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1. Introduction

As is well known, an n-dimensional lattice in R” is a set of points of the form 2 = Zw;| +
-+ + Zw,. Here w1, ..., w, are some R-linear independent vectors from R”. A priori, such a
lattice is only endowed with the algebraic structure of a Z-module. That means, if w, € £2, then
wEtne2and a2 C 2 forany o € Z.

However, if one defines a further multiplication operation on the underlying vector space R",
then special classes of lattices have the additional property, that there are also elements a € R" \ Z
such thata- £2 C £2. Such special lattices are then called lattices with multiplication. In the partic-
ular case where w -1 C §2 for all w, n € §2, the whole lattice has a closed multiplicative structure.
In fact, these lattices are exactly the Z-orders in an associated n-dimensional R-algebra.

The simplest non-trivial explicit examples are lattices with complex multiplication. The two-
dimensional vector space R? can be endowed with the multiplicative structure of the complex
numbers. This is done by identifying a vector (xg, x1 )T e R? with xg 4+ x1i € C where i% = —1.
Then a two-dimensional lattice of the normalized form Z + Zt (J(t) > 0) has complex multipli-
cation, if and only if T € Q[+/—D]. Here D is supposed to be any positive square-free integer.
Square-free means that no prime number appears more than once in the prime factorization. In
the case where 7 € Z[+/—D], one even has w - n € §2 for all w, n € £2 when - is the complex
multiplication operator. Conversely, Z + Zt with T € Q[+/—D] are the only two-dimensional
lattices with complex multiplication. Lattices with complex multiplication are extremely well
studied by numerous authors. For their basic properties, we refer the reader for example to the
textbooks [8,16,18] in which their important role in analytic number theory is described. The
division values of the modular function j associated to these particular lattices lie in finite Ga-
lois field extensions of an imaginary quadratic number field Q[+/—D ] and play a key role for
Hilbert’s twelfth problem [12].

In view of getting explicit analogous constructions for more general algebraic number fields,
we are motivated to revisit the problem of complex lattice multiplication within a more general
context. The simplest canonical non-trivial higher-dimensional associative examples of lattices
with multiplication in dimension 2" are lattices with Clifford algebra multiplication. These were
first considered in [9,10] in the quaternionic setting. Later, these were more extensively studied
in [6,14] and in [15, Chapter 2.7] in the context of the general Clifford algebras Clp .

Just for convenience we recall that the real Clifford algebra Cly , is the free algebra generated
over the vector space R” with basis ¢;, i = 1, ..., n in which the multiplication rules ei2 =1,
i=1,2,...,n,and e;e; = —eje; fori # j are valid. Each element a of the Clifford algebra Cly
canbe writtenasa =) ,.p (1.2....m) a@aea. In this representation the expressions a4 are uniquely
defined real numbers and the elements e4 are products of the basis vectors from the vector space
R" of the form eq = ¢, ...¢;, where 1 </1 <--- <[, <n and where ey :=1. P(1,2,...,n)
denotes the set of all possible subsets of {1,2,...,n}.

As a vector space, Cly ,, is isomorphic to RR?". In the case n = 1 the associated Clifford algebra
is isomorphic to the complex number field. The Clifford algebra Clp » is isomorphic to the skew
field of Hamilton’s quaternions. Now one can identify R?" with the Clifford algebra Cly . Let
2 =Zw) + - - - + Zwy» be a lattice where the generators w; (i =1, ...,2") have the form

n
w,-:co(()’)—l—Za)}l)‘/Djej—i— Z a)yk) DiDiejeg+---
j=1 kel .n, j<k

+ “’Yz).‘.nmelz...n.
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If each a)X) (AcC P(,2,...,n)) is an integer and Dy, ..., D, are mutually distinct positive
square-free integers, then £2 has a non-trivial Clp , multiplication. Here again one can show
that the class of 2”-dimensional lattices that have Clifford multiplication are those whose real
components of the generators stem up to conjugation from the multiquadratic number fields

QI[+/D1, ..., /Dy 1. See [15] for details.

In this paper we now deal with a class of twisted group algebras that contains the complex
number field, Hamilton’s quaternionic skew field and all Clifford algebras as very particular
cases. Furthermore, we give some explicit algebraic characterizations in terms of generalized
norm and trace functions.

