =2=&=0#=
and =1=0;

v we assume that the interaction does not scatter particles within the same
level and that its strength is the same for all levels, i.e., Vkl#V(1&$kl).

We next define the operators

Gij= :
N

m=1

a-
imajm , G -

ij=Gji , i, j=0, 1, 2; (15)

which are the nine generators of the U(3) group and satisfy the commutation
relations

[Gij , Gkl ]=$jkGil&$ilGkj . (16)

If one takes into consideration that the particle number is a conserved quantity,
N=G00+G11+G22 , eight is the number of independent operators, which are the
generators of an SU(3) algebra. We can thus rewrite the Hamiltonian as

H==(G22&G00)+
V
2

(G 2
01+G 2

10+G 2
02+G 2

20+G 2
12+G 2

21). (17)

The scaled interaction parameter is defined in the usual way as

/=
V(N&1)

=
. (18)

The eigenstates of H are thus classified according to the irreducible representa-
tions of the SU(3) group and, as a consequence the hamiltonian matrix of order 3N

splits into noninteracting blocks. This is due to the fact that the interaction does
not change the label m of the scattered particle.

6 TERRA ET AL.
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The second symmetry is due to the fact that the Hamiltonian scatters only pairs
of particles, implying thus the conservation of the parity related to the shell's
population. We therefore have

[H, 6� 1]=[H, 6� 2]=0, (19)

where

6� 1=exp(i?G11) and 6� 2=exp(i?G22), (20)

are parity operators. These symmetries allow for the classification of the states
according to the parity of the eigenvalues of the diagonal operators (see ref. [23]).

IV. THE THERMODYNAMICS OF THE SU(3) LIPKIN MODEL

We start by constructing the equilibrium density matrix as follows,

D0=K exp(&;hMF), (21)

where

hMF =:1(G11&G00)+:2(G22&G00)+:3G01

+:3*G10+:4 G02+:4*G20+:5G12+:5*G21 , (22)

where :1 , :2 # R, :3 , :4 , :5 # C, and K is the normalization constant. The eight
variational parameters, :i , are obtained by minimizing the free energy, Eq. (9). As
discussed before it is now convenient to work with D0 in diagonal form. For this
purpose we write

D=UD0U -=
1
Z

e;1 (G11&G00)e;2(G22&G00), (23)

where

Z=zN=Tr(e;1 (G1&G00)e;2 (G22&G00)), (24)

U=U3U2U1=eis3 eis2 eis1, (25)

with

s1=z1 G10+z1*G01 ,

s2=z2 G20+z2*G02 , (26)

s3=z3 G21+z3*G12 ;

;1 , ;2 # R and z1 , z2 , z3 # C. (27)

7FINITE TEMPERATURE EFFECTS
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The free energy is expressed as

;F=; Tr(DUHU-)+Tr(D ln D). (28)

We can thus calculate F as a function of the parameters. It is easy to check that
the real parts of z1 , z2 and z3 are irrelevant in what concerns the properties of
stationary system for attractive interactions (/<0). This fact reduces the number of
variational parameters to five real quantities: %1=iz1 , %2=iz2 , %3=iz3 , ;1 and ;2 .

The free energy per particle can then be written as

F� =
F
N

=&cos(2%2)(T2&sin2 %3T3)+
1
2

sin(2%1) sin %2 sin(2%3)T3

+sin2 %1(T1+sin2 %3T3&sin2 %2(T2&sin2 %3T3))

+
/
4

[cos2 %2 sin2(2%3) T 2
3+sin2(2%2)(T2&sin2 %3 T3)2

+[sin(2%1)(T1&sin2 %2 T2)+T3 [sin(2%1)(1+sin2 %2) sin2 %3

+cos(2%1) sin %2 sin(2%3)]]2]&
1
;

(;1T1+;2T2+ln z), (29)

where

T1=
Tr(D(G00&G11))

N
=

e&(;1+;2)&e;1

z
, (30)

T2=
Tr(D(G00&G22))

N
=

e&(;1+;2)&e;2

z
, (31)

T3=
Tr(D(G11&G22))

N
=T2&T1 , (32)

and

z=e;1+e;2+e&(;1+;2). (33)

The variational method requires

�F�
�%1

=
�F�
�%2

=
�F�
�%3

=
�F�
�;1

=
�F�
�;2

=0. (34)

This system of equations is given explicitly in Appendix A (Eqs. (134) to (137)).
Its numerical analysis shows that the minimum conditions are satisfied when %3=0

8 TERRA ET AL.
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TABLE I

Candidates to Minima of Free Energy Found Solving Equations (134)
and (135) for %3=0 (or ?)

n %1 %2 / range

1 0 0 ��

2 0
?
2

��

3 0
1
2

arccos \&2
/T2+ |/|�2

4
?
2

0 ��

5
?
2

?
2

��

6
?
2

1
2

arccos \&1
/T2+ |/|�1

7 ��
?
2

T1=T2

8 arcsin - 2+/(T2&2T1) arcsin - T1 �T2 1�/�2

9
1
2

arccos \&1
/T1+ 0 |/|�1

10
1
2

arccos \ 1
/(T2&T1)+ ?

2
��

11
1
2

arccos \ 3
3+2/(T2&2T1)+ arcsin�3+/(2T2&T1)

3/T2

|/|�3

or ?. This is very fortunate, since with this (numerical) result we can obtain analytic
expressions for the solutions %1 and %2 as a function of the coupling strength and
the temperature. They are presented in Table I.

The solutions presented in the table are then substituted in Eqs. (137) and the
parameters ;1 and ;2 are found numerically. We verify that the solutions which
correspond to minima are three (1, 9 and 11 in Table I), each one of them valid
for different intervals of / and ;. They are:

v Strong Coupling Regime (SCR): Occurring for /�&3 and ;�;cr1 , where
;cr1 is found numerically and displayed in the figures. These conditions are
summarized by

/T1�&3. (35)

9FINITE TEMPERATURE EFFECTS
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The parameters in this case are

;1=;2 O T1=T2=T, (T3=0), (36)

cos(2%1)=
3

3&2/T
, sin2 %2=

3+/T
3/T

, %3=0. (37)

v Intermediate Coupling Regime (ICR): Occurring for /�&1 and temperature
interval that has to be found numerically

;cr2�;�;cr1 for /�&3, (38)

;�;cr2 for &3�/�&1, (39)

or in more compact form

&3�/T1�&1. (40)

The parameters are

cos(2%1)=&
1

/T1

, %2=0, %3=0. (41)

v Weak Coupling Regime (WCR): Occurring for all values of / being a minimum
when

;�;cr2 for /�&1 (42)

and

\; for &1�/�0, (43)

or in more compact form

/T1�&1. (44)

The parameters are

%1=%2=%3=0, ;1=0, ;2=&;. (45)

The phase transition temperatures are found numerically and the analytical expres-
sions defining them are /T1=&1 and /T1=&3. We thus conclude that the state
of statistical equilibrium is determined by the parameter /$=/T1 . The weak coupling
phase, as discussed in the introduction corresponds to a regime where the coupling
strength plays no role in the definition of the equilibrium state. It corresponds to
an extremum of the free energy for any value of / and therefore it is a physical
situation corresponding to high temperatures or weak enough coupling. The SCR

10 TERRA ET AL.
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Fig. 1. Phase diagram /_; of the model. The relations between / and the inverse of the phase
transition temperatures are shown schematically by thick dot-dashed lines. The three phases regions are
indicated as well as the minimum values of / for the SCR and ICR existence (thin dashed lines).

corresponds to the situation where the interaction prevails for characterization of
the equilibrium density. In this case we may think that the dynamical coupling is
present in all three levels of the model since the parameters %1 and %2 are non zero.
The ICR is, in fact, an intermediate situation, since in this case the interaction is
only effective in the lower levels. Figure 1 shows schematically the relation between
/ and ;. The phase transition lines are just sketched.

