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Abstract  12 

A nested optimization approach is proposed to solve capacity expansion problems of 13 

multiquality water supply systems. The problem to be solved consists of determining the 14 

infrastructure that should be built and/or rehabilitated at a specific time. This decision should 15 

be taken in a long-term planning perspective. It should consider how the operation will be 16 

performed to satisfy demand and water quality requirements by using multiple sources with 17 

different water quality at the source, take into account the temporal and spatial distribution of 18 

the water resources available and remain aware of the environmental impacts. In addition, 19 

decision processes which do not appropriately consider inherent uncertainties (e.g., 20 

hydrological, demographic, and technological uncertainties) can lead to suboptimal solutions. 21 

Here, uncertainty is handled using scenario planning with the aim of finding expansion 22 

solutions that can be expected to perform well under a set of possible future situations (or 23 

scenarios). The solution method combines simulated annealing with nonlinear programming to 24 

determine the solution to the nested optimization problem. 25 
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1. INTRODUCTION 27 

Nested optimization approaches place one optimization task inside of another. The solution of 28 

the outer optimization task, usually referred to as upper level, depends on the solution of the 29 

inner optimization task, usually referred to as lower level. 30 

Nested optimization approaches are often associated with bilevel programming or bilevel 31 

optimization (Vicente and Calamai 1994; Colson et al. 2007). Bilevel programming emerged 32 

from the classic Stackelberg problem (1952) in the field of game theory. The strategic game 33 

conceptualized by Stackelberg comprises a hierarchical planning process with a leader and a 34 

follower. The leader solves the problem of finding their optimal strategy assuming that they can 35 

anticipate the optimal response of the follower to their own actions. In this framework, the 36 

leader’s optimization problem contains an inner optimization task that corresponds to the 37 

follower’s optimization problem. Sinha et al. (2013a) give examples of a number of practical 38 

bilevel problems studied in the literature in the domain of transportation, economics, 39 

management and engineering. The hierarchical structure can introduce difficulties such as 40 

non-convexity and disconnectedness, even for simple bilevel linear programming problems 41 

(Sinha et al. 2013a). 42 

But nested optimization approaches do not result from a hierarchical planning process as 43 

bilevel. Examples in the field of water resources include Schmitz et al. (2007), who presented a 44 

nested approach for improving irrigation efficiency where optimizing the irrigation schedule 45 

(i.e., number and date of applications) was the “outer task” and optimizing the control of each 46 

single water application (i.e., intensity and irrigation time) was the “inner task”. The inner 47 

optimization task is performed by obtaining the inverse solution of a numerical irrigation 48 

model. Ricciardi et al. (2007) developed a nested optimization approach for the design of 49 

groundwater remediation systems. Scenario planning is used to represent the uncertainty of 50 

hydraulic conductivity. The inner optimization includes a series of deterministic linear 51 
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mathematical programs, one for each scenario, for determining pumping systems that minimize 52 

operation and maintenance cost subject to hydraulic-gradient constraints. A penalty value is 53 

then added to the cost of the pumping system obtained for each scenario. The penalty term is 54 

given by a weighted sum of violation of hydraulic-gradient constraints that occur when the 55 

pumping system designed for each scenario is applied to all other scenarios considered to 56 

represent the uncertainty of hydraulic conductivity. Finally, the outer optimization examines 57 

which pumping system results in the minimum sum of the design cost with the penalty value. 58 

Classic optimization techniques, including the Karush-Kuhn-Tucker approach, Branch-and-59 

Bound techniques and the use of penalty functions, have been employed to solve problems 60 

formulated as nested but with limited application to simple cases. Alternatively, modern 61 

heuristics or a combination of modern heuristics with classical optimization methods have 62 

proved to be successful at handling complex problems formulated as nested (Schmitz et al. 63 

2007; Ricciardi et al. 2009; Sinha et al. 2013a, 2013b). 64 

The nested optimization approach described in this work was developed to support 65 

decision-making in the capacity expansion (or redesign) of multiquality water supply systems. 66 

In general, the first failures in the desired performance of the water systems caused by 67 

increased demand, reduced supply or the imposition of new regulation are handled with 68 

corrective actions using the existing infrastructure. However, more serious failures may require 69 

the construction of new infrastructure and/or the rehabilitation of what is in place (Hsu et al. 70 

2008). Capacity expansion decisions should be taken in a long term perspective and consider 71 

how the systems will be operated in an uncertain environment. It has long been recognized, that 72 

failing to incorporate uncertainty in the planning process may result in solutions that do not 73 

meet needs in the immediate future, solutions that will become obsolete in the short/medium 74 

term or solutions that turn out to be oversized. One common approach to deal with uncertainty 75 

in optimization planning models is its representation by a set of scenarios that may be defined 76 
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as structured representation of the uncertain model parameters. Scenario planning was used for 77 

example by Rosenberg and Lund (2009), Kang and Lansley (2013), Ray et al. (2014), or Lan et 78 

al. (2015) in recent studies dealing with the development of optimization models for 79 

multiquality water-supply systems with explicit representation of uncertainty. 80 