2. Graded Ry G algebras
Let us consider a finite group G and its group algebra defined over R. To get started we recall

Definition 1. Let G be a finite group. A 2-cochain F in G isamap F : G x G — R* satisfying
F(e,x) = F(x,e) =1 for all x € G, where e is the neutral element in G.

After having defined a 2-cochain in G we can consider the algebra R G that is obtained from
RG by deforming the product,

x.ry=F(x,y)xy, Vx,yeG.
Examples of Ry (Z;)" algebras are Clifford algebras [2] and Cayley algebras like octonions [1].
See also [17]. Here it was proved that if we write the cochain F in the form F(x, y) = (—1)/ ),
then we obtain:
1. The ‘complex number’ algebra by considering

G=17p, fx,y)=xy, x,y€Z.

Here we identify G as the additive group Z, but also make use of its product.
2. The quaternionic algebra by taking

G =17y X 7y, fO,y) =x1y1+ (x1 +x2)¥

where x = (x1, x2) € G is a vector notation.
3. The octonionic algebra by considering

G =7y X Ly X Za, fOay) = Y xiyj+yixxs+ X120+ X163,
1<i<j<3

Within a similar context we have studied in [2] Clifford algebras as R (Z;)" algebras, where
the cochain F' is defined by the expression

n
Fx,y) = (~)Z= [ g

i=1
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where x = (x1,x2,...,X,), y = (¥1, ¥2, ..., ¥) are elements from (Z)" and ¢; = el.2 where ¢;
are the canonical elements of Z7.

If we consider a group G with n elements, say G = {g1, ..., g}, then we can identify each
element a1gy + -+ + angn, @i € R, of the algebra Ry G with the element (ay,...,a,) € R".

With this identification the multiplication defined in R r G will introduce a special multiplication
on R”. This is called the multiplication of R” induced by the group G using the cochain F. In
this case we say that R” is embedded in RrG.

As a consequence we can multiply the points of an n-dimensional lattice in R"” with each
other and we obtain another element from R". In the general case the resulting vector does not
always belong again to the lattice. Nevertheless, this will happen in some interesting cases. We
introduce:

Definition 2. Let G be a group with n elements and F be a cochain in G. Further, let wy, ..., @,
be linearly independent vectors from R”". Let

2 =7Zw| + -+ Zw,

be the associated n-dimensional lattice embedded in the algebra RrG. Then we say that £2 has
an Ry G multiplication from the left (respectively from the right) if there exists an a € R" \ Z
such that a - w € £2 (respectively w - a € §2) for all w € §2. Furthermore, we say that the lattice
£2 is closed under the multiplication of Ry G if for all w, n € £2 holds w - n € £2. Here - is the
multiplication induced by G using the cochain F'.

For simplicity we will write aw for a - @ when no ambiguity can occur in all that follows.

In the simplest case G = Z; we have only two possibilities for the algebras RrZ;: The com-
plex numbers C and the group algebra of Z; which is denoted by RZ;. As mentioned at the
beginning, lattices in R? with multiplication in the context of the complex numbers are known
and completely classified. To study lattices with Clifford and Cayley algebra multiplication, let
us briefly say a few words on the other case where we have a lattice in R?> endowed with a
multiplication operation that is defined by the group algebra of Z,.

Let 2 =Zt 4+ 7Z (t = x9 + e1x1 € RZy, x1 > 0) be a lattice in R? with RZ» multiplication.
Let R(7) be the set of multiplicators of £2. This is the set of RZ;-elements a that satisfy a§2 C £2.
In close analogy to the complex case, see [13, pp. 84—87], we can establish:

Proposition 1. Let T = xo + x1e1 € RZ; with x1 > 0. For an element A € RZ, the following
assertions are equivalent:

1. A € R(7).
2. There exista,b,c,d € Z such that A\t =at +b and . =ct +d.
3. w:= () satisfies \w = Mw with M = (¢ 5) e Mat(2, Z).
Proof. (1) & (2): L € R(t) isequivalenttor-1e€Zt+Zand A -t €Zt+7Z,s0r-1=ct+d

and A-T=at +b.
(2) & (3): Evident:
AT _(at +b . -
A ct+d

e ()= D))
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Proposition 2. Let 2 = Zt + Z be a lattice with RZ,-multiplication, i.e. R(t) # Z. Then
v € Qleiv/ D1 for some square-free D € N and R(t) is a subring of the integral elements of
QleivD1.