IV.1. Thermodynamical Properties

In this section we present a detailed analysis of the relevant thermodynamical
quantities which allow for a characterization of the three phases of the system.

We start by showing the free energy as a function of ; for three values of the
coupling strength in Figs. 2(a�c). In Fig. 2(a), /=&6.0 and, as we see, the three
solutions are present and correspondingly two phase transitions: the first one, from
SCR to ICR occurs for ;cr1=0.4621 and the second one, from ICR to WCR, in
;cr2=0.4258. In Fig. 2(b) which corresponds to a smaller / value, we find only one
phase transition (from ICR to WCR). In this case the SCR does not exist. Figure
2(c) does not show any phase transition. The WCR solution is the only one.

The entropy and the internal energy are shown in Fig. 3 for /=&6.0. Although
they are continuous, none of them is analytical at the crytical temperature. For low
temperatures the entropy is very small and the free energy is dominated by the

11FINITE TEMPERATURE EFFECTS
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Fig. 2. Free energy F� as function of inverse temperature ; for three different values of coupling
parameter (a) /=&6.0, (b) /=&2.0 and (c) &1�/�0. Note that in (a) there are three phases (they
are separated by a vertical dotted line), in (b) two phases and in (c) just one phase. The critical inverse
temperatures are indicated.

contribution of the internal energy. As the temperature grows this is reversed, as
expected.

Another quantity which turns out to be very instructive is the average value of
the level's population difference as a function of / and ;, namely

P01=
(T1)

N
=

Tr(DU(G00&G11) U -)
N

=cos(2%1)(T1+sin2 %3T3

&sin2 %2(T2&sin2 %3T3))+sin(2%1) sin %2 sin(2%3)T3 , (46)

P02=
(T2)

N
=

Tr(DU(G00&G22) U -)
N

=cos(2%2)(T2&sin2 %3T3)

&
1
2

sin(2%1) sin %2 sin(2%3) T3&sin2 %1(T1+sin2 %3T3

&sin2 %2(T2&sin2 %3T3)), (47)

12 TERRA ET AL.
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Fig. 3. Internal energy E� and entropy S� as function of inverse temperature for /=&6.0. The values
of critical inverse temperatures ;cr1 and ;cr2 are indicated.

Fig. 4. P01 and P02 as function of inverse temperature ; for two values of coupling paremater
(a) /=&6.0 and (b) /=&2.0.

13FINITE TEMPERATURE EFFECTS
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where P01(02) is the average of the population difference between the first (second)
and the lowest level. They are shown in Fig. 4(a) and (b). For the strong coupling
regime both population differences are held constant up to ;=;cr1 . This clearly
reveals the dominant role played by the coupling strength in this thermodynamic
phase. For ;cr2�;�;cr1 we see that the temperature effectively attenuates this role
of /. In this case the population difference between levels 0 and 2 decreases, while
the difference between 0 and 1 is the same as before. Below ;cr2 the interaction
effects are completely absent and the system will tend to populate equally all
levels as required by entropy maximization. We thus conclude that increasing the
temperature tends to effectively ``weaken'' the dynamical coupling.

The two phase transitions of the system are clearly reflected in the system's
specific heat, as shown in Fig. 5. The behavior of the order parameters are shown
in Fig. 6. The average values of the operators (G02+G20)�2 and (G01+G10)�2 may be
chosen as order parameters of the first (SCR � ICR) and the second (ICR � WCR)
phase transitions respectively. We have

(G01) =(G10) =&
sin(2%1)

2
(T1&sin2 %2T2), (48)

Fig. 5. The specific heat of the system as function of ; for /=&6.0. Note the two second order
phase transitions.

14 TERRA ET AL.
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Fig. 6. Order parameters (G02+G20)�2 and (G01+G10)�2 of the SCR � ICR and ICR � WCR
phase transitions respectively as function of the inverse temperature ; for /=&6.0.

and

(G02) =(G20) =&
cos(%1) sin(2%2)

2
T2 . (49)

Their interpretations again show the suppression of the particle's transitions due
to the dynamics involving level 2 (first phase transition) and level 1 (second phase
transition).

We also calculated the average values of the Casimir operators of second order
and third order scaled by N2 and N3 respectively

(C2) =
1

N2 :
i, j

Tr(DGijGji), (50)

(C3) =
1

N3 :
i, j, k

Tr(DGijGjkGki). (51)

Their values depend only on ; and / and are completely independent of the state
choice. We notice that, when the temperature is zero, the values of (C2) and (C3)
are always equal to 1, which corresponds to the value of the Casimir operators in
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Fig. 7. Scaled average values of the Casimir operators (C2 ) and (C3 ) as function of ; for (a)
/=&6.0 and (b) /=&2.0.

Fig. 8. All the eigenvalues of energy En�N= versus n�nmax for /=&6.0 and N=6. They are separated
according to the irreducible representations they belong to (see Fig. 9). The quantity nmax is the number
of eigenstates of each irreducible representation and it is used to label it. Besides n=1, ..., nmax .
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the symmetric representation. As temperature grows, these average values decrease
which would correspond, in the quantum context, to the contribution to the statistical
averages of states belonging to other representations. We see from Fig. 7(a) that for
/�&3 this occurs in a temperature range which is below but close to the
SCR � ICR phase transition. Now, for systems with &3�/�0, this occurs for any
finite temperature. This is shown in Fig. 7(b).

IV.2. Exact Thermodynamic Calculation: Finite N Results

The mean field approximation used in the present work involves all the different
irreducible representations of the SU(3) group. It is possible to investigate their
role in an exact calculation for finite N. For example, in Fig. 8 we display the eigen-
values of the Hamiltonian (17) for N=6 and /=&6.0. They are separated according
to the irreducible representations they belong to. The 36 states are distributed in the
various representations in the following way,

[3]�[3]�[3]�[3]�[3]�[3]=[28]�5_[35]�9_[27]�10_[10]

�5_[10]�16_[8]�5_[1], (52)

where the symbols in brackets correspond to the representation illustrated in Fig. 9.

Fig. 9. Irreducible representations of a 6 particles system. The stars show the positions which are not
occupied by states in the antisymmetric representations while the circumcentric circles indicate the
number of states which occupy the same position in the diagram.
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We are now in a position to calculate the relative contribution of the various
irreducible representations as a function of temperature. For this purpose we define

P[a]= :
Ej # [a]

Y[a]

exp(&;Ej)
Z

, (53)

where Y[a] is the multiplicity factor of the representation [a].
In Fig. 10 we show P[a] as a function of inverse temperature for N=6 and

/=&6.0. The three phases regions are separated by the vertical thick dot-dashed
lines. We see that for the strong coupling regime the main contribution comes
from the symmetric representation ([28]). As the temperature increases the other
irreducible representations start to give nonnegligible contributions. This result is
consistent with the mean field average values of the Casimir operators, as we saw
in Fig. 7.

