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Abstract. Honey yields are difficult to predict and have been usually as-
sociated with weather conditions. Although some specific meteorological
variables have been associated with honey yields, the reported relation-
ships concern a specific geographical region of the globe for a given time
frame and cannot be used for different regions, where climate may be-
have differently. In this study, Radial Basis Function (RBF) interpolation
models were used to explore the relationships between weather variables
and honey yields. RBF interpolation models can produce excellent inter-
polants, even for poorly distributed data points, capable of mimicking
well unknown responses providing reliable surrogates that can be used
either for prediction or to extract relationships between variables. The
selection of the predictors is of the utmost importance and an automated
forward-backward variable screening procedure was tailored for selecting
variables with good predicting ability. Honey forecasts for Andalusia,
the first Spanish autonomous community in honey production, were ob-
tained using RBF models considering subsets of variables calculated by
the variable screening procedure.
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1 Introduction

Honey has been used by humans for at least 8000 years [2]. Its production and
economic interest have grown to the present day. However, annual production
has large fluctuations mainly associated with weather conditions [5,18]. While
some studies claim that temperatures in May, June and July are particularly
important predictors of honey yields [6,7,9], other claim that variation in honey
yields could be more related to March temperatures and rainfall, sunshine and
temperature from April to July [4,5]. In fact, the precise relationships between
weather conditions and honey yields are not well established yet. Furthermore,
the relationships between weather conditions and honey yields already reported
concern a specific geographical region of the globe for a given time window and
cannot be used for different regions, where climate may behave differently.



In this study, the relationships between honey yield and a large number of
weather variables were explored aiming to forecast honey production in An-
dalusia, a Spanish autonomous community. Radial basis functions (RBF) were
used to interpolate the data and provide the predictive models. RBF regression
has been successfully applied in different contexts, including aeronautics [13,14]
or radiotherapy [16,17]. RBF models proved to mimic well unknown responses
providing reliable surrogates that can be used either for prediction or to ex-
tract relationships between variables [15]. The selection of the predictors is of
the utmost importance and a variable screening approach is presented. The re-
mainder of the paper is organized as follows. Honey production and weather
data in Andalusia are presented in the next Section. In Section three we briefly
describe RBF interpolation. Section four presents the variable screening strat-
egy proposed. Results are presented in Section five followed by the conclusion’s
Section.

2 Honey production and weather data in Andalusia

Spain is the largest EU honey producer which is the second world producer
after China [3]. Andalusia is the first Spanish autonomous community regarding
honey production (6887 tonnes) and honey bee hives (562503 units), according
to the latest statistical data released by the Spanish Ministry of Agriculture,
Food and Environment [1]. There are two different types of honey bee hives
in Andalusia: fixed comb hives – traditional hive types that require permanent
damage of the comb for harvesting – and movable comb hives – modern hive
types that include top-bar hives, horizontal frame hives or vertical stackable
frame hives. In Andalusia, about 97% of the hives are modern hive types and
we will only consider these type of hives for our forecast.

Andalusia is in the south of Spain, east of Portugal and the Atlantic Ocean
and north of the Mediterranean Sea and Africa. It is the second largest in area of
the Spanish autonomous communities with 87268 km2. Andalusia is divided into
eight provinces – Almeria, Cádiz, Córdoba, Granada, Huelva, Jaén, Málaga and
Seville – with distinct weather conditions. It is covered by a set of automated
agroclimatic stations that can perform various meteorological measurements [8].
Since the honey yields of the different provinces are also available, instead of
averaging different weather conditions causing a larger weather bias, forecast
was made for each region considering the corresponding weather data. Only the
five largest honey producer provinces (Córdoba, Granada, Huelva, Málaga and
Seville) were considered. Historical data of honey yields and number of hives for
the time frame in study (2001–2015) for each province is presented in Table 1.
Historical data of the weather variables considered – rainfall (mm), evapotran-
spiration (mm), minimum temperature (oC), maximum temperature (oC), mean
temperature (oC) and relative humidity (%) – are available in Appendix.



Table 1. Tonnes of honey yields and number of hives for the five largest honey producer
provinces of Andalusia.