But none of the previous optimization models include an explicit representation of water 81 

quality as in the nested optimization approach presented in this paper. This aspect can be 82 

relevant since different water quality at the source often determines differences in the water 83 

quality for the end-users. The explicit representation of water quality introduces nonlinear 84 

constraints to reflect the real physical conditions but those nonlinearities difficult the solution 85 

of the optimization models (Yang et al. 2000). For solving the nested optimization model 86 

detailed in the sections that follow, the authors have also developed a solution method that 87 

allows to deal efficiently with scenario planning and the explicit representation of water 88 

quality. 89 

Section 2 briefly describes the nested optimization approach developed and its solution method 90 

to support capacity expansion solutions. Section 3 presents the results of applying it to a real-91 

world case study. Some conclusions are drawn in Section 4. The work presented here is 92 

described in more detail in Vieira (2014). 93 

2. NESTED OPTIMIZATION APPROACH 94 

The decision to be taken in each situation corresponds to the infrastructure to be built and/or 95 

rehabilitated at a specific time for the capacity expansion of a multiquality water supply 96 

system. The nested optimization approach developed is intended to identify capacity expansion 97 

solutions provided by solving the outer optimization task and that depend on a set of solutions 98 

obtained from the inner optimization task. The solution of each inner optimization task enables 99 

us to determine the optimal operation of the redesigned water system in each scenario, which 100 
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can be defined here as one single realization of the parameters defined as non-deterministic 101 

during the system operation. The consideration of multiple scenarios also makes it possible to 102 

define the approach developed as proactive. The explicit incorporation of some knowledge of 103 

uncertainty during system operation is intended to find capacity expansion solutions that are 104 

less sensitive to the non-deterministic parameters. Mathematically, the capacity expansion 105 

problem to be solved can be defined as follows: 106 

           Maximize
Y

 F(Y,X1,X…,XNS) (1) 

           where      F(Y,X1,X…,XNS) is the value of a mathematical function determined by                                

                           solving the following NS mathematical programs (one for each scenario) 

                           with the capacity expansion solution Y={0, 1} as input data        

                           Min
Xs

 f(X
s
)                                                                               

                           subject to (s.t): g(X
s
) = 0  

                           X
s
≥ 0                                     

                           where      s = 1,…,NS  

(2) 

The optimization problem defined by (1) sets the outer optimization task while the 107 

NS optimization problems defined by (2) set the inner optimization task. The vector Y 108 

represents the capacity expansion solutions, the vectors X
s
 define the operating decisions in 109 

each scenario s and NS is the total number of scenarios. Section 2.1 and 2.2 describe the 110 

optimization problems included in the two optimization tasks. Section 2.3 presents the method 111 

used to derive the capacity expansion solutions. 112 

2.1 Inner optimization task 113 

The NS optimization problems included in the inner optimization task have the main 114 

characteristics of the model developed by Vieira et al. (2011) to optimize the operation of 115 
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large-scale multiquality water supply systems dependent on surface water and groundwater 116 

sources. The application of the model requires the representation of a given infrastructure as a 117 

flow network composed of arcs and nodes, the characterization of the demand and a time series 118 

of inflows to reservoirs and of the aquifer recharge. The optimized decisions provided by the 119 

solution of the model include the volume of withdrawals from each water source, the operation 120 

of the treatment and pumping facilities and the water allocation from each source to the 121 

demand nodes. These operating decisions are discretized in monthly periods t ={1, 2, …, NT} 122 

over the entire operational planning time horizon, which includes NT time steps. Usually, 123 

monthly time steps are adequate for describing in detail the operation of large-scale water 124 

supply systems for planning purposes. Such discretization allows describing the most important 125 

intra-annual variations in both supply (e.g., storage in reservoirs and piezometric levels in 126 

aquifers) and water demand thereby avoiding overly simple representation of phenomena given 127 

by annual time steps. 128 

Water quality is explicitly represented in the description of the water transport using the 129 

multicommodity network flow approach (Fig. 1). This approach requires that water from a 130 

different source, or simply of a different quality, is regarded as a separate commodity             131 

k = 1,…,NK sharing a common distribution network. The water flows are modeled by the 132 

variable xpq,t,s
k  representing a non-negative flow of water type identified by the index k in the 133 

network arc (p,q) from node p to node q in period t in scenario s. Due to their miscibility, it is 134 

justifiable to assume that waters modeled as different commodities are perfectly mixed when 135 

the time scale used for planning purposes is larger than one day (Yang et al. 2000). 136 

[Insert Fig. 1 approximately here] 137 

The objective function f(…) in (2) adds the variable operating costs to a set of three penalty 138 

functions. The variable operating costs include all the abstraction, treatment and pumping costs 139 
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that depend on the quantity of water supplied. The penalty functions are used when solving the 140 

model to avoid deviations from the objectives of i) to satisfy the demand and ii) to deliver 141 

water of the appropriate quality as specified, in terms of volumetric water blending ratios. One 142 

last penalty function is added as an artifice to avoid unnecessary spills from reservoirs. Weight 143 

factors in the penalty functions allow prioritization of the objectives for each situation. 144 