In order to illustrate the adequacy of the m.f.a. we compare the exact and mean
field results. In Fig. 11, we show the free energy obtained by mean field approxima-
tion and exact calculation for N=4 and N=6, where we have considered all
irreducible representations states and N=30, where we considered only the
symmetric representation states. The numerical calculation for exact quantities that
computes all accessible states is rather involved, therefore we have stopped at N=6.

Fig. 10. Relative contribution of the irreducible representations P[a] for N=6 and /=&6.0 as
function of inverse temperature ;. The vertical thick dot-dashed lines separate the three phases regions.
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Fig. 11. Mean field result (solid line) and exact results obtained considering all 3N states for N=4
(dot-dashed line), N=6 (dashed line) for the average free energy F� as function of inverse temperature
; for /=&6.0. The dotted line represents the result for 30 particles, but just considering the symmetric
representation states. We can observe that for SCR this representation is the main responsible for the
system behavior.

However, it is possible to observe, even for small N, the convergence of the exact
curves toward the mean field one. For low enough temperatures, when the symmetric
representation alone dominates the behavior of the system, it is seen that the dotted
line agrees very well with the mean field curve.

V. FINITE TEMPERATURE EFFECTS IN
THE CLASSICAL DYNAMICS

We start by introducing the thermal classical Lagrangian of the system (�=1),

L=i Tr(DUU4 -)&Tr(DUHU -), (54)

where D is the equilibrium diagonal density given by Eq. (23) and U has the same
form as in the previous section, but with time dependent parameters, that is,

U=U3U2 U1=eis3 (t)eis2 (t)eis1 (t), (55)
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with

s1(t)=z1(t) G10+z1*(t) G01 , (56)

s2(t)=z2(t) G20+z2*(t) G02 , (57)

s3(t)=z3(t) G21+z3*(t) G12 . (58)

The definition of classical variables comes from the first term on the r.h.s. of
Eq. (54). We get

Tr(DUU4 -)
N

=
z* 3z3*&z3 z* 3*

2 R2
3

S 2
3T3+

z* 2z2*&z2z* 2*
2 R2

2

S 2
2(T2&S 2

3 T3)

+
z* 1z1*&z1z* 1*

2 R2
1

S 2
1 {T1+S 2

3T3&S 2
2(T2&S 2

3T3)

+i
(z1z2*z3&z1*z2z3*)

R1R2 R3

C1S2S3 C3

S1

T3=
+i

(z* 1z1*+z1z* 1*)
2 R2

1

(z1z2*z3+z1*z2z3*)
S2S3C3

R2 R3

T3 (59)

with

Sj=sin - zjzj* , Cj=cos - zjzj* , Rj=- zjzj* , j=1, 2, 3. (60)

Fig. 12. Plot of T1 , T2 and T3 as function of ; for /=&6.0. Note that in the SCR, T3 vanishes and
T1 and T2 have the same value.
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The quantities T1 , T2 and T3 , given by (30) to (32), are very important in the study
of the dynamics. They have been obtained in the previous section for attractive
interaction (/<0) and are displayed in Fig. 12 as function of inverse temperature
for (a) /=&2 and (b) /=&6.

In principle for an arbitrary initial condition (;1 and ;2) we have three pairs of
noncanonical variables. We may choose ;1 and ;2 of the thermodynamical equi-
librium state. The second term on the r.h.s. of Eq. (54) is the classical counterpart
of the quantum Hamiltonian of the system defined in Section III. In terms of the
variables z1 , z2 and z3 it is given by

H(zi , zi*)
N

=(&1+2S 2
2)(T2&S 2

3T3)+i(z1z2*z3&z1*z2z3*)
S1C1S2S3C3

R1R2R3

T3

+S 2
1[T1+S 2

3T3&S 2
2(T2&S 2

3T3)]+
/
2 {&(z2

1+z1*
2) \S1C1

R1 +
2

} [T1+S 2
3T3&S 2

2(T2&S 2
3T3)]2+{[(z2z3*)2+(z2*z3)2] C 4

1

+_\z1 z2*z3

z1* +
2

+\z1*z2 z3*
z1 +

2

& S 4
1+2 \z1

z1*
+

z1*
z1 + R2

2R2
3C 2

1S 2
1=

} \S2S3C3

R2R3 +
2

T 2
3+{(z1z2 z3*&z1*z2*z3) C 2

1+\z2
1 z2*z3

z1*
&

z1*
2z2z3*
z1 + S 2

1=
} 2i

S1C1 S2S3 C3

R1 R2 R3

T3[T1+S 2
3T3&S 2

2(T2&S 2
3T3)]&(z2

2+z2*
2)

} \C1 S2C2

R2 +
2

(T2&S 2
3T3)2+[(z1z3)2+(z1*z3*)2] \S1C2S3C3

R1R3 +
2

T 2
3

&2i(z1z2 z3&z1*z2*z3*)
S1C1S2C 2

2S3C3

R1R2 R3

T3(T2&S 2
3T3)&(z2

3+z3*
2)

} \C1 C2 S3C3

R3 +
2

T 2
3+[(z1*z2)2+(z1 z2*)2] \S1S2 C2

R1 R2 +
2

[T2&S 2
3T3]2

&2i(z1*z2z3&z1z2*z3*)
S1C1S2C 2

2S3C3

R1R2 R3

T3(T2&S 2
3T3)= . (61)

At this point we tried to express the three degrees of freedom of our system in terms
of canonical variables. At this point we tried to express the three degrees of freedom
of our system in terms of canonical variables. However, in spite of Darboux's
theorem which guarantees the existence of canonical forms [1] we have not succeeded
in obtaining useful analytical expressions, except for the SCR. In this case the classical
dynamics of the system reduces to two degrees of freedom as in the zero temperature
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case. In the other regimes we have an important temperature effect in the classical
dynamics of the model: the appearance of a third degree of freedom, which does not
exist at zero temperature. In order to study this novel effect we will first restrict
ourselves to the small amplitude regime of the dynamics where all results are
analytical. This was done in reference [38]. We give a brief summary of the main
results.

V.1. Small Amplitude Motion

The small amplitude fluctuations around equilibrium are described by the second
order Lagrangian

L(2)= :
3

j=1

i
2

(#* j#j*&#j#* j*)&H(2)(#j , #j*), (62)

with

H(2)(#j , #j*)=
1
2

(#1* #2* #3* #1 #2 #3) \A
B

B
A+\

#1

+ , (63)

#2

#3

#1*

#2*

#3*

where the variables #j , #j*, j=1, 2, 3 are canonical variables related to the small
deviations, $zj , $zj* , from the equilibrium solution and A, B are 3_3 matrices
which are defined according to the different phases. From now on we present the
small amplitude motion around the thermodynamical equilibrium solution in each
one of the three possible regimes. The RPA frequencies 0j [39], i.e., the small
amplitude frequencies are determined from the equation

02
j u=(A+B) } (A&B)u, j=1, 2, 3. (64)

where u are the RPA eigenvectors. We obtain the following RPA frequencies:

1. Weak coupling regime (/T1�&1):

01=- 1&/2T 2
1 , 02=- 4&/2T 2

2 , 03=- 1&/2T 2
3 . (65)

2. Intermediate coupling regime (&3�/T1�&1):

01=- 2[(/T1)2&1], (66)

02= 1
2 - (3&/T1)2&(2/T2)2, (67)

03= 1
2 - (3+/T1)2&(2/T3)2. (68)
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Fig. 13. RPA frequencies as function of the inverse temperature ; of the system for (a) /=&2.0 and
(b) /=&6.0. Note the ``awakening'' of the third mode in the SCR � ICR phase transition.