Córdoba Granada Huelva Málaga Seville

Honey # Honey # Honey # Honey # Honey #
Year Yield hives Yield hives Yield hives Yield hives Yield hives

2001 268 44739 504 33600 990 66000 761 63398 1131 76644
2002 297 49529 586 39083 1323 66150 872 62263 1369 80989
2003 193 53700 595 39690 944 72580 966 64404 1499 90847
2004 149 41461 656 43723 514 51360 765 63757 894 71238
2005 126 41901 671 44757 433 61832 438 67417 827 82692
2006 473 42987 680 45357 779 64954 697 69669 879 82694
2007 756 45800 565 43466 992 66156 1138 71145 808 79515
2008 435 43531 522 40155 941 67200 987 70488 950 93880
2009 616 43990 546 42020 987 65784 900 66651 1083 97500
2010 600 44804 568 43665 891 66015 915 67783 1066 97463
2011 749 46825 594 45671 882 67813 1000 67450 964 94315
2012 242 48385 613 47127 674 67425 761 76069 954 94173
2013 675 45000 633 48705 972 67041 937 78093 1270 97314
2014 458 45825 660 50791 1105 69060 939 78254 1471 101463
2015 442 58935 700 53856 1066 71056 876 97316 1479 106494

3 Radial Basis Functions Models

RBF interpolation models can produce response surfaces capable of to explor-
ing the nonlinear relationships between different input or explanatory variables
and output or response variable(s). Moreover, RBFs can be used to predict un-
known responses given the values of the explanatory variables. It was shown that
stochastic models coincide with the corresponding RBF models [21]. For a set of
data points in a high dimensional space, even if scarce or poorly distributed, a
RBF interpolation model (surface) can always be calculated. However, the RBF
model behavior between data points, is highly dependent on the basis function
considered. For a given data set, some RBFs can provide desirable trends while
other may exhibit undesirable trends. Thus, instead of a typical a priori choice
based either on the literature or on authors’ preferences, it is advisable to se-
lect the most adequate RBF for the data set at hand considering numerical
metrics [15]. A brief description of RBF interpolation is provided next.

3.1 RBF interpolation

Let y(x) denote the response for a given data point x of n components (vari-
ables) such that the value of y is only known at a finite set of N input data
points x1, . . . ,xN , i.e., only y(xk) (k = 1, . . . , N) are known. A RBF interpola-
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tion model h(x) can be generically represented as

h(x) =

N∑
j=1

αjφ(‖x− xj‖), (1)

where φ(x) is the selected RBF, αj are the coefficients determined by the inter-
polation equations h(xk) = y(xk) (k = 1, . . . , N), ‖x − xj‖ corresponds to the
parameterized distance between x and xj ,

||x− xj || =

√√√√ n∑
i=1

|θi|
(
xi − xji

)2
,

and θ1, . . . , θn are scalars [15]. Coefficients α1, . . . , αN in Eq. (1) are computed
for fixed parameters θi using the interpolation equations of the following linear
system:

N∑
j=1

αjφ(||xk − xj ||) = y(xk), for k = 1, . . . , N. (2)

Multiquadric, φ(x) =
√

1 + x2, thin plate spline, φ(x) = x2 lnx, cubic spline,
φ(x) = x3, and Gaussian, φ(x) = exp(−x2), are examples of RBFs that are
commonly used to model linear, almost quadratic and cubic growth rates, as
well as exponential decay of the response, respectively [12] – see Fig. 1.



3.2 Cross-validation

Calculation of the RBF model h(x) in Eq. (1) requires the selection of a RBF
φ(x) and the choice of model parameters θ1, . . . , θn. While selection of the most
appropriate RBF for the given data set can be done iteratively by testing the
different possible choices of φ(x), there is an infinite number of possible choices
for θ1, . . . , θn. For different fixed sets of model parameters θ1, . . . , θn, distinct
models with different behaviors between data points are calculated for a given
selection of φ(x). Cross-validation (CV) can be used for model parameter tuning
leading to models with enhanced prediction capability [19]. Furthermore, the
most appropriate basis function φ(x) can be numerically computed using pre-
diction accuracy (CV error) as main criterion. The leave-one-out CV procedure
can be used in model parameter tuning for RBF interpolation [15]:

Algorithm 1 Leave-one-out cross-validation for RBF interpolation

Input:

– x1, . . . ,xN , N input data points with n components.
– y(x1), . . . , y(xN ), response of the N input data points.