The constraints g(…) in (2) include mathematical functions that simulate the water balance in 145 

reservoirs, the groundwater flow in aquifers, and the water flow and quality in a distribution 146 

network. Legal water rights and environmental concerns (such as minimum discharges from 147 

reservoirs for downstream ecosystem maintenance and minimum piezometric levels in aquifers 148 

to prevent problems related to the over-exploitation of the groundwater resources) are also 149 

modeled as constraints. 150 

The optimization problem is nonlinear. The penalty functions in f(…)  are quadratic so that 151 

greater deviations from the objectives are more heavily penalized. The multiplication of 152 

decision variables in the perfect mixing condition (Fig. 1) included in the model constraints 153 

introduces a high degree of nonlinearity and may make the solution of the inner optimization 154 

task (i.e., the optimal operation of the water system in the different scenarios) quite complex 155 

and time consuming. 156 

2.2 Outer optimization task 157 

The mathematical function  F(...) in (1) integrates two metrics – the performance index (PI) and 158 

the total solution cost (PVC) – that are used to evaluate each capacity expansion solution. 159 

The performance index (PI) corresponds to the aggregation in a single value of the information 160 

given by three performance criteria in the scale [0,1] – reliability (Rel), vulnerability (Vul) and 161 

the water quality criterion (VBld). Rel and VBld are related to the water quantity and express 162 
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the general characteristics for these criteria proposed by Hashimoto et al. (1982). Here, Rel is 163 

the volume of water supplied divided by the target demand (also known in the literature as 164 

volumetric reliability), and Vul is the maximum deficit relative to the demand in all time 165 

periods. The use of together Rel and Vul as the two water quantity criteria included in the 166 

performance index should guarantee its suitability for evaluations also related with the 167 

sustainability of the water systems (Kjeldsen and Rosbjerg 2004). VBld is the water quality 168 

criterion measuring the worst water quality conditions defined in terms of volumetric water 169 

blending ratios at the demand nodes in all time periods. By minimizing the VBld, the worst 170 

water quality conditions should be mitigate and, simultaneously, a higher volume of water with 171 

the best quality to the extent possible should be available ceteris paribus. Finally, the value of 172 

the performance index is calculated as the simple average of the three performance criteria: 173 

PI =
Rel+ (1− Vul)+(1− VBld)

3
 

(3) 

The terms (1 − Vul) and (1 − VBld) are used so that the objective is to maximize Rel and to 174 

minimize Vul and VBld. The value of PI is also a non-negative number taken as one or lower. 175 

Loucks (1997) and Zongxue et al. (1998) had initially proposed two different indexes to 176 

evaluate the performance of water systems and support decision-making. Other authors have 177 

come to examine and propose alternative formulation from those two initial indexes in more 178 

recent studies about the evaluation of performance of water systems (e.g., Sandoval-Solis et al. 179 

2011; Hajiabadi and Zarghami 2014; Ray et al. 2014; Tseng et al. 2015). In any of these studies 180 

water quality is not included as a criterion for evaluating system performance. The inclusion of 181 

a water quality criterion for evaluating the performance of multiquality water-supply systems 182 

can be justified as different water quality at the source often determines differences in the water 183 

quality for the end-users (Yang et al. 2000). Sandoval-Solis et al. (2011) also argue that water 184 

quality criteria can be included in performance indexes for evaluating municipal water use. 185 
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The total solution cost (PVC) includes initial construction costs for system redesign (CC) and 186 

operating costs (OC) spread over the project lifetime. The operating costs are divided into fixed 187 

and variable costs (FOC and VOC) with the quantity of water supplied: 188 

PVC = CC+ FOC+ VOC (4) 

The PVC reports the total solution cost up to the “present” at a certain discount rate. 189 

The function F(...) in (1) was inspired by the field of robust optimization introduced by Mulvey 190 

et al. (1995) and followed many others (e.g., Rosenberg and Lund 2009; Kang and Lansey 191 

2013; Ray et al. 2014; Lan et al. 2015). The objective function of the outer optimization task 192 

allows the explicit balancing of the trade-offs between solution robustness and cost. Solution 193 

robustness is defined by a mean-variance formulation of the PI  in all the scenarios, and the 194 

objective function F(...) can be written as follows: 195 

 F(…) =∑ p
s
PIs

NS

s=1⏟    
E(PIs)

−𝜑∑ p
s
(PIs −∑ p

s
PIs

NS

s=1

)

2
NS

s=1⏟                
Var(PIs)

− 𝜔PVC 

(5) 

where p
s
 is the probability of scenario s, E(PIs) and Var(PIs) are the expected value and the 196 

variance of the performance index over all scenarios, and 𝜑 and 𝜔 are weights representing the 197 

relative importance assigned to the variability of system performance and to the solution cost. 198 