Remark. For the sake of clarity: By @[61\/5] we mean the set of RZ, elements that can be
written in the form r 4 s+/De; where r, s € Q. Here D > 0 is a positive square-free integer.

The proof of Proposition 2 can be done in complete analogy to the calculations of [13,
pp- 84-87]. The main difference is that one has to apply in this context the particular multi-
plication rules in RZ,, i.e. e% = | instead of applying e% = —1 when adapting the calculations to
the context of RZ,. Hence, we omit it.

Remark. Since R(7) is a submodule of the free Z-module of the integral numbers from
Qle1v/D1, R(7) is also free. Since R(t) # Z one can readily conclude that R(7) has rank 2,
i.e. R(7) is a lattice in RZ,.

3. Lattices in R” closed under Clifford and Cayley algebra multiplication

In this section we present a class of lattices in R” that are closed under the multiplication
induced by Clifford algebras CI), ; or by Cayley algebras. Here we will call Cayley algebras, the
algebras obtained by the Cayley—Dickson process.

Let A be a real finite-dimensional algebra with identity 1 and o be an involutive automorphism
of A. First we introduce

Definition 3. Let G be a group with n elements and F' be a cochain in G. Further, let wy, ..., @,
be some R-linearly independent vectors from R”. Let

Q2 =TZw + -+ Ty

be the associated lattice embedded in RrG. Then we say that £2 is stable under the involutive
automorphism o defined in RrG if 0 (£2) = £2.

In the vector space A = A @ Av, where v is a symbol notation that represents the second copy
of A, a new multiplication is defined by

(a+bv)-(c+dv)=a-c+abo(d)+ (a ~d+ba(c)) Y
for a fixed a € R*. Furthermore, a new involutive automorphism is introduced by
o(a+bv)=o0(a)— o).

We say that A is obtained from A by the Clifford process. In the paper [2] we have shown that if
A is an RpG algebra then Aisan R ﬁé algebra with G=0G x Z». The cochain F is obtained
from the cochain F.

Suppose now that 2 = Zw| + - - - + Zw,, is again an n-dimensional lattice in R” embedded in
RrG, where G is a group with n elements. Further, let us consider the lattice Q=02+ Rv=
Z(w1,0) + - - - + Z(wy, 0) + Z(0, w1) + - - - + Z(0, w,) embedded in Rﬁé.

Then we can establish
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Theorem 1. The lattice §2 is closed under multiplication induced by Rr G and stable under the
involutive automorphism o if and only if the lattice $2 is closed under multiplication induced by
R G and stable under the involutive automorphism ¢.

Proof. If we consider the lattice 2 = £ + 2v embedded in R ,;G, then we can introduce the
product of two elements of £2 in the following way

(a+bv)~(c+dv):(a'c—i-otba(d))—i—(wd—i—bo(c))~v fora,b,c,d € £2.

If o(x) €82, Vxe 2 and x - y € 2, Vx,y € £2 then (a + bv) - (c + dv) €2 and 6 (a + bv) =
o(a) — o (b)v € £2. The converse statement is obvious. [

Corollary 1. For any n € N we can define a lattice in R?" that is closed under the multiplication
and the involutive automorphism of the Clifford algebra Cl,, , for any p,q € No with p+q =n.

Proof. Lattices in R? closed under multiplication and conjugation induced by complex numbers
or by the group algebra of Z; are known. Proposition 2 completes the classification of lattices
in R? that are closed under multiplication and conjugation by both possible R zZ, algebras.

As shown in [2], every Clifford algebra CI,, ;, can be obtained by the Clifford process from
these algebras. Therefore, the statement follows. O

It is therefore not surprising that the lattices in CI,, ; which have Clifford multiplication are
those whose components stem from multiquadratic number fields or conjugated ones. This is
due to the fact that all the lattices in R? which are closed under multiplication and conjugation
endowed with the two multiplicative structures C or RZ;, respectively, are those of the form
Z + Zz, with T € Z[e;~/D only.

Remark. The preceding theorem has an analogue if we consider the Cayley—Dickson process.
This allow us to obtain, for example, closed lattices under the multiplication induced by the
octonions in R¥. The most popular example is the Eg-lattice considered for example in [4]. This
is the densest (non-associative) integral domain in the octonions which contains all the eight
octonionic units, cf. [5].

4. Lattices with RZ!" multiplication

In this section we now discuss lattices in R"" (n, m > 1 arbitrarily) with R pZ" multiplication.
Lattices with complex, quaternionic, Clifford and Cayley multiplication fit within this general
framework as special cases of lattices in R2" (for m = 1, m =2, m arbitrary, respectively).