Iteration:

1. Fix a set of model parameters θ1, . . . , θn.
2. For j = 1, . . . , N , construct the RBF model h−j(x) of the data points (xk, y(xk))

for 1 ≤ k ≤ N, k 6= j.
3. Set prediction error as the following CV root mean square error:

ECV (θ1, . . . , θn) =

√√√√ 1

N

N∑
j=1

(h−j(xj)− y(xj))2. (3)

The goal of model parameter tuning by CV is to find θ1, . . . , θn that minimize
the CV error, ECV (θ1, . . . , θn), so that the interpolation model has the highest
prediction accuracy when CV error is the measure. Using different θi allows the
model parameter tuning to scale each variable xi based on its significance in
modeling the variance in the response, thus, has the benefit of implicit variable
screening built in the model parameter tuning.

4 Variable Screening

A regression model with too many input variables may have several disad-
vantages including an increasing difficulty on model parameter optimization or
data overfitting. A standard variable screening procedure aims to identify a sub-
set of the input variables that have significant impact on the response y(x). In



other words, if the change of y(x) with respect to a given variable is negligible,
then the subset of the input variables should not include such variable.

Variable screening methods that require the response values for specific input
vectors, such as ANOVA, cannot be used in this study. Other existing variable
screening techniques require specific conditions. E.g., the main effects estimate
(MEE) method, proposed by Tu and Jones [20], generally requires a uniform
distribution of the existing input vectors in a rectangular domain of the input
space which is not the case.

Forward or backward variable screening methods are typically used to de-
termine the explanatory power of input variables of polynomial models (linear
regression) that are independent of the data distribution. Here, we assume that
forward and backward variable screening methods are valid for variable selection
in nonlinear models. In general, under this assumption, the forward and back-
ward variable screening methods can be formally applied for variable selection
if the data is fitted by a regression model that is independent of data distri-
bution. We propose a generalization of a combined forward-backward variable
screening procedure, described in Algorithm 2, that is based in the predicting
ability instead of the typically used coefficient of determination (R2). In the first
iteration of this procedure, input vectors with a single variable at a time are
fitted using RBF models (1) and the CV error (3). The best model and cor-
responding variable correspond to the smallest CV error which is a proxy for
the prediction error. In the second iteration, input vectors with two variables,
fixing the one found in the first iteration, are fitted using RBF models (1) and
the CV error (3). The second variable that, along with the fixed first variable,
forms the best prediction pair of variables is fixed for the third iteration. This
procedure continues until the prediction error (CV error) fails to improve. Note
that, at successful iteration k, we may not find the best subset of k predicting
variables, i.e. the set of k variables that corresponds to the smallest CV error.
E.g., at iteration two we only tested n − 1 possibilities – the pairs constituted
by the first fixed variable and each of the remaining n− 1 variables – instead of
all possibilities –

(
n
2

)
= n!

2!(n−2)! . Thus, at the end of the forward procedure we

proceed with a backward procedure aiming to further improve the CV error. The
rational behind this procedure is identical except that instead of being added, a
variable is removed at each iteration.

5 Computational results

Our tests were performed on a 2.60Ghz Intel Core i7-6700HQ PC with 16
GB RAM and we used MATLAB (R2016a) [10]. Optimal RBF model parameters
θ1, . . . , θn of (3) were computed by minimizing the CV error using a MATLAB
implementation (fminsearch) of a derivative-free optimization algorithm called
Nelder-Mead [11]. The optimal CV error obtained for the different basis functions
tested was used as proxy of their prediction ability [15]. Thin plate spline RBF
was selected as basis function since the corresponding RBF models presented
the lowest CV errors.