One capacity expansion solution can be obtained from the solution of the nested optimization 199 

problem for each pair of values 𝜑 and 𝜔. The mean-variance formulation addresses risk-averse 200 

behavior and higher values of 𝜑 reduce the chances of solutions with low performance in some 201 

scenarios being selected. Higher values of 𝜔 favor reduced cost solutions. The PVC is also an 202 

expected cost given that VOC are determined by an average value over all scenarios. 203 
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2.3 Solution method  204 

The method implemented to find the capacity expansion solutions combines simulated 205 

annealing with nonlinear programming (Fig. 2). The basic concept of the solution method is in 206 

taking advantage from the nested structure defined in (1)-(2) by decomposing the global and 207 

highly complex model (including discrete and continuous variables, and nonlinear constrains) 208 

into smaller sub-models with lower level of complexity and that can be efficiently solved 209 

independently. The application of decomposition solution methods has a fairly recent origin in 210 

the water sector (Cai et al. 2001; Reis et al. 2005, 2006), and has been followed by other 211 

authors lately (e.g., Chen et al. 2013; Afshar et al. 2015, Li et al. 2015). 212 

[Insert Fig. 2 approximately here] 213 

The solution of the nested problem (1)-(2) begins with a random generation of a capacity 214 

expansion solution represented in vector Y. This allows to express the binary variables in Y as 215 

input data and to define univocally NS nonlinear optimization problems that can be solved 216 

independently to determine the optimal operating decisions for each scenario s (i.e., X
s
 for s =217 

1,…,NS). The value of F(…) is determined after obtaining the optimal operating decisions for 218 

all scenarios. The solution method proposed here can be implemented using the simulated 219 

annealing proposed by Cunha (1999). A stop criterion included in the simulated annealing 220 

algorithm determines after calculating the value of F(…) at each iteration either the end of the 221 

solution process or if a new expansion solution should be generated. 222 

The solution method includes a second decomposition when solving each of the nonlinear 223 

optimization problems in the inner optimization task. As stated in section 2.1, the perfect 224 

mixing condition (Fig. 1) introduces a high degree of nonlinearity and may make the solution 225 

of the NS nonlinear optimization problems in the inner optimization task quite complex and 226 

time consuming. To reduce the computational burden, the NS nonlinear optimization problems 227 
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can be solved with the decomposition approach as described by Vieira and Cunha (2011). In 228 

step one, the perfect mixing condition is eliminated from the set of constraints. This set of 229 

nonlinear constraints is added only in the second step so that a solution of the complete 230 

nonlinear optimization problem is then found. Vieira and Cunha (2011) showed significant 231 

reduction of the computation time when solving a nonlinear optimization problem similar to the 232 

one handled here in the inner optimization task. Vieira and Cunha (2011) suggested that this 233 

efficiency gain could be extremely useful for reducing the computational burden in capacity 234 

expansion problems. 235 

3. CASE STUDY 236 

The proposed nested optimization approach was implemented to identify potential capacity 237 

expansion solutions for the Barlavento Water System (BWS) located in the Algarve region of 238 

Portugal. The BWS is regional and supplies water for urban use to 9 of the 16 municipalities in 239 

the Algarve from surface water and groundwater sources. Surface water is soft and 240 

groundwater is naturally hard. Previous studies have demonstrated that a volumetric blend of 241 

hard groundwater should be kept below 25% to avoid significant variations in drinking-water 242 

quality (Vieira et al. 2011).  243 

The current water sources of the BWS are two surface water reservoirs (Odelouca and Bravura) 244 

and two groups of wells (Vale da Vila and Almádena). But the Odelouca reservoir is smaller 245 

than was initially planned, as determined by the environmental impact assessment procedure of 246 

this BWS water source. A report by Hidroprojecto and Ambio (2005) for the water utility that 247 

manages the BWS, already assumed the reduction in size determined later (in 2006) for the 248 

Odelouca reservoir, concluded there would be difficulties in meeting demand for the year 2025 249 

(74.7 million m3/year) and suggested that structural solutions were needed to expand the 250 

capacity of the BWS. 251 
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3.1 Capacity expansion options 252 

Hidroprojecto and Ambio (2005) singled out two possible surface water transfers from 253 

neighborhood systems and the construction of one seawater desalination plant with three 254 

possible design sizes for the capacity expansion of the BWS. Vieira (2014) added to those 255 

possible options the rehabilitation of six groups of wells and the installation of nanofiltration 256 

systems to soften the groundwater in all the well groups (i.e., those in the current sources and 257 

those to be rehabilitated as investment options). The typical water recovery rate (i.e., ratio of 258 

permeate flow rate to feed flow rate) of the nanofiltration systems would be 85%. Table 1 lists 259 

the current sources (CS) and the investment options (IO) used in this case study. Each capacity 260 

expansion solution results from the selection of one or more investment options. In this case 261 

study, there were 589 824 different capacity expansion solutions, given by all the possible 262 

combinations of the investment options listed in Table 1. The combination of all possible 263 

investment options defines the solution space of this case study. A preliminary evaluation 264 

allowed to conclude that it would not be practicable and too much time consuming to solve this 265 

case study by total enumeration. The final statistics about the computation time are summarized 266 

in section 3.3.1. 267 

[Insert Table 1 approximately here] 268 

The maximum flows indicated in Table 1 depend solely on the pumping and treatment systems 269 

installed/to be installed, whereas the firm quantities also depend on limits set by the authorities. 270 