The simplest first essentially different case to those considered before, is the case where
G = Zs3. In contrast to the Cly >-multiplication, the three-dimensional vector space R3 is closed
under the RrZ3 multiplication. Let us first consider the simplest case where F' = 1. In this case
the multiplication is commutative and associative. The canonical examples of three-dimensional
lattices §2 = Zw1 + Zwy + Zw3z which have an RZ3-multiplication turn out to be lattices with
generators whose real components stem from cubic number fields.

We prove
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Proposition 3. Suppose that w; (i = 1,2, 3) are R-linearly independent vectors in R3 of the form

w; = a(()')eo —i—af’)\/ﬁel —i—ag)\/3 D2 ey (1)

where the elements a(() ), ail), aé D are some integers and where D is a cubic-free positive integer.

Then the associated lattice 2 = Zw| + Zwy + Zws has an RZz-multiplication.

Proof. If we multiply two generators w; and w; with each other then we again get a number of
the same structure:

wi o) = (a(()l)a(()])+a1’) (’)D+a(’)a(1)D)eo+(a(’)aij)jta(’) (’)+a(l)a(l)D)«/B
+( (@) (J)+a(l) (/) (z) (/)) / 2, 2)

after having applied the multiplication rules in RZj3. This element can belong to §2 or not.
In fact, the equations

a)l—a eo—i—a(l)«/ﬁel—}—a v ez,
g—a(()2)e —i—alz)«/_e +a(2)\/ e
w3 = a(()3)eo +a(3)«/561 +a§3)v D2 ey

can be re-written in matrix form as follows

w] €l
w) | =A| e
w3 €3

with

o aVYD (VYD
A=|a? 29D 2V
a(()3) a?)f/ﬁ af) VD2
Since the generators w1, wy, w3 are supposed to be linearly independent, the matrix A is invert-

ible. As a consequence the basis elements e, e1, €2 of RZ3 can uniquely be expressed as a linear
combination in terms of wy, @y, w3 of the following form:

(0) ) )
ey = I tA(b b2 a)2+b3 0)3),
VD2
el = IetA (b(l)a) + b(l)a)z + b(l)w3)
9D

ey = (bQ)w + b(z)a)z + b(z)wa)

det A

where the elements b(l.i) (j=1,2,3,i =0, 1,2) are uniquely defined integers.
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Consider the subset .4 of £2 formed by the elements of the form
det Aow; +det ABwy +detAyws, «, B,y €Z.
Then a$2 C §2 forall a € A. This proves that a lattice of the form (1) has RZ3 multiplication. O
As a direct consequence of these observations we readily obtain

Corollary 2. Let 2 = Zw; + Zwy + Zw3 be a lattice with generators of the form
w; = a(()i)eo —}—a?)%el —i—ag)\/3 D2es, i=1,2,3,
where a§i) €Zforalli=1,2,3and j =0, 1,2 and where D is a cubic-free integer. Let

a(()l) afl)f/ﬁ aél)@ D?
A=|d® YD 2D
& OVD OYVDE

Ifdet A = =1, then $2 is closed under the RZ3 multiplication.

Remark. In the other cases where det A 7 +1, the lattice §2 contains non-trivial subrings A C £2
such that a2 C §2 forall a € A.

These lattices can be regarded as the natural analogues of lattices with complex multiplication
(whose generators stem from imaginary quadratic number fields) within the framework of cubic
number fields over Q.

More generally, we obtain

Proposition 4. Let n be an arbitrary positive integer and F be an arbitrary integer valued
cochain in Z,,.

Let 2 = Zw1 + - - - + Zwy, be an n-dimensional lattice embedded in the twisted group algebra
RrZy,, where the generators are each of the form

w; = a(()i)eo + aii)\/n De+---+ ar(jll vV D=1 en—1

where a a are integers and D is an n-power free integer, that means each prime ap-

caay”y
pears at most n — 1 times in the prime factorization. Then §2 has an R Z, -multiplication. Let