3. Strong coupling regime (/T1�&3):

There are only two modes:

0i=-
4
3 [(T1/)2&3\- 9+3(T1/)2], i=1, 2. (69)

In the limit of zero temperature, T3 � 0, Ti � 1, i=1, 2, the RPA frequencies
reduce to the ones given in ref. [22],

- 1&/2, - 4&/2, &1</<0

i=1, 2 0i={- 2(/2&1), 1
2 - 3(/+3)(1&/), &3</<&1

-
4
3 [/2&3\- 3/2+9], /<&3.

In Fig. 13(a) and (b) the RPA frequencies are represented respectively for /=&2
and /=&6.

We notice that for finite temperatures the third mode is excited whereas it remains
inert for zero temperature and also for the strong coupling regime. This feature of
temperature dependence of small frequency modes is also described in ref. [40].

V.2. Large Amplitude Motion in the SCR

As aforementioned, in the SCR the term T3 vanishes and the classical dynamics
is restricted to two degrees of freedom. We are then able to find two pairs of canonically
conjugate variables and to completely analyze the dynamics of the system including
their stationary points in an analogous way to ref. [24] and characterize the classical

23FINITE TEMPERATURE EFFECTS



File: DISTIL 574224 . By:DS . Date:12:12:97 . Time:10:57 LOP8M. V8.B. Page 01:01
Codes: 2400 Signs: 937 . Length: 46 pic 0 pts, 194 mm

trajectories in all phase space. Therefore, for this phase we define the pairs of
canonically conjugate variables

#1=z1

sin - z1z1*

- z1z1*
cos - z2z2* - T, (70)

#2=z2

sin - z2z2*

- z2z2*
- T (T1=T2#T ). (71)

Note that T does not stand for temperature from now on.
In terms of these variables Eq. (59) reduces to

Tr(DUU4 -)
N

=
1
2

:
2

i=1

#* i#i*&#i#* i*, (72)

and the classical Hamiltonian is given by

Hcl =&T+2#2 #2*+#1 #1*+
/
2

[&(T&#1#1*&#2#2*)

_(#2
1+#1*

2+#2
2+#2*

2)+(#1*#2)2+(#1#2*)2]. (73)

One of the temperature effects on this dynamics is to restrict the phase space of
the system (see Eq. (70) and (71))

0�#2#2*�T (74)

and

0�
#1#1*

T&#2#2*
�1. (75)

We found it convenient to express the classical Hamiltonian in terms of the new
variables

#2=- '2 ei%2 and #1=- '1 ei%1, (76)

with the range of allowed values

0�'1+'2�T. (77)

In the large N limit (classical limit) the classical scaled Hamiltonian is defined as

E=
Hcl

N
=&T+2'2+'1+/[&(T&'1&'2)['1 cos(2%1)+'2 cos(2%2)]

+'1'2 cos[2(%1&%2)]]. (78)
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In the limit of zero temperature we recover the result previously obtained in
ref. [24], (see Eq. (2.9)). Also when '2=0 we recover the finite temperature SU(2)
result [37].

Our variables '1 and '2 correspond to the action variables of the free system and
are related to the population Nk of the levels scaled by the number of particles

N1=
Tr(DUG11U-)

N
=

Tr(DG11)
N

+'1 , (79)

N2=
Tr(DUG22U-)

N
=

Tr(DG22)
N

+'2 , (80)

N0=
Tr(DUG00U-)

N
=

Tr(DG00)
N

&'1&'2 . (81)

The allowed range for these variables is a consequence of the conservation of the
number of particles (�2

k=0 Nk=1). We could have as well used Nk instead of 'k .
This would, however increase the number of terms in the classical Hamiltonian.
Alternatively we can define new temperature independent variables

11=
#1

- T
=z1

sin - z1z1*

- z1z1*
cos - z2 z2* O I1=

'1

T
, (82)

12=
#2

- T
=z2

sin - z2 z2*

- z2z2*
O I2=

'2

T
, (83)

and an effective coupling constant

/;=/T, (84)

which leads to

L
N

=T
i
2

:
2

k=1

(14 k1 k*&1k 14 k*)&TE, (85)

where

E=
E
T

=&1+2I2+I1+/;[&(1&I1&I2)[I1 cos(2%1)

+I2 cos(2%2)]+I1I2 cos[2(%1&%2)]], (86)

and

0�I1+I2�1. (87)
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This is precisely the zero temperature classical Hamiltonian with a coupling
strength /; . From the above expression we can conclude that the temperature effect
in the SCR is the same as observed for the SU(2) version of the model [37] and
for the Maser model (also chaotic) [11, 12], i.e., the temperature does not bring
new dynamical effects. It is, however, important to stress that the thermal states
cannot be simulated by simply changing the parameters of the Hamiltonian and are
effectively distinct with respect to those corresponding to zero temperature.

V.2.A. Fixed Points and Bifurcations in the Strong Coupling Regime

The equations of motion for the strong coupling regime obtained from Hamiltonian
(78) are given by

'* 1=&
�E
�%1

=2'1/[&(T&'1&'2) sin(2%1)+'2 sin[2(%1&%2)]], (88)

'* 2=&
�E
�%2

=&2'2/[(T&'1&'2) sin(2%2)+'1 sin[2(%1&%2)]], (89)

%4 1=
�E
�'1

=1+/[&(T&2'1&'2) cos(2%1)+'2 [cos(2%2)

+cos[2(%1&%2)]]], (90)

%4 2=
�E
�'2

=2+/['1[cos(2%1)+cos[2(%1&%2)]]&(T&'1&2'2) cos(2%2)]. (91)

The variables '1 and '2 are directly connected to the population of the levels. The
model has a very rich classical structure which has been previously studied in the
zero temperature limit [24]. We have studied thirteen of the fourteen stationary
points analytically. In Table II we give the energies, coordinates and validity range
of these solutions at finite temperature. In Fig. 14 we display the zero temperature
energies as a function of / for attractive and repulsive interactions. It is important to
notice the difference on the bifurcations of minima in the two cases. For negative /
values we have two bifurcations of equilibrium: for &1�/�0 we have one single
minimum (H solution). At /=&1, this bifurcates to two minima (K solution) and
becomes a saddle solution. The K solution stays that way in the interval &3�/�&1.
At /=&3 four symmetrical minima appear (N solution) and K becomes unstable.
The positive / value present one minimum for /<1 (H solution) and only one
bifurcation to two minima for /�1 (A solution).