Algorithm 2 Forward-backward variable screening

Input:

– x1, . . . ,xN , N input data points with n components (variables) each – x1, . . . , xn
– y(x1), . . . , y(xN ), response of the N input data points
– x̂1, . . . , x̂N , N empty input data points with 0 components (variables) each

Forward screening:

CVbest ← +∞
Improve ← 1
While Improve

For i = 1 to n
If xi is not a variable of input data x̂1, . . . , x̂N

x̌1, . . . , x̌N ← x̂1, . . . , x̂N ⊕xi, where operation ⊕ adds variable xi to the set
of input vectors x̂1, . . . , x̂N

Construct the RBF model hi(x̌) of the data points (x̌k, y(xk)) for 1 ≤ k ≤ N
and compute CVi using (3) to measure the prediction error

Else
CVi ← +∞

End If
End For
If argmin1≤i≤nCVi < CVbest

CVbest ← argmin1≤i≤nCVi

x̂1, . . . , x̂N ← x̂1, . . . , x̂N ⊕ xi
Else

Improve ← 0
End If

End While

Backward screening:

Improve ← 1
While Improve

For i = 1 to n
If xi is a variable of input data x̂1, . . . , x̂N

x̌1, . . . , x̌N ← x̂1, . . . , x̂N 	 xi, where operation 	 removes variable xi
from the set of input vectors x̂1, . . . , x̂N

Construct the RBF model hi(x̌) of the data points (x̌k, y(xk)) for 1 ≤ k ≤ N
and compute CVi using (3) to measure the prediction error

Else
CVi ← +∞

End If
End For
If argmin1≤i≤nCVi < CVbest

CVbest ← argmin1≤i≤nCVi

x̂1, . . . , x̂N ← x̂1, . . . , x̂N 	 xi
Else

Improve ← 0
End If

End While
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Fig. 2. Actual honey yields in Andalusia compared with RBF forecast.

The strategy sketched to forecast the honey yield in Andalusia for each of
the years in study, 2001–2015, was the following:

– Remove the data concerning the year to forecast for each of the five provinces
of Andalusia – Córdoba, Granada, Huelva, Málaga and Seville – guaranteeing
that no bias is introduced in the results;

– Consider the remaining data from the five provinces to:
• find a subset of variables using Algorithm 2;
• fit the Thin plate RBF models using the subset of variables found;
• estimate the honey yield for that year for each province;

– Considering the average contribution of each province to the overall honey
yield of Andalusia, calculate five different honey yield estimates for that year
for Andalusia;

– Consider the median of the five previous predictions as the final estimate of
honey yield for Andalusia in that year.

Forecast results following this strategy are displayed in Fig. 2. The mean
prediction error was 7.9% which is quite good for such an irregular series. Apart
from one year (2010), forecast for all the remaining years are very close to actual
honey yield. Furthermore, honey yield trend is well captured. We have to high-
light the importance of variable screening. Selecting a subset of variables with
good predicting ability enables a better forecast. To calculate the production
forecast for each year, that year is eliminated from the data for all provinces.
This means that the variable screening procedure do not consider any data from
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Fig. 3. Number of hives and honey yields for Córdoba and Granada.

the year to forecast. This leads to different subsets of variables being considered
for the forecast of different years. Thus, it is not useful to enumerate the different
subsets of predicting variables as they depend on the year (and the geographical
region). Nevertheless, some variables appear more often in the different sub-
sets including the minimum temperature in April, the maximum temperature in
June and evapotranspiration in September. It is interesting to report as well that
the number of hives was often absent of the subset of best predicting variables.
Although more hives could be expected to lead to higher honey productions,
figures show otherwise. If we plot the number of hives and corresponding total
honey production for Córdoba and Granada (see Fig. 3), it is straightforward to
see that larger number of hives do not correspond to an increased production.
Furthermore, for the same province, increase in the number of hives randomly



reflects an increased production. Note that, by simple inspection of Table 2 it
is possible to verify that weather conditions are quite different for these two
provinces which might solely explain the differences in honey yield.

6 Conclusions

Honey yields are difficult to predict and have been usually associated with
weather conditions. Although some particular meteorological variables have been
associated with honey yields, extrapolating the reported relationships to different
regions of the globe or even for different temporal periods is not straightforward.
Thus, the selection of weather variables should be performed using data of the
specific regions to be studied and considering adequate time frames.

In this study, we propose an automated forward-backward variable screening
procedure that lead to subsets of variables with good predicting ability. RBFs
models were used to fit the data and guide the variable screening algorithm.
RBF interpolation models can provide excellent interpolants even for poorly
distributed data points. Instead of an a priori choice of a RBF basis, the numer-
ical choice of the most adequate RBF is advised. We used the CV error as proxy
of the prediction error to decide which RBF basis should be used.