" VYD oV YT
@ @YD @ YD

(@) @)
(U

a(()") ain)\"/D a,(zn_)lvn D1

IfdetA = :I:y%, where S 1= Zl'-':_ll i, then 82 is closed under the R pZ,-multiplication.
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Proof. Suppose that the generators of §2 are of the form

w; —aO eo+a§l)\/—e + - +a(l) D'=le, 4 3)

fori =1,...,n. Applying the product definition of RrZ,,, forming the product of w; with an-
other element of the same form, say with

wj —a(()j)eo—i-a(j)\/ﬁel—i- +a(j) D le,_q,

turns out to be again

w;-wj = |:a(()i)a(()j) + Z F(ep, eq)ag)a;j)D:|eo

p.q>0,p+q=n
+ Z F(ep, eq)a(’) W) 4 Z F(ep, eq)a;})a;})D] VDej
ptq=1 p.q>1,p+q=n+1
+ |: Z F(ep, eq)a(’) W)y Z F(ep, eq)ag)a;])D] vV D2ey
p+q=2 P.q>2,pt+q=n+2

+[ > Flepepala ‘“}Vm—lenl.

p+g=n—1

Under the assumption that F is integer-valued, the element w; - ; again has the form as in (3).
With the same reasoning as in the three-dimensional case, we can again conclude that the ele-
ments of the subset A formed by the elements

det AV DS ajw) +det AV DS apwn + - - - + det AV DS oy, i, ... 00 €7,

where §:= """, li , satisfy a£2 C £2. Hence, lattices of the above stated form have an RrZ,
multiplication. The second statement also now follows immediately. O

These are the simplest n-dimensional analogues of the class of lattices with complex multi-
plication within the context of the number fields Q[\"/B ] for arbitrary n € N. We see that the
structure of the RpZ,, algebras is indeed a very natural one to endow a lattice with components
from the number fields Q[ /D ] with a closed multiplication structure.

As mentioned previously one can endow lattices with components from multiquadratic num-
ber fields with a multiplicative structure when applying the Clifford or the Cayley—Dickson
process. One considers G = 7. Similarly, we can endow lattices with generators whose com-
ponents stem from multi-n-power fields of the form Q[/Dy, ..., &/D,, ] with a multiplicative
structure, when we take more generally G = Z!". This again can easily be verified by a similar
direct calculation.

Combining this observation with the statement of Proposition 4, one obtains:
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Theorem 2. Letk € Nandny, ..., ng,my, ..., my be some positive integers. Let Dinj), R D,(,:ljf)

be n j-power free positive integers for all j =1, ..., k. Suppose that Fy, ..., Fy are integer val-
ued cochains. Lattices with generators whose components stem from the algebraic field

Q[ nl/Dinl)’ o "\I/D’(;lll)’ e n{‘/Dink), ey ”\k/ Dr(r’llkk)]

have an R, Zy' x -+ x Rp, Ly multiplication.

5. Generalized Brandt-algebras

Directly related to the problem of lattice multiplication is the problem of the explicit de-
scription of integral domains in so-called Brandt-algebras. Quaternionic Brandt-algebras first
appeared in an early work of Brandt (1920), see [3]. Their study was intensively continued by
Fueter in the 1930s and 1940s, cf. [9,11]. Generalizations to the setting of Clifford algebras
appear for instance in works of Elstrodt et al. (1987), see [6,7] (however, under a different view-
point) and more close to the spirit of Brandt and Fueter in [14,15].

For convenience, let us recall the definition and some of the fundamental properties. Following
[15, Chapter 2.7], every element

X =x0+x1e1+---+xu€,
from the so-called paravector space R @ R” = R"*! satisfies a quadratic equation of the form
x-x—Skx)x+ N(x)=0.
Here - is the Cly , multiplication operation as defined in the introductory section. Furthermore,
S(x) =2xp9 and N(x) = Z?:o xi2 denote the trace and the norm of x, respectively. Using the
_Clifford algebra conjugation anti-automorphism which is defined for each a, b € Cly ,, by (ab) =
ba and ¢; = —e; fori =1,2,...,n, one can also write S(x) =x +x and N(x) =x - X = Xx.
Now we introduce
Definition 4. A subset Bg of R” is called a rational Cly , Brandt-algebra if

Sa+b),Na+b),S@a-b),Na-b)eQ, Va,be Bg.

A subset Bz, of R” is called an integral Cly, Brandt-algebra if S(a + b), N(a + b), S(a - b),
N(a-b)eZforalla,be By.

In the case Cly,» we are dealing with the classical quaternionic rational and integral Brandt-
algebras, respectively.
As shown in [15], the latter conditions are satisfied if and only if

S(a), S(b), N(a), N(b),2(a,b) € Z.