These ground state solutions of the Hamiltonian, as well as their bifurcations are
intimately related with the thermodynamical regimes and their phase transitions.
Although we have not made the calculations for attractive interactions, we can
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TABLE II

Energy, Coordinates ('1 , '2 , %1 , %2) and Range of Validity as a Function of Coupling Parameter / and
Temperature Dependent Term T=T1=T2 of 13 of the 14 Fixed Points of Classical Hamiltonian (78)

for Strong Coupling Regime

Point E '1 '2 %1 %2 Validity

A
&(/T+1)2

4/
/T&1

2/
0 0 �� |/T |�1

B
&(/2T 2+4)

4/
0

/T&2
2/

�� 0 |/T |�2

C
&(/T+1)2

5/
/T&4

5/
/T+1

5/
0 0 /T�&1 or /T�4

D
&(/T&1)2

4/
/T+1

2/
/T&1

2/
%2+

?
2

cos(2%2)=
3&/T

2
1�/T�5

E
&(/2T 2&5)

5/
3T
5

/T+5
5/

0
?
2

|/T |�5

F
&(/T&1)2

5/
/T+4

5/
3(/T&1)

5/
?
2

0 /T�&4 or /T�1

H &T 0 0 �� �� \/, T

I 0 T 0 cos(2%1)=
&1
/T

�� |/T |�1

J +T 0 T �� cos(2%2)=
&2
/T

|/T |�2

K
(/T&1)2

4/
/T+1

2/
0

?
2

�� |/T |�1

L
/2T 2+4

4/
0

/T+2
2/

��
?
2

|/T |�2

M
(/T+1)2

4/
/T&1

2/
/T+1

2/
cos(2%1)=

&(/T+3)
2/T

%1 /T�&1 or /T�3

N
/2 T 2+3

3/
T
3

/T+3
3/

?
2

?
2

|/T |�3

Note. The fixed points are labeled from A to N. The point G can be found numerically and is omitted
here.
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Fig. 14. Classical energy of stationary points as function of coupling parameter / at zero temperature.
These points are labeled from A to N. The point G can just be found numerically and it is omitted here.
The black circles indicate the bifurcations and the dotted lines are used to detach the solutions. For
attractive interaction there are three minimum solutions (N (four minima), K (two minima) and H (one
minimum)). For repulsive interaction there are just two minimum solutions (A (two minima) and H
(one minimum)). The ground state energy phase transitions are related with the thermodynamical phase
transitions.

expect to find just one phase transition and two thermodynamical phases. The
respective phase to strong coupling regime does not exist in this situation.

V.3. Large Amplitude Motion for All Regimes

In this section we study the thermal classical dynamics in the context of the Heisenberg
equations of motion [41] for the average values of the Lie algebra generators Gjk ,
i.e.,

i
d
dt

Tr(DUGjkU -)=Tr(DU[Gjk , H]U-), (92)

where j, k=0, 1, 2, H is given by (17) and Gjk are the nine generators of U(3)
algebra which obey the commutation relations (16) and conserve the quantities
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C1=:
i

Gii=N, (93)

C2=:
i, j

Gij Gji , (94)

C3= :
i, j, k

Gij GjkGki . (95)

The conservation of C1 restricts the U(3) algebra to the SU(3), whose Casimir
operators are C2 and C3 . U and D have the same form as presented in the previous
section. We will take the large N limit of these equations of motion. Thus the classi-
cal dynamics of the system is governed by nine differential equations which are not
completely independent, due to the above conservation equations, besides the total
energy of the system. The classical variables now correspond to the classical limit
of the average values of the generators of the algebra. The dynamical equations in
the large N limit are

iX4 01=X01+/((I0&I1) X10&X20X21+X12X02), (96)

iX4 10=&X10+/((I1&I0) X01+X02X12&X21X20), (97)

iX4 02=2X02+/((I0&I2) X20&X10X12+X21X01), (98)

iX4 20= &2X20+/((I2&I0) X02&X12X10+X01X21), (99)

iX4 12=X12+/((I1&I2) X21&X01X02+X10X20), (100)

iX4 21=&X21+/((I2&I1) X12&X02X01+X10X20), (101)

iI4 0=/(X 2
01&X 2

10+X 2
02&X 2

20), (102)

iI4 1=/(X 2
10&X 2

01+X 2
12&X 2

21), (103)

iI4 2=/(X 2
20&X 2

02+X 2
21&X 2

12). (104)

In the classical limit (where fluctuation corrections of order of 1�N are neglected)
we have

X01=
1
N

Tr(DUG01U -)=&iz1

S1C1

R1

[T1+S 2
3T3&S 2

2(T2&S 2
3 T3)]

&{z2z3*
C 2

1S2S3C3

R2R3

+
z1 z2*z3

z1*
S 2

1S2S3 C3

R2R3 = T3 , (105)

X02=
1
N

Tr(DUG02U -)=&iz2

C1S2 C2

R2

(T2&S 2
3 T3)+z1 z3

S1 C2S3C3

R1R3

T3 , (106)

X12=
1
N

Tr(DUG12U -)=&iz3

C1C2S3C3

R3

T3+z1*z2

S1 S2C2

R1R2

(T2&S 2
3T3), (107)
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X10=X*01 , X20=X*02 , X21=X*12 , (108)

I0=
1
N

Tr(DUG00U -)=Tr(DG00)&S 2
2(T2&S 2

3T3)&S 2
1[T1+S 2

3 T3

&S 2
2(T2&S 2

3T3)]&i(z1z2*z3&z1*z2z3*)
S1C1S2S3C3

R1 R2R3

T3 , (109)

I1=
1
N

Tr(DUG11U -)=Tr(DG11)&S 2
3T3+S 2

1[T1+S 2
3 T3&S 2

2(T2&S 2
3 T3)]

+i(z1z2*z3&z1*z2z3*)
S1C1 S2S3C3

R1 R2R3

T3 , (110)

I2=
1
N

Tr(DUG22U -)=Tr(DG22)+S 2
3T3+S 2

2(T2&S 2
3 T3), (111)

where the terms Sj , Cj , Rj and Tj are the same defined before (60). Note that Ik

is the average value of the number of particles in level k and I0+I1+I2=1. We
found it convenient to define the following new variables

X01=S:+iA: , (112)

X02=S;+iA; , (113)

X12=S#+iA# , (114)

where S: , A: , S; , A; , S# , A# # R. In terms of these variables the system's Hamiltonian
is given by

H=
H
N

=I2&I0+
/
2

[S 2
:&A2

:+S 2
;&A2

;+S 2
#&A2

#], (115)

and the equations of motion become

iI4 0=4/(S:A:+S;A;), (116)

iI4 1=4/(&S: A:+S#A#), (117)

iI4 2=&4/(S;A;+S#A#), (118)

iS4 :=A:+/[&A:(I0&I1)+2(A;S#+S;A#)], (119)

iA4 :=&S:[1+/(I0&I1)], (120)

iS4 ;=2A;+/[&A;(I0&I2)+2(A:S#&S:A#)], (121)

iA4 ;=&S;[2+/(I0&I2)], (122)

iS4 #=A#+/[&A#(I1&I2)&2(A;S:+S;A:)], (123)

iA4 #=&S#[1+/(I1&I2)]. (124)

30 TERRA ET AL.



File: DISTIL 574231 . By:DS . Date:12:12:97 . Time:10:57 LOP8M. V8.B. Page 01:01
Codes: 2859 Signs: 1699 . Length: 46 pic 0 pts, 194 mm