For the subsets of variables obtained using the variable screening procedure,
RBF models obtained high quality honey yield predictions. A set of forecasts
for Andalusia, obtained from the extrapolation of forecasts for the different
provinces considered, allowed a better final annual forecast obtained by excluding
extreme values. The variables considered for the RBF models change for differ-
ent years. Therefore, unlike other studies where specific variables are identified
as the most relevant, the only conclusion that can be safely drawn is that me-
teorological variables are good predictors of honey production but they depend
on the geographic region and the time frame considered. The reverse problem of
using honey yields to acknowledge climate changes should be as interesting and
challenging as the problem addressed here.
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Table 2. The weather variables, 2001–2015, means and standard deviations (SD).

Córdoba Granada Huelva Málaga Seville

Mean SD Mean SD Mean SD Mean SD Mean SD

Rainfall (mm)
January 53,2 37,8 31,8 23,1 54,4 36,1 39,3 39,7 54,5 35,1
February 74,5 50,4 37 31,8 68,9 67,9 60 61,5 69 59,2
March 80,9 74,1 38,5 23,2 83,8 58,1 69,6 50,5 61,6 59,2
April 57,3 42,9 40,7 21,9 61,9 39,5 35,3 21,7 39,5 26,3
May 36,7 31,1 34 19,1 30,4 30,4 18,3 17,1 31,3 32,4
June 7,7 14,4 17,5 12,4 7,1 13,4 1 1,6 7,6 9
July 0,6 2 3 6,5 1 2,8 1 1,1 2,3 5,3
August 7,2 13,8 9,8 12,5 8,7 17,9 0,7 1,3 3,9 12,2
September 33,9 31,4 23,6 15,9 27,8 30,4 31,4 32,2 28,5 22,2
October 82,4 50,3 30,8 26 105,6 51,4 55 46 73,2 38,4
November 73,5 57,6 38,4 23,3 80,1 67,8 79,6 70,5 72,8 52,7
December 85 99,4 39,1 42,4 78 79,1 67,9 71,6 84,4 99,5

Evapotranspiration (mm)
January 31,1 5,5 46,1 6,4 35,9 3,5 44 5,1 32,4 2,9
February 44,4 5,7 54,1 6,9 50,4 6 55,9 5,8 45,5 5,6
March 78,2 8,3 86,7 9,9 83,8 10,4 86,7 12,5 80,4 8,5
April 108,1 9,2 107,8 14 114,4 10,9 114,7 11,3 112,4 9,2
May 146,2 13 143,3 18,6 158,6 15,1 151,9 12,5 154,2 14,5
June 180,5 9,7 178,2 12,1 189,7 15,3 180,5 9,4 187,1 10,8
July 203,1 9,4 210,5 8,8 214,5 10,9 196,1 8,5 209,3 7,7
August 181,3 10 184,4 15,3 186,3 8,7 174,5 7,2 187,1 7,3
September 120,1 9 122,4 9,2 124,5 9,9 121,7 10,8 125,6 8,6
October 74,2 6,2 85,3 9,9 78,1 6,5 79,2 8,7 77,8 6,7
November 39,8 5 48,9 8,3 41,6 10,4 49,8 6,5 40,8 4,2
December 28,5 3,7 39,3 5,2 31,5 3,5 39 3,6 29,3 3,3

Minimum temperature (oC)
January 2,7 2,1 0,6 1 6,2 1,3 6,2 1,3 3,8 1,7
February 3,4 2,4 0,6 1,5 6,3 1,7 6,8 1,7 4,2 2,3
March 6,4 1,6 3 0,9 8,4 0,8 8,7 0,8 7 1,2
April 8,9 1,2 5,1 1,1 10,3 1 10,7 0,9 9,4 1,1
May 11,5 1,1 8,4 1,3 12,9 1,1 13,4 0,8 12,3 1,2
June 15,2 0,9 13,1 1,2 16,4 1 17,2 0,9 16,2 1
July 17 0,8 16,1 1 18 0,7 19,5 0,8 18,1 0,7
August 17,7 0,9 16 0,6 18,5 1 20,3 0,9 18,8 1
September 15,4 1 12,4 0,8 16,6 0,6 17,7 0,4 16,3 0,8
October 12 1,1 9 0,9 14,1 0,9 14,2 0,8 12,8 1,5
November 6,3 2,2 3,7 1,3 9,3 1,2 9,7 1,5 7,2 1,8
December 3,5 1,4 1,2 1,1 6,9 1 7,2 0,9 4,7 1,4