Here (a, b) :== Y a;b; denotes the Euclidean scalar product on the paravector space R & R”.
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In the quaternionic case, the integral Brandt-algebras coincide precisely with the four-
dimensional lattices which have quaternionic multiplication. In the more general case, they
coincide with the lattices in R”*! that have paravector multiplication. This is proved in [14,15].

An interesting question is to analyze how one can extend the theory of Brandt-algebras to the
more general context of RrG algebras and how these generalizations are related to lattices with
R G multiplication that we introduced in the previous section.

In this paper we focus on the simplest case G = Z3 exclusively. The more general cases will
be discussed in our follow-up work.

For simplicity let us denote in all that follows the integer F'(e;, e;) by F;;. We start by noting

Lemma 1. Each element x = xgeq + x1e1 + x2e2 € RpZ3 satisfies the cubic equation
x> —T(x)x> + S(x)x — N(x)eg =0

where for x3 we mean x* - x. Here, T is a linear form called the trace, S is a quadratic form and
N is a cubic form called the norm. These expressions are uniquely defined by T (x) = 3xp, S(x) =
3)63 —d&x1xp and N (x) = XS +x13F11F21 —i—x;FzzFu — x0x1x28 where § = F1p + F»1 + F11 F2».

Proof. Consider two elements of RrZ3, say
X =xpep + x1€1 + x2€2,
Yy = Yoeo + yie1 + yzez.
Multiplying them with each other in terms of the R zZ3; multiplication one obtains
x -y =(xoy0 + Frax1y2 + Fa1x2y1)e0 + (xoy1 + x1y0 + Fax2y2)e;
+ (xoy2 + x2y0 + Frix1y1)ez.

In particular we get

x? = (xg + (Fia + Fy)xix)eo + (2x0x1 + Fooxg)er + (20012 + Fiixg)ea.

Furthermore,
KX=x?.x= [XS +3(Fi2 + Fa1)xox1x2 + Fio Fapx3 + F11F21x?]60
+ [3x§x1 + (Fi2 + Fa1)xixa + 3Fapxox3 + F11F22x12x2]61
+ [SX(%)Q + (F12 + le)mxg + 3F11Xox12 + F22F11X1X§]ez
for all x € RpZs3. After applying direct calculations we obtain

3= T)x*+ S(x)x — N(x)eg =0

with the uniquely determined expressions 7 (x) = 3xp, S(x) = 3x§ —dx1x2 and N(x) = xg +
x13F11F21 +x§F22F12 — Xxox1x20 where § = Fip + Fo1 + F11 Fn. O
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The expression T (x) evidently provides a generalization of the trace expression. The expres-
sion N (x) generalizes the norm to the context of R 73 algebras. Notice that N(ep) =1, N(e) =
F11F>1 and N (ez) = F»; F15. Cubic algebras with N (x) = 0 were studied by S. Walcher in [19].
As we will show next, this expression serves as invertibility indicator, similarly as the classical
norm expression does for the case of Clifford algebras:

Lemma 2. An element x = xpeq + x1e1 + x2e2 € RpZs3 has a left inverse in ]RFZ_3 if and only
if N(x) # 0. In this case, the RpZs-left inverse element has the form x~' = ﬁ where the
RFpZ3-conjugate of x is

F=x>— Tx)x+Skx) = (x(% — F11F22x1x2)e0 + (Fzzx% — xoxl)el + (Fllxlz — xoxz)ez.

Proof. It is enough to note that (x2 — T(x)x 4+ S(x))x = N(x)eg and we can illustrate the al-
gebraic meaning of N(x) as a determinant of a matrix. Indeed, an element x € RrZ3 has a left
inverse if and only if there exists an element y € RrZ3 such that y-x = 1. This can be determined
as solution to the linear system of equations

x0y0 + Fiay1y2 + Fa1y2x1 =1,
YoX1 -+ y1xo + Fay2x2 =0,
Yox2 + xoy2 + Friy1x1 =0.

This system has a solution if and only if the expression

xo Fioxa Fx
det | x1 X0 Frpoxy | =Nkx)
x2 Foxp o xo

differs from zero. 0O

2

Remark. Notice that for elements x € RrZ3 satisfying the equality x> - x = x - x> we have that

X -x =x-X = N(x). In this case, the left inverse coincides with the right inverse.