This is the system of equations which we will study in order to understand the
influence of thermal effects on the chaotic portion of phase space. Before proceeding,
however, it is important to analyse the new classical variables which describe the
system. As already mentioned, the third degree of freedom does not bring novel
interpretations to the variables Ik , since they stay the same as before: they are the
classical analogue of the occupation number of each of the three shells and obey a
constraint equation. They also stand for the action variables of the free system.
However the variables which are the classical analogue to the transition operators
require a more careful analysis. They are conveniently expressed as

X01=(G01) =\:ei%:, (125)

X02=(G02) =\;ei%;, (126)

X12=(G12) =\#ei%#. (127)

In particular for zero temperature and the SCR (when T3=0) they acquire the form

X01=- I0I1 ei%1, (128)

X02=- I0I2 ei%2, (129)

X12=- I1I2 ei(%1&%2), (130)

that is, the modulus of these variables are action-type variables. Thus, for example,
we have that \: is expressed in terms of I0 and I1 , implying in fact that from the
variables X01 and X10 we only get information about one independent classical
variable and not two as can be expected in the general case. This independent
variable is precisely the variable %1 , canonically conjugate to I1 . A similar situation
occurs with X02 and X20 . On the other hand X12 and X21 present a remarkable
behavior: besides their modulus, their phase is also a function of well known
classical variables. Schematically we have

I0

I1= ==O
C1 {I1

I2I2

X01

X10= ==O %1

X02

X20= ==O %2

X12

X21= ==O <

Average values of the
algebra generators

==O
Independent classical

variables
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We thus conclude that the classical dynamics of the SU(3) Lipkin model, at zero
temperature or in the SCR, besides the reduction from 9 to 6 variables, suffers a
further reduction from 6 to 4 due to the particular interrelation between X12 , X01 ,
X02 , I0 , I1 and I2.

Now, for the other regimes, this last reduction is not possible and Eqs. (128) to
(130) are no longer satisfied. Besides inumerous trials in analytical form in order to
find relations between [\j] and [Ij], numerical investigation has been implemented
in the following way: while integrating the orbits in the ICR some quantities have
been controlled as e.g. X01 X10 �(I0I1). In the SCR this quantity is equal to unity.
However, for the ICR it is a strongly dependent function of time. In the same way
we have observed the quantity %#&(%:&%;) and found (instead of zero for SCR)
the same dynamical pattern.

V.3.A. Numerical Procedure and Results

We have used a FORTRAN routine of the Numerical Recipes Library which
uses a fifth order Runge Kutta integration method to integrate our equations. The
total energy, coupling constant and the parameters T1 and T2 are given. The
initial complex variables z1 , z2 and z3 are randomly generated. Given the set [zk]
the dynamical variables are calculated from (105)�(111) and the trajectory is
obtained after integrating (116)�(124). It is important to remark that the motion
with three degrees of freedom occurs on a submanifold of dimension 5 due to the
conservations (93)�(95) and energy. In practice we have eliminated only one
dimension by using (93) and integrated a set of eight coupled equations. Since the
system has more than two degrees of freedom, we will have a hamiltonian flux
with characteristics which are radically new with respect to the two degree of
freedom case. These novel features have been the subject of investigation in the
literature [1, 4, 6]. We quote two of them: for a two-degrees of freedom system
the bidimensional KAM surfaces divide the tridimensional ``volume'' of the same
energy in phase space in a set of closed volumes, each one of them involved and
limited by KAM surfaces. For three degrees of freedom the tridimensional KAM
surfaces do not divide the 5-dimensional energy volume in a set of closed volumes.
For n>2, n being the number of degrees of freedom, the KAM surfaces do not
divide the energy volume of (2n&1) dimensions in distinct regions. So we have
that, in this case all the stochastic shells of the energy surface in phase space are
connected in a complex net called Arnold's web. This web is spread in all phase
space, either by intercepting or by being infinitesimally close to all points. This
motion is known as Arnold diffusion [42, 43]. We can note, however, that this
process is far too slow in comparison to the diffusion of the trajectory within its
original stochastic shell. The second novel aspect of the dynamics is the fact that
energy conservation does not avoid large stochastic motion along the shells
anymore for large enough times. Although we are not particularly interested in
investigating these aspects, it is important to have them in mind and take their
implications into account.
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In what follows we present two methods which we have used to study the three
degrees of freedom dynamics. One of them is of qualitative character and the other
quantitative. The first one consists of a well known graphical method. Since the
Poincare� sections will have four dimensions, as we will shortly see, some alternative
graphical representations have been adopted, allowing for a comparison between
the trajectories of the system at zero temperature with the ICR and WCR trajec-
tories. The second method consists in the calculation of the largest Lyapunov
exponent of the dynamics and of the chaotic volume of the system, i.e., the phase
space volume in which at least one Lyapunov exponent is positive. This analysis
allows for the characterization of the finite temperature effects on the dynamics by
means of a quantitative and definite criterion.

Graphical method: ``Poincare� sections.'' The concept of Poincare� section or
surface of section can be generalized for systems with n>2. For the usual case,
n=2, among the four phase space coordinates (related through energy conservation),
one chooses one of them, defining thus the surface. One then considers the successive
trajectory intersections with this section which satisfy another condition: that one
of the left out coordinates possesses values within a restricted predetermined interval
so that the Poincare� map may be defined as a diffeomorphism. Given that this
condition is satisfied, the restricted coordinate of the intersection point of the trajec-
tory with the section is ignored. This is equivalent to a ``partial projection'' of the
trajectory onto this coordinate. The other pair of coordinates is them collected
defining thus a set of points. They can be on a manifold of dimension one, in the
case there is at least one constant of motion besides the energy, or on a manifold
of dimension up to two, in the case there is no such conservation. For n>2 the
surface of section is defined as a manifold of (2n&2) dimensions and one considers
the successive intersections of the trajectory with this surface. Thus, in our case the
Poincare� sections have four dimensions, the set of points of which can be on
manifolds from 2 to 4 dimensions.

Other authors have also faced this problem. In ref. [6] there are two citations of
the work of C. Froeschle� [44, 45] as being one of the few pioneers with the courage
to attack this problem. In [44] two graphical methods are described and tested in
a particular case. They are: slice cutting and stereoscopic views. However, they have
not been useful to us. Particularly the first one require a very long time and high
precision computation in order to get a few quantity of points in the sections. So
we have made the option for two types of graphical representations of the Poincare�
sections of our dynamics that made possible the comparison between the known
two degrees of freedom dynamics (SCR and zero temperature) and the new three
degrees of freedom motion (ICR and WCR). They are as follows:

1. We plot I1_I2 when the trajectory goes through A:=0 and S:>0 (these
conditions define the section), S;>0 and A;>0 (a necessary condition for the map
to be a diffeomorphism). For the SCR these conditions imply %1=0 and 0<%2

<?�2, where %1 and %2 are angle type variables as defined by (76).
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2. We plot I1 cos(3)_I1 sin(3) when the trajectory crosses fixed I2 , S;>0
and A;>0, where

cos(3)#
S:

- S 2
:+A2

:

, (131)

i.e., the real part of (G01) divided by its norm and

sin(3)#
A:

- S 2
:+A2

:

, (132)

its imaginary part, divided by its norm.

In the case T3=0 (SCR) the variable 3 is precisely the variable which is canoni-
cally conjugate to I1 . Now, the representations of item (1) for T3=0 are equivalent
to sections in the %1=0 plane. It is important to emphasize that item (1) is just
valid for /{0, since the hamiltonian flux can not be tangent to the section.