The installation of nanofiltration systems can reduce either the maximum flow and/or the 271 

maximum firm quantity of each group of wells. For example, the total pumping capacity of the 272 

Vale da Vila group as a current source of the BWS is 984 L/s, but in any case the water utility 273 

cannot extract more than 13 million m3/year, as defined by the authorities. The maximum 274 

values indicated for the investment option H4.O2 result from combining the maximum flow 275 

and firm quantity indicated before for the Vale da Vila well group as a current source of the 276 
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BWS with the water recovery rate of the nanofiltration systems (85%). In the investment option 277 

H4.O1, the maximum flow of 350 L/s corresponds to the 11.05 million m3 (firm quantity for 278 

H4.O2) distributed uniformly over one year. 279 

Furthermore, the withdrawals from each source are also limited by the simulation of the water 280 

balance in each surface reservoir and the simulation of the groundwater flow in each aquifer. 281 

The groups of wells are located in two aquifers. The Almádena group is located in the 282 

Almádena-Odiáxere aquifer. All the other groups are located in the Querença-Silves aquifer. 283 

3.2 Hydrological scenarios 284 

The hydrologic scenarios in this test case were generated from a multivariate time series of 285 

monthly precipitation values from a 55 year record (October 1951 - September 2006) for each 286 

surface reservoir and aquifer. The monthly values of precipitation were transformed into 287 

reservoir inflows with a hydrological model, and into aquifer recharge using average recharge 288 

rates based on the hydro-geological formations. 289 

In this application, ten hydrological scenarios capture some uncertainty associated with the 290 

reservoir inflows and the aquifer recharge. Each scenario corresponded to a five year 291 

multivariate data block sampled from the historic multivariate time series. Nine of the ten 292 

scenarios were sampled randomly using the moving blocks bootstrap method with partial block 293 

overlap while one scenario was chosen specifically as detailed next. The moving blocks 294 

bootstrap method (Vogel and Shallcross 1996) is a simple nonparametric method. Avoiding 295 

defining assumptions regarding the marginal probability distributions of the variables and the 296 

spatial and temporal covariance structure of the variables, one simply resamples randomly, with 297 

replacement, a set of multivariate data blocks sampled from the historic multivariate time 298 

series. The challenge is to resample the records in such a way as to assure that the temporal and 299 

spatial covariance structure of the original time series is preserved as well as also that the first 300 
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values and the last values of each block are be nearly independent (Vogel and Shallcross 1996; 301 

Buishand and Brandsma 2001). The other scenario was chosen specifically so that the serious 302 

drought that afflicted the Algarve in 2004 and 2005 would have to be included covering the period 303 

October 2001 – September 2006. In a reference paper, Watkins and McKinney (1999) had 304 

previously used an approach similar to this by combining scenarios selected randomly and 305 

drought scenarios chosen specifically to generate a finite number of scenarios in a planning 306 

model. 307 

As described above, nine of the ten scenarios were sampled randomly from a historic time 308 

series in line with the hypothesis of stationary conditions. But this assumption is opened to 309 

wide discussion in recent times from the announced climate change scenarios. Many authors 310 

have discussed the “death” of stationary of the hydrologic processes (Milly et al. 2008; Matalas 311 

et al. 2012; Salas et al. 2012). In recent papers, Kasprzyk et al. (2012, 2013) and Herman et al. 312 

(2016) developed different approaches that include a special attention to drought scenarios and 313 

their impact on water resources planning given that these phenomena could become more 314 

frequent under climate change. In this paper, one used a simple approach by giving to all 315 

scenarios the same probability p
s
 in Eq. (5), including to the drought scenario. This represents 316 

giving to the drought scenario an importance higher than that related directly to its frequency 317 

from the historic time series, and envisaging some non-stationary about the hydrological 318 

processes in testing the nested optimization approach presented in this paper. 319 

3.3 Results and discussion 320 

3.3.1. Solution robustness and cost 321 

The capacity expansion solutions presented next allow to explicit balancing the trade-offs 322 

between solution robustness and cost. The results presented next were obtained after solving the 323 

nested problem (1)-(2) with five different pair of values 𝜑 and ω [Eq. (1) is detailed in (5)]. The 324 
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best solution for each pair of values 𝜑 and ω was found in tens of hours by searching always 325 

just less than 0.5% of the solution space. The statistics about the computation time and the 326 

search of the solution space confirmed that it would not be practicable and too much time 327 

consuming to solve this case study by total enumeration. 328 

The five pair of values 𝜑 and ω in Eq. (5) were defined after setting 𝜑 = 1, ω = ω* PVCSup⁄ , and 329 

and ω* = 0.1, 0.5, 1, 5, 10. The PVCSup corresponds to the total cost defined by Eq. (4) of a 330 

particular capacity expansion solution designated as Sup. In this case study, the solution Sup was 331 

the one with the highest fixed costs (CC+ FOC) in Table 1 (i.e., the solution Sup included the 332 

selection of investment options H1, H2, H3.O3, H4.O2, H5.O2, H6.O3, … , H10.O3). The 333 

discussion that follows also includes the analysis of the results obtained in Solution , the “do 334 

nothing” solution that retains the current sources. The results for Solution  and Solution Sup 335 

were obtained in a single iteration of the solution process described in section 2.3. 336 