It remains to analyze the role of the other expression S(x). It turns out to be a dual counterpart
of the generalized trace function whenever the algebra R rZs3 is associative.
More precisely, we obtain

Proposition 5. If R g Z3 is an associative algebra then for each x € RpZ3 we have S(x) = T (X).

Proof. If the algebra RpZj; is associative then F(x,y)F(xy,z) = F(y,2)F(x,yz2),
Vx, v,z € Z3. Therefore, F11 F21 = F11F12 and Fjp = F>1. On the other hand, Fip Fop = F F1q
and F1p = F F11. As a consequence we obtain 6 =3F; and S(x) =T (x). O

Using this approach we want to give criterions for the closure under conjugation and multi-
plication of a given lattice in RrZ3. To proceed in this direction let us consider two elements
7 =Xxpeo+x1e1 +x2e3 and w = ypeg + yie1 + yz2ex from R pZ3. Next we introduce the following
bilinear forms:
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=x0y0 + Fiox1y2 + F21x2y1;

z, w)
Yo =Xoyo + (8/3)(x1y2 + x2y1);
)
)

S

(
(z,
(z, w)1 = x0y1 +x1y0 + F20x2y2;
(z, w)2 =xoy2 + x2y0 + Frixiy1.
Now we can write the product of the two elements z and w in the form

zw = (z, w)peo + (z, whrer + (z, w)zen.

If RrZs3 is associative, then as mentioned in the proof of Proposition 35, it follows that F»; =
F1p = Fi1 Fy;. In this case we thus obtain (z, w)g = (z, w)o.

Lemma 3. Suppose that 2 = Zw + Zw> + Zws3 is a three-dimensional lattice embedded in the
algebra RpZ3. Assume that T (w;), S(w;) € Z for all i = 1,2, 3 and that 3{w;, a)j)g € Z for all
i,j=1,2,3;i+j. Then z> € 2 ifand only if 7 € 2.

Proof. Let us consider an element from £2, say z = aw| + bwy + cw3 with a, b, ¢ € Z. Then

T(z) =aT (w1) +bT (w2) 4+ cT (w3);
S(z) = a*S(w1) + b2S(@2) + 2 S(w3) + ab(T ()T (@) — 3{w1, w2)))
+ac(T(a)1)T(w3) -3 <wi,w; >g) + cb(T(a)3)T(a)2) —3 < w3, w >8).

In view of the relation Z = z2 + T'(z)z — S(z) we obtain the desired result. O

Now we give a necessary and sufficient condition for a class of lattices in RrZ3 to be closed
under multiplication and under the conjugation. To do so let us suppose that w1, @z, w3 € R3 are
R-linearly independent vectors with integral coordinates with respect to the canonical basis, i.e.

w; = w(()i)eo + wii)el + wg)ez (i=1,2,3).

Let £2 = Zw + Zwy + Zw3 be the associated lattice in RrZ3. Further, let M = (my;) be the
3 x 3 matrix where the kj-entry is defined by m;; = w,((’jl forall k, j = 1,2, 3. Let x, z be two
arbitrary points of the lattice. Further, we denote by X = (x1, x2, x3)T € R? the vector with the
coordinates x; = (z, x)x—1 (k = 1,2,3) in the standard basis. Finally Y = (y1, y2, y3)T eR3
denotes the vector with the coordinates y; = (z, z)x—1 in the standard basis.

Using these notations we formate the following
Lemma 4. Let 2 = Zw; + Zay + Zws be a lattice in R3 embedded in RpZ; generated by
elements with integral coefficients in the standard basis. Let x, z be two arbitrary lattice points.
Then z - x € 2 if and only if M~ X is an integral vector. Moreover, if

T(w), S(wi), 3w, )y €L, Vi, j=1,2,3,i# ],

then 7 € 2 if and only if M~Y is an integral vector.
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Proof. Since w;, wy, w3 are three linearly independent vectors from R3, we can consider the
matrix M that represents the change of the basis (w;);=1,2,3 to the standard basis (¢;);=1,2,3. The
vector M~ X expresses the components of z - x with respect to the basis (w;)i=1,2,3. Finally if
M~'Y has only integral components then z> € £2. Applying Lemma 3 allows us to conclude that
ze. O

A meaningful generalization of a rational Brandt-algebra to the context of RrZ3 can be in-
troduced as follows:

Definition 5. A subset Bg of RrZs3 is called a rational R zZ3 Brandt-algebra if for all elements
a,be By

T(a+b),Sa+b),Na+b),T(a-b),S(a-b),N(a-b)eQ.
Definition 6. A subset Bz, of RrZ3 is called an integral Brandt-algebra if all a, b € Bz, satisfy
T(a+b),Sa+b),Na+b), T(a-b),Sa-b),N(a-b)eZ.