Maximum temperature (oC)
January 14,7 1 10,5 1,6 15,3 1 17,1 1 14,6 1
February 16,2 1,4 10,8 1,9 16,2 1 17,4 1,1 15,9 1,3
March 19,9 1,4 14,3 1,4 19,1 1,3 19,7 1,2 19,3 1,3
April 23,2 1,4 17 1,9 21,7 1,2 22,1 1 22,4 1,4
May 27,9 2,2 21,2 2,4 25,8 2 25,4 1,2 27 2,2
June 33,7 1,4 27,5 1,6 30,2 1,3 29,8 1,2 32,4 1,5
July 37,1 1,3 31,6 1,1 33,2 1,3 32,5 1,1 35,8 1,2
August 36,8 1,1 30,9 1,1 32,9 1,1 32,6 1 35,6 1
September 31,3 1,2 25 1,2 28,6 1,4 29 0,7 30,4 1,1
October 25,6 1,7 20,3 1,7 24,3 1,6 25 1,2 25,2 1,6
November 18,6 1,4 13,6 1,8 18,8 1,2 20 1,3 18,6 1,3
December 15,2 1,3 11 1,6 15,8 0,9 17,4 1 15,3 1,3

Mean temperature (oC)
January 8 1,3 5 1,1 10,2 0,9 11,4 0,9 8,7 1,1
February 9,2 1,5 5,3 1,6 10,8 1,1 12 1,2 9,7 1,4
March 12,7 0,7 8,3 1,1 13,4 0,8 14,1 0,8 12,9 0,8
April 15,8 1,1 10,8 1,4 15,7 1 16,4 0,8 15,7 1,1
May 19,7 1,5 14,7 1,8 19,2 1,5 19,5 0,9 19,7 1,6
June 24,8 1,1 20,2 1,4 23,2 1,1 23,7 1 24,4 1,2
July 27,7 1 23,7 1 25,5 0,9 26,3 0,9 27,3 1
August 27,5 0,8 23,1 0,9 25,4 1 26,5 0,7 27,3 1
September 23,1 0,9 18,2 0,9 22,1 0,8 23,2 0,4 23,2 0,8
October 18,1 0,9 14,2 1,2 18,7 1,1 19,3 0,7 18,7 1,1
November 11,7 1,4 8,2 1,5 13,6 1 14,6 1,1 12,5 1,2
December 8,5 1 5,5 1,3 10,9 0,9 12,1 0,7 9,5 1,1

Relative humidity (%)
January 81,9 5,8 62,4 8,6 78,8 5,1 70,7 4,4 81 6,1
February 77,4 7,5 62,5 7,9 74 7,9 68,2 4,9 76 9,2
March 71,8 6,9 59,9 7,3 71,4 6,8 67,1 7 70,8 7,6
April 67,1 5,9 60,2 6,9 68,4 6,3 63 7,1 65,4 6
May 57,7 7,2 54,3 8,4 59,2 5,2 56,7 5,6 55,4 7,3
June 47,1 4,4 44,3 5,5 52,3 4,8 51,5 3,8 47,6 4,9
July 38 4,5 34,5 4,4 47,1 4,5 51,2 4 40,3 5
August 39,8 4,2 38,5 4,6 51,1 3 55,3 3,6 42,3 4,4
September 53,8 6,4 51,9 6,1 63 7,1 61,9 4,3 55,7 7,3
October 69,2 6,4 57,6 6,7 71,7 4,9 69,6 3,7 67,4 5,3
November 78 7,5 63,2 10,3 73,6 7,7 70,5 6 74,4 8,3
December 81,6 5,3 64,3 5,4 78,7 5,4 73,2 3,7 80,2 4,9