Table 2 shows that the expansion solutions determined with the three highest values of the 337 

weight balancing the cost (𝜔∗ = 1, 5 and 10) do not include any of the investment options found 338 

by Hidroprojecto and Ambio (2005). In these three cases, the capacity expansion of the BWS is 339 

achieved by rehabilitating the groups of wells, with or without including the installation of 340 

nanofiltration systems to soften groundwater. Table 3 shows that the cost of those three 341 

solutions is lower – total cost between 158.6 and 177.6 million euros (€) – but there is less 342 

impact on the system performance, as E(PIs) is lower and Var(PIs) is higher. These results are 343 

due to two main factors. First, apart from the Almádena group of wells, all the groups are 344 

located in the Querença-Silves aquifer. This means that too often the withdrawals in the 345 

Querença-Silves aquifer are limited by model constraints that become active because of 346 

minimum piezometric levels in selected locations. Second, the rehabilitation of groups of wells 347 

may not be enough to reverse reductions in the maximum flows and/or total firm quantity from 348 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



the installation of nanofiltration systems in the Vale da Vila and/or Almádena groups of wells 349 

(see section 3.1). Both factors contribute to the demand not being fully met in more than one 350 

scenario. The results also show that the poorest values of the performance criteria and the 351 

performance index are for the scenario specifically included here (i.e., scenario 2001-2006 – 352 

see section 3.2), thus the serious drought that afflicted the Algarve in 2004 and 2005 was 353 

always included in this case study. 354 

[Insert Table 2 approximately here] 355 

[Insert Table 3 approximately here] 356 

Table 2 also shows that the same capacity expansion solution was found with 𝜔∗ = 0.1 and 0.5. 357 

It corresponds to the capacity expansion of the BWS by prescribing new infrastructure for the 358 

transfer of surface water from the Santa Clara system. Table 3 shows that for this capacity 359 

expansion solution E(PIs) almost equals one (i.e., maximum) and Var(PIs) is virtually null 360 

indicating a nearly optimal system performance in all scenarios. 361 

All metrics [CC, PVC, E(PIs) and Var(PIs)] are in the range defined by the values for Solution 362 

 and Solution Sup (Table 3). These results support the hypothesis that Solution  and 363 

Solution Sup should be those of minimum and maximum robustness, respectively. 364 

In brief, and as expected, the variation of 𝜔∗ allowed the identification of a trade-off between 365 

solution robustness and cost. Lower cost solutions were found by increasing 𝜔∗ as this weight 366 

corresponds to a cost penalty. But lower cost solutions are also less robust solutions as E(PIs) 367 

decreased and Var(PIs) increased when 𝜔∗ was increased. Significant improvements in solution 368 

robustness necessarily imply higher costs. A robust solution was found with a reduced 369 

penalization of cost. 370 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



3.3.2. Detailed evaluation of system performance 371 

A more detailed evaluation about system performance can be drawn from Table 4. This table 372 

shows besides the average value of the performance index (PI) over all scenarios (already in 373 

Table 3) its minimum and maximum value between all scenarios as well as the same statistics 374 

for the three performance criteria (Rel, Vul and VBld) that define the performance index. The 375 

last two performance criteria are represented in Table 4 by (1− Vul) and (1− VBld) such that 376 

for all the performance indicators the minimum corresponds to the worst value and the 377 

maximum to the best value, respectively.  378 

From section 2.2, the PI is defined by Eq. (3); the reliability Rel represents the volume of water 379 

supplied divided by the target demand; the vulnerability Vul is the maximum deficit relative to 380 

the demand in all time periods; and VBld is the water quality criterion representing the worst 381 

water quality conditions at all demand nodes in all time periods. PI, Rel, Vul and Vul are 382 

non-negative taken as one or lower. From the introduction to this case study, the ratio 383 

HGW/TW [hard groundwater supplied/total water (soft + hard) supplied] should be kept below 384 

0.25 (or 25%) to avoid significant variations in drinking water quality. In this case study, the 385 

