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Abstract

Let V be a finite dimension vector space. For a linear operator on V, f, D(f) denotes the restriction of
the derivation associated with f to the mth Grassmann space of V. In [J.A. Dias da Silva, Y.O. Hamidoune,
Cyclic spaces for Grassmann derivatives and aditive theory, Bull. London Math. Soc., 26 (1994) 140-146]
Dias da Silva and Hamidoune obtained a lower bound for the degree of the minimal polynomial of D(f),
over an arbitrary field. Over a field of zero characteristic that lower bound is given by

deg(Pp(p)) = m(deg(Py) —m) + 1.

Using additive number theory results, results on the elementary divisors of D(f) and methods presented
by Marcus and Ali in [Marvin Marcus, M. Shafqat Ali, Minimal polynomials of additive commutators and
Jordan products, J. Algebra 22 (1972) 12-33] we obtain a characterization of equality cases in the former
inequality, over a field of zero characteristic, whenever m does not exceed the number of distinct eigenvalues
of f.
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1. Introduction

Let [ be a field of zero characteristic and let V be a finite dimension vector space over [ such
that dim V > m > 2, where m is an integer. Let S, be the symmetric group of degree m. For
o € Sy, P(0) denotes the unique linear operator on the mth tensor power product of V, "V,
such that

PO) (v @n® - Quy) = Us—1(1) &® Vo-1(2) ®---® Vo1 (m)

forall vy, va,...,v, € V.
Let € be the alternating character on S, and consider the symmetrizer defined on "V by

1
T.=— Z e(o)P(0).

T oeSy

The mth Grassmann space of Vis A"V = T, (®™V).Forvy, v, ..., v € V,uy Ava A Ay
denotes T, (v Q V2 ® - - - ® vy,).

For a linear operator, g, on a vector space over [, P, denotes the minimal polynomial of g and
deg(Py) denotes its degree. The spectrum of g, i.e., the set of all eigenvalues of g in the algebraic
closure of [, is denoted by o (g).

We are going to use the well known fact that, for a simple structure linear operator, the degree
of its minimal polynomial is equal to the cardinality of its spectrum.

Let f be a linear operator on V. The derivation associated with f is the linear operator on
®"V,

fOIy® @Iy +Iy®@f® - Q@Iy+ - +Iy®Iy® - ® f.

The derivation associated with f commutes with T, [2, Section 3.2]. Hence, A™V is an invariant
subspace of the derivation associated with f. Let D(f) denote the restriction of the derivation
associated with f to A”V. In [1] Dias da Silva and Hamidoune obtained a lower bound for
the degree of the minimal polynomial of D(f), over an arbitrary field. Over a field of zero
characteristic that lower bound is given by

deg(Pp(y)) = m(deg(Py) —m) + 1. ey
Using additive number theory results, results on the elementary divisors of D(f) and methods
presented in [3] we shall obtain a characterization of equality cases in (1) (for zero characteristic),
whenever m does not exceed the number of distinct eigenvalues of f.

2. Additive number theory results

Let k and r be positive integers. By Qi , we denote the set of all strictly increasing maps

from {1,...,k} into {1,...,r}. If @ € QO , we use the k-tuple notation for «, that is, o« =
(a(1), ..., a(k)).
Let A = {a1, ay, ..., a,} be a finite non-empty subset of [, such that |[A| = r > m, where |A|

denotes the cardinality of A.
By A™ A we denote the set of sums of m distinct elements in A, that is,

m
A"A = lzaa(l‘) Lo e Qm’,} .

i=1
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In [1] Dias da Silva and Hamidoune obtained a lower bound for the cardinality of A™ A, for A

subset of an arbitrary field. In zero characteristic that lower bound is given by
[ A" Al = m(JA] —m) + 1. (2)

For subsets of Q it is well known a characterization of equality cases in (2).

Lemma 1 [6, Theorem 1.10]. Let A be a finite subset of Q such that |A| > m > 2. Then
A" Al =m(|A] —m) + 1
if and only if one of the following conditions holds:
(1) [A] € {m,m + 1};

(2) A is an arithmetic progression,;
(3) m =2, |A| = 4 and there exista € Q, q,q’ € Q\ {0} such thatq # q', ¢ + q’ # 0 and

A=a+1{0,9.9' .9 +4q'}.

Next lemma will be used to adjust the proof of Lemma 1 in [6] to the case of an arbitrary field
of zero characteristic. It is a straightforward generalization of Lemma 2.1 from [3].

Lemma 2. Let m > 2 and let V be an n-dimensional vector space over a field of zero character-
istic, F. Let r € N and let uy, ..., u, € V be distinct. Then there exists a basis {g1, ..., gn} of
V*, such that, for each j € {1, ...,n}, gj(u1), ..., g;j(u,) are r distinct elements in F and

{Zua(z‘) RIS Qm,r}

i=1

> A" {gjur),....gj )} =m@r —m)+ 1.

Proposition 1. Let | be a field of zero characteristic and let A be a finite subset of T such that
|A| > m > 2. Then

| A" Al =m(|A] —m) + 1
if and only if one of the following conditions holds:
(1) [A] € {m,m + 1};

(2) A is an arithmetic progression,;
(3) m =2, |A| = 4 and there exista € F, q,q" € F\ {0} such that q # q', ¢ + q' # 0 and

A=a+{0.q9.9".q+4q}
Proof. The sufficient condition’s proof is obvious