Remark. If moreover all x € By \ {0} satisfy N(x) # 0, then Bz is an integral domain in the
rational Brandt algebra Bgy. This is then the division ring of Bz.

In the associative case we have S(x) = T'(x). Then the conditions S(a), S(b), S(a + b),
S(a-b) e Q (respectively in Z) can be re-expressed equivalently by T'(a), T (b), T (a + b),
T (a - b) € Q (respectively in Z). So, we may establish

Proposition 6. Two elements y = yoeg + y1e1 + yre2, x = xpeo + x1e1 + x2e2 € RpZs belong
to an integral Brandt-algebra in RrZs, if and only if the following expressions
T (), S»). N»). T(x), S(x), N(x), 3(x, y)o. 3(x, y),
3(x, Y5 — 8(x, )i, ¥,
(x, Yo (x, ) 16x, )28 = (06, )5 + (6, )T Fii Fai + (x, y)3 o Fia),

3 3
3 xiyixi + yi) Fii Fioip = 8 > (xixj ik + yiyjxk)
i=1 i, k=i j#k,i#k

are all elements in 7.

Proof. By a direct calculation we may deduce that T (x + y) = T(x) + T'(y) and that indeed
T (xy) = 3(x, y)o. Furthermore, S(x +y) = S(x) + S(») + T(x)T (y) — 3{x, y)g and S(xy) =
3({x, y)% —&(x, ¥)1{x, y)2. For the norm of the sum and the product of x with y we obtain

3 3
Nx+y)=N@+NO+3Y xiyiCi+y)FiFmy =8 Y (6ixjye+ yiyixe)
i=1 ijk=1,j#k
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as well as

N(xy) = —(x, y)olx, y)1(x, ¥)28 + ((x, )3 + (x. V)T Fii Far + (x, y)3 Fao F2). m)

Examples of integral domains in rational Brandt algebras of RrZ3 that are closed under mul-
tiplication and conjugation are some of the prototypes of the three-dimensional lattices that are
described in Section 4.

Theorem 3. Let 2 = Zw) + Zws + Zw3 be a lattice in RpZ3. Suppose that the generators have
the form

a)—w1 eo+w2)\/561+w()\/ ey (i=1,2,3)

with wj-i) € Zfori, j =1,2,3 and where D is a cubic-free positive integer. Then 2 is an integral
domain. Let  be the matrix whose ij-entry is equal to w;;. If w or —w lies in SL(3, Z) then the
lattice $2 is closed under multiplication and conjugation.

Proof. Let us consider an arbitrary element from £2, say z = meg + nv/Dej + pm where
m, n, p are integers. (Note that the sum and the product of two elements of this type has this
form.) Therefore, T'(z) = 3m € Z, S(z) = 3m? — §Dnp € Z and N(z) = m® + n®DF; F>1 +
p3D2F22 F1o —mnpDS§ € 7. As a consequence §2 is an integral Brandt-algebra in RrZ3. More-
over, one can verify by a direct computation that the norm of any non-zero element of this lattice
is different from zero. Furthermore, the product of two arbitrary lattice elements turns out to be
zero if and only if at least one of the factors is zero. Hence, this lattice has no zero divisors. It is
thus an integral domain (in the more general sense admitting non-associativity).

Consequently every element has a left inverse. This is the inverse element if the algebra R r7Z3
is associative. Furthermore, in the associative case the matrix M defined before Lemma 4 is the
product of the diagonal matrix D = diag(1, v/D, JD? ) with an integral matrix o that has an
inverse which is an integral matrix if detw = +1 or detw = —1. However, for all x,y € £2,
their product in the basis e; can be represented by a column vector that can be expressed as a
product of the same diagonal matrix D with a column vector with integer elements. Thus, x - y
has integer components with respect to the basis (w;);=0,1,2 and £2 is closed for multiplication.
Since T (w;), S(w;), Vi €{0, 1,2} and (w;, cuj)g (i,j=1,2,3; i # j) € Z, we can conclude that
xeQforallxe 2. O
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