VBld measured specifically the difference between the highest ratio HGW/TW at all demand 386 

nodes in all time periods and the volumetric blending objective of 0.25, but only above that 387 

value: VBld = max [(HGW/TW − 0.25), 0].  388 

From Table 4, the minimum value of Rel in the hypothesis “do nothing” (Solution ) 389 

represents that the satisfaction of the demand at the system level (given by the ratio total water 390 

supplied/total water demand) has the minimum value of 0.818 or 81.8% in one of the ten 391 

scenarios. Also for Solution  and from the minimum value of (1− Vul) = 0.738, it is 392 

possible to conclude that there is at least one time period in which the ratio total water 393 

supplied/total water demand is not higher than 73.8%. Finally, the minimum value of           394 
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(1− VBld) reveals that there is at least one demand node and one time period in which all the 395 

water supplied has a ratio HGW/TW equal to 1 or 100%. [here, when the ratio HGW/TW = 1, 396 

VBld = 0.75, and (1− VBld) = 0.25]. All the minimum values of the performance criteria 397 

were recorded in the same scenario (the scenario October 2001 – September 2006 that covers 398 

that the serious drought that afflicted the Algarve in 2004 and 2005) whereby the minimum value 399 

of the PI in all scenarios for Solution  (= 0.602) can be determined directly from the 400 

minimum values of the performance criteria shown in Table 4. 401 

The increase in the value of E(PIs) from Solution  to the expansion solution found with 402 

ω* = 10 (in Table 3 or Table 4) is more closely related with the evolution of (1− VBld). The 403 

VBld is the water quality criterion, and the installation of nanofiltration systems (NFS) in 404 

Almádena wells group (option H5.O2 – see Table 2) has a significant impact in this 405 

performance criteria. On the contrary, there is no significant improvement in the performance 406 

criteria related with water quantity (Rel or Vul). In Solution , the withdrawals from the 407 

Querença-Silves aquifer were too often limited by minimum piezometric levels in the inner 408 

optimization task. In the capacity solution found with ω* = 10, there are new water sources in 409 

the Querença-Silves aquifer (options H7.O1 and H10.O1) but it is not possible to increase 410 

significantly the total abstractions in that aquifer. 411 

The installation of NFS in Vale da Vila wells group for hardness removal in the capacity 412 

expansion solutions found with ω* = 1 and 5 (option H4.O1 – see Table 2) contributes 413 

significantly to guarantee good water quality in any scenario as (1 − VBld) is always maximum 414 

(Table 4). But the installation of the NFS decreases the statistics of the performance criteria 415 

related with water quantity in comparison with the capacity solution found with ω* = 10. This 416 

happens given that it is not possible to use all the water pumped from the aquifer but only 85% 417 

which is the water recovery rate of the NFS (section 3.1). 418 
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In the capacity expansion solution found ω* = 0.1 or 0.5, the target demand would be totally 419 

satisfied in any scenario, and there would be only a minimal deviation to the objective of 420 

supplying water with a volumetric blending of hard groundwater lower than 25%. The 421 

maximum volumetric blending of hard groundwater was 26.7% in the already mentioned 422 

serious drought scenario. 423 

Finally, Fig. 3 shows the variation of the PI in all scenarios for Solution  and for the capacity 424 

expansions solutions identified in Table 2. The scenario that covers the serious drought that 425 

afflicted Algarve in 2004 and 2005 is scenario #10. But other scenarios lead to a lower system 426 

performance in Solution  and in the lower cost solutions found ω* = 1, 5 and 10, particularly, 427 

in scenarios #2, #4, #7 and #8. These scenarios include other less serious droughts that afflicted 428 

the Algarve in 1950s, 1970s, 1980s and 1990s (Vieira 2014). As shown in Fig. 3, only in the 429 

solution found with ω* = 0.1 or 0.5 and that implies a higher investment, it would be possible 430 

to have nearly optimal performances in all scenarios, thereby reducing some impact about the 431 

uncertainty associated to the natural hydrology. 432 

[Insert Fig. 3 approximately here] 433 

4. CONCLUSIONS 434 

The application of the nested optimization approach to the selected case study indicated that it 435 

could potentially support decision-making in real-world problems. The modeling approach 436 

presented here allows the evaluation of the trade-offs between system robustness and cost, 437 

explicitly considering uncertain factors during the system operation. The capacity expansion 438 

solution identified here as robust is associated with an initial investment of 28.3 million euros 439 

and a total cost of less than 200 million euros. That capacity expansion solution costs more than 440 

other solutions that show a good performance in some historic scenarios but that fail in other 441 

historic scenarios. Even without considering other sources of uncertainty (e.g., non-stationarity 442 
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of hydrologic series, population growth, cost factors) arriving at a definitive decision on the 443 

capacity expansion solution of the BWS will never be straightforward. In general, if the 444 

decision taken is to make significant investments in the capacity expansion of the water 445 

systems and extreme situations do not then occur, it can be always claimed that unnecessary 446 

investments were made. However, relatively modest investments might not be enough to limit 447 

the negative impacts of extreme events to an acceptable level. The ability of the proposed 448 

modeling approach to generate a restricted set of potential capacity expansion solutions that can 449 

be studied in more detail before reaching a final decision has been effectively demonstrated. 450 
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Table 1 Summary of the current sources (CS) and the investment options (IO) 557 