Our results are the following (note the difference in the scales of the several
figures): in Fig. 15 we present the sections I1_I2 (left column) and I1 cos(3)_
I1 sin(3) (right column) for /=&6 and zero temperature and increasing energies
(a, e) E=&2.10, (b, f) E=&2.07, (c, g) E=&2.05 and (d, h) E=&2.03. These
energies are close to those of the point N, the minimum Emin=&2.1666 (/=&6.0).
We observe the regular character of the trajectories close to the minimum and the
increase of chaos as the energy grows. The finite temperature analysis of the two
kinds of plots lead to the same conclusions, so we restrict ourselves to presenting
the item (2) results.

In Fig. 16 we show (I1 , 3) for /=&2, zero temperature and increasing energies.
These trajectories are close to the point K (Emin=&1.125) which is a minimum for
&3</<&1. Note that at an energy value 110 larger than the minimum, the
orbits are still regular (see Fig. 16(c)). The section is defined for I2=0.001 in (a)
and (b) and I2=0.05 in (c) and (d).

In Fig. 17 we maintain /=&2 and take ;=1.62. These parameter values correspond
to the ICR. It is worth pointing out that for this / value the phase SCR does not
exist and T3 is no longer zero. The trajectories of these figures have energies (a)
E=&0.97, (b) E=&0.90 and (c) E=&0.85. The value of the minimum energy,
i.e., of the point K is now &0.9732. These plots show radical differences with
respect to the previous one: at an energy around 0.330 larger than the minimum
energy the orbits apparently loose their regularity. We can also observe the

Fig. 15. Poincare� sections I1_I2 (left column) and I1 cos(3)_I1 sin(3) through the plane '2=0.166
(right column) for several trajectories at zero temperature (where 3=%1) and /=&6.0 near the
minimum point (solution N ) for increasing energies (a, e) E=&2.10, (b, f ) E=&2.07, (c, g) E=&2.05
and (d, h) E=&2.03. The minimum energy is &2.1666. In the right column sections, we show only the
upper hemisphere (0�3�?).
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Fig. 16. Graphical representations of type (2) for several trajectories near the minimum point K at
zero temperature, /=&2.0 and increasing energies (a) E=&1.12, (b) E=&1.10, (c) E=&1.00 and (d)
E=&0.90. The sections are defined by fixed I2 equal to 0.001 at (a) and (b) and 0.050 at (c) and (d).

appearance of a new structure close to 3=\?�2 in Fig. 17(c) which is not present
at 16(d), its corresponding one at zero temperature.

For a larger temperature value ;=1.2, which is very close to the ICR � WCR
phase transition, we note that the system shows an even more distinct behavior.
For these parameters values, Emin=&0.6584. In Fig. 18 we show graphic represen-
tations of the trajectories for (a) E=&0.655 with I2=0.067 and (b) E=&0.60
with I2=0.08. Note that even for orbits very close to Emin , the variable 3 (now not
canonically conjugate to I1) strongly varies throughout to [0, 2?] interval.

The above results allow us to conclude that:

1. The temperature effect on the classical dynamics in the ICR and WCR
is really far from being a scaling since the patterns observed for the trajectories is
completely distinct from those at zero temperature.
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Fig. 17. Graphical representation of type (2) for several trajectories near the minimum point K at
finite temperature ;=1.62, /=&2.0 and increasing energies (a) E=&0.97, (b) E=&0.90 and (c)
E=&0.85. The sections are defined by fixed I2 equal to (a) 0.024, (b) 0.050 and (c) 0.100. The minimum
energy for these parameters is &0.9732 and T3=0.0353.

2. A third degree of freedom is really active in these two phases. Should there
be some other conservation law in the system besides energy, this would be
reflected in the plots.

3. The presented graphical representations are absolutely inadequate for the
purpose of qualifying the system as regular or chaotic. The Lyapunov's exponents
analysis, presented in what follows, shows, on one hand that patterns which seen
highly chaotic in the above representations may correspond to trajectories with zero
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Fig. 18. The same as the last figure for finite temperature ;=1.2, /=&2 and increasing energies (a)
E=&0.655 and I fixed

2 =0.067 and (b) E=&0.60 and I fixed
2 =0.08. This temperature is near the ICR � WCR

phase transition. Emin=&0.6584 and T3=0.1474.

Lyapunov exponents, and on the other hand, seemingly regular curves may have
positive Lyapunov exponent.

Quantitative method: Lyapunov exponents and the chaotic volume. We now apply
the same procedure as in ref. [23] in the study of the zero temperature case, in
order to quantitatively characterize the thermal dynamical effects in the ICR and
WCR.

Given a particular trajectory with initial condition x� 0 , we consider a neighbouring
trajectory distant from the first one by |d0 |. We then integrate both trajectories,
monitoring them in time intervals { following the numerical procedure established
in [46] to calculate the Lyapunov exponent. It is defined as

*(x� 0 , t)# lim
t � �

1
t

ln
|d(t)|
|d0 |

. (133)

We are interested in calculating the largest exponent, since it is enough that one of
them is positive to characterize the trajectory as chaotic.

In the present investigation, we fix / and ; and vary the system's energy. We then
calculate the chaotic volume, i.e., the fraction of the accessible phase space in which
the Lyapunov's exponent is positive. In practice we divide the complete range of
accessible energy values for / and ; in bins, adopting variable intervals according
to the energy region. For regions of intermediate energy the bins are larger and get
smaller at the ends of the energy interval where there is a more rapid variation in
the system's behavior. For each one of these bins we randomly choose one hundred
initial conditions with energies belonging to the respective energy interval. We
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next calculate the Lyapunov's exponents of these trajectories, defining how many,
among those, correspond to positive largest exponent and how many to exponent
zero. This decision was made by visually observing the *(t) behavior in log-log
scale for each one of the trajectories. The typical zero exponent decreases as 1�t,
while the positive becomes constant after some time.

Fig. 19. Chaotic volume of the system as function of renormalized energy for zero temperature for
/=&6.0 and /=&2.0.
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Fig. 20. Chaotic volume of the system as function of renormalized energy for /=&2.0 and four
different temperatures: zero, ;=&1.2 (ICR), ;=&1.0 (WCR) and ;=&0.5 (WCR).

. .
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Fig. 21. Graphical representations of type (1) and (2) and the largest Lyapunov exponent as func-
tion of time of two different trajectories. One of them is represented by solid line and circles and the
other by dashed line and dots. Note that in both cases the exponents diminish with time as a typical
zero exponent (regular trajectory) while the graphical representations show irregular patterns.

The results are the following: for zero temperature, we have calculated the
chaotic volume as a function of the system's energy for /=&6.0 and /=&2.0. This
is shown in Fig. 19. The energy spectrum was divided in 34 bins for /=&6 and in
22 for /=&2. The energy intervals of the system have been scaled to the interval
[0, 1] to facilitate comparison. We verify that the chaotic volume for /=&2 is
smaller than for /=&6 specially at the ends of the spectrum.