 558 

Water source 
Investment               

ID 

Firm quantity         

( 106 m3/year) 

Costs 

CC 

 (106 €) 

FOC  

(103 €/year) 

VOC    

(€/m3) 

CS 

Odelouca reservoir 257.20 NA NA 0.106 

Bravura reservoir 6.00 NA NA 0.190 

Vale da Vila wells group*  13.00 NA NA 0.090 

Almádena wells group+ 3.47 NA NA 0.023 

IO 

Inter-system water transfer 

Santa Clara  H1 20.00 28.31 443.3 0.122 

Sotavento H2 
18.42 

35.45 348.1 0.113 

Sea-water 

desalination plant  

H3.O1/ 

H3.O2/H3.O3 

7.88/      

15.77/23.65 

23.03/  

41.60/56.37 

1152.8/ 

2004.7/2847.7 

0.266/ 

0.263/0.261 

Installation of nanofiltration systems (NFS) in current wells group 

Vale da Vila H4.O1/H4.O2 
11.05/11.05 

6.67/16.14 135.1/202.1 0.137/0.133 

Almádena H5.O1/H5.O2 1.61/1.95 1.09/1.96 34.2/39.7 0.140/0.137 

Rehabilitation of wells groups with local disinfection (LD) or installation of nanofitration systems (NFS) 

Paderne* 
LD 

NFS 

H6.O1/ 

H6.O2/H6.O3 

7.27/ 

3.09/6.18 

1.41/ 

3.37/5.35 

100.0/ 

112.6/148.3 

0.037/ 

0.150/0.147 

Torrinha* 
LD 

NFS 

H7.O1/ 

H7.O2/H7.O3 

3.15/ 

1.34/2.68 

0.18/ 

1.03/1.89 

16.4/ 

44.0/54.3 

0.023/ 

0.141/0.137 

Marco* 
LD 

NFS 

H8.O1/ 

H8.O2/H8.O3 

6.53/ 

2.78/5.55 

0.73/ 

2.48/4.26 

56.9/ 

79.0/104.5 

0.029/ 

0.143/0.140 

Ferrarias* 
LD 

NFS 

H9.O1/ 

H9.O2/H9.O3 

1.86/ 

0.79/1.58 

0.12/ 

0.62/1.13 

9.7/ 

36.3/43.1 

0.023/ 

0.145/0.140 

Medeiros* 
LD 

NFS 

H10.O1/ 

H10.O2/H10.O3 

2.52/ 

1.07/2.14 

0.17/ 

0.85/1.54 

12.9/ 

40.0/48.7 

0.023/ 

0.145/0.138 

Note: * – Wells group locate in Querença-Silves aquifer; + – Wells group located in Álmádena-Odiáxere aquifer 559 
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Table 2 Solutions obtained with 𝝋 = 1 and 𝝎∗ = 0.1, 0.5, 1, 5 and 10 580 

Weight 𝜑 Weight 𝜔∗ Investment options selected 

1 

10,0 H5.O2, H7.O1, H10.O1 

05,0 H4.O1, H5.O1, H10.O1 

01,0 H4.O1, H5.O1, H7.O3, H9.O3, H10.O1 

00.5 H1 

00.1 H1 

 581 

Table 3 Summary of results for Solution , Solution Sup and solutions found with                          582 

𝝎∗ = 0.1, 0.5, 1, 5 and 10 (indicated in Table 2) 583 

Solution E(PIs) Var(PIs) CC (×106 €) PVC (×106 €) 

 0.861 0.233 0.00 154.7 

𝜔∗= 10 0.929 0.135 2.31 158.6 

𝜔∗= 5 0.966 0.024 7.93 169.7 

𝜔∗= 1 0.980 0.015 10.94 177.6 

𝜔∗= 0.5 and 0.1 0.999 0.000 28.31 194.7 

Sup 1.000 0.000 152.4 389.4 

 584 

 585 

Table 4 Minimum (min.), average (E) and maximum (max.) values of the performance index 586 

and the performance criteria for Solution , Solution Sup and solutions found with 𝝎∗ = 0.1, 587 

0.5, 1, 5 and 10 588 

Solution 
 PIs   Rels  (1-Vuls) (1-VBlds) 

min. E(…) max. min. E(…) max. min. E(…) max. min. E(…) max. 

 0.602 0.861 1.000 0.818 0.972 1.000 0.738 0.950 1.000 0.250 0.663 1.000 

𝜔∗= 10 0.649 0.929 1.000 0.876 0.984 1.000 0.822 0.973 1.000 0.250 0.829 1.000 

𝜔∗= 5 0.844 0.966 1.000 0.806 0.964 1.000 0.726 0.935 1.000 1.000 1.000 1.000 

𝜔∗= 1 0.878 0.980 1.000 0.849 0.978 1.000 0.785 0.961 1.000 1.000 1.000 1.000 

𝜔∗= 0.5 and 0.1 0.994 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.983 0.998 1.000 

Sup  1.000   1.000   1.000   1.000  

 589 
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