For convenience, in our analysis we adopted /=&2, a value for which the SCR
does not exist. The calculation of the chaotic volume was performed for four
temperatures (a) zero temperature, (b) ;=1.2 (ICR, near the phase transition), (c)
;=1.0 (WCR, maximum absolute value of T3) and (d) ;=0.5 (WCR). These have
been so chosen as to make the thermal effects more conspicuous.

In Fig. 20 we observe that systematically, the chaotic volume of the system decreases
with temperature in both phases, affecting most the extremes of the spectrum. This
leads us to the conclusion that increasing the temperature tends to counterbalance
the dynamical coupling effects. The several novel nonlinear terms in the Hamiltonian
do not cause an enhancement of the chaotic volume, as one might naively expect.

For illustration we present Fig. 21 where the graphical representations of type (1)
and (2) and the largest Lyapunov exponent are compared for two trajectories. In
both cases, trajectories with a chaotic graphical pattern are presented. Both trajec-
tories possess typically zero Lyapunov's exponents. In this way we can safely conclude
that the adopted graphical representations are not adequate to characterize the
chaoticity degree of the trajectories. This is to be expected since we are projecting
4-dimensional sections in two dimensions.

VI. CONCLUSIONS

We have presented a detailed investigation of the finite temperature effects in the
SU(3) Lipkin model. The thermodynamical analysis reveals that the system can
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exhibit three distinct phases as function of the interaction strength and inverse
temperature and two second order phase transitions.

A generalized classical limit of the model that incorporates statistical mixtures is
derived. We have explicitly shown that one remarkable effect of the temperature in
this classical dynamics is giving rise to a new degree of freedom ``frozen'' in the
zero temperature limit. In one of the three regimes, the strong coupling regime, the
dynamics has two degrees of freedom. We were able to find two pairs of canoni-
cally conjugate variables and to show that the net temperature effect in this phase
is just to produce a scaling of the zero temperature dynamics like in the Maser
model [11, 12] and in the SU(2) version of Lipkin model [37]. But in the other
two regimes any scaling is really absent and the classical motion present a richer
behavior, occurring in a 5-dimension manifold. A quantitative characterization by
Lyapunov exponent and chaotic volume of the system lead us to conclude that
increasing the temperature tends to counterbalance the dynamical coupling effects.
Investigation about the nature and origin of the third degree of freedom is
presently under way.

With the present finite temperature study we have shown that:

(i) Temperature restores the symmetry of the system, in this particular case,
the parity symmetry. This manifestation is present in other branchs of physics such
as the restoration of chiral symmetry in QCD effective models.

(ii) Temperature gives rise to a new normal mode. This can be explained by
the fact that temperature changes occupation numbers so that highly excited states
are mixtures of multi-particle multi-hole states when referred to the ground state.
The appearance of this new degree of freedom shows itself in the classical motion
of the system by the appearance of trajectories with patterns completely distinct
from those at zero temperature.

(iii) The third degree of freedom is a manifestation of the presence of the
non-symmetrical representations, i.e. of the Pauli principle. Its full understanding
requires the study of the system when its motion is restricted to a single non-
symmetrical representation. In particular it would be interesting to study the
classical limit (N � �) of the N+1 particle system with an unperturbed ground-
state described by all particles except one in the same level.

In spite of the restricted validity of the LMG model in what concerns realistic
situations, the model is rich enough as to allow for important insights into open
theoretical questions. The classical limit is usually defined by taking into account
only the symmetric representation of the SU(3) group. Should we expect the same
classical limit had we started from a different coherent state, specific of other
representations? Another important point refers to the classical limit of operators
which are essentially quantum in character such as parities etc. Investigations along
these lines represent interesting contributions to the new born area of Dynamical
Systems.
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APPENDIX A: DERIVATIVES OF THE MEAN FIELD FREE ENERGY (29)

In order to find out the minimum solutions of the mean field free energy of the
model, we calculate their derivatives with respect to the variational parameters
obtaining

�F�
�%1

=cos(2%1) sin %2 sin(2%3) T3+sin(2%1)(T1+sin2 %3T3&sin2 %2(T2&sin2 %3 T3))

+/[[sin(2%1)(T1&sin2 %2 T2)+T3 [sin(2%1)(1+sin2 %2) sin2 %3

+cos(2%1) sin %2 sin(2%3)]]

_[cos(2%1)(T1&sin2 %2 T2)+T3 [cos(2%1)(1+sin2 %2) sin2 %3

&sin(2%1) sin %2 sin(2%3)]]]

=0, (134)

�F�
�%2

=2 sin(2%2)(T2&sin2 %3T3)+sin(2%1) cos %2 sin(2%3)
T3

2

&sin2 %1 sin(2%2)(T2&sin2 %3T3)+
/
4

[&sin(2%2) sin2(2%3) T 2
3

+2 sin(4%2)(T2&sin2 %3 T3)2+2[sin(2%1)(T1&sin2 %2 T2)

+T3 [sin(2%1)(1+sin2 %2) sin2 %3+cos(2%1) sin %2 sin(2%3)]]

_[&sin(2%1) sin(2%2) T2+T3 [sin(2%1) sin(2%2) sin2 %3

+cos(2%1) cos %2 sin(2%3 )]]]

=0, (135)

�F�
�%3

=cos(2%2) sin(2%3) T3+sin(2%1) sin %2 cos(2%3) T3+sin2 %1 sin(2%3)

_T3(1+sin2 %2)+
/
2

T3[cos2 %2 sin(4%3) T3&sin2(2%2) sin(2%3)(T2&sin2 %3T3)

+[sin(2%1)(T1&sin2 %2T2)+T3[sin(2%1)(1+sin2 %2) sin2 %3

+cos(2%1) sin %2 sin(2%3)]] [sin(2%1)(1+sin2 %2) sin(2%3)

+2 cos(2%1) sin %2 cos(2%3)]]

=0, (136)
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�F�
�;j

=&[cos(2%2)+sin2 %1 sin2 %2] Aj2+sin2 %1A1j+(Aj2&A1j)

_{cos(2%2) sin2 %3+
1
2

sin(2%1) sin %2 sin(2%3)+sin2 %1 sin2 %3(1+sin2 %2)=
+

/
2

[(Aj2&A1j) cos2 %2 sin2(2%3) T3+sin2(2%2)(T2&sin2 %3T3)

_[Aj2&(Aj2&A1j) sin2 %3]+[sin(2%1)(T1&sin2 %2T2)

+T3 [sin(2%1)(1+sin2 %2) sin2 %3+cos(2%1) sin %2 sin(2%3)]]

_[sin(2%1)(A1j&Aj2 sin2 %2)+(Aj2&A1j)[sin(2%1a)(1+sin2 %2) sin2 %3

+cos(2%1) sin %2 sin(2%3)]]]&
1
; \Tj+;1A1j+;2Aj2+

�
�;j

ln z+
=0, j=1, 2 (137)

where

A11=
�T1

�;1

=&
1
z2 (e&;1+4e&;2+e(;1+;2)), (138)

A22=
�T2

�;2

=&
1
z2 (e&;2+4e&;1+e(;1+;2)), (139)

A12=A21=
�T1

�;2

=
�T2

�;1

=&
1
z2 (2e&;1+2e&;2&e(;1+;2)), (140)

�
�;j

ln z=
1
z

(e;j&e&(;1+;2)), j=1, 2. (141)

We find the solutions of this system and verify among them which correspond to
minima of the free energy. These results are presented in Section IV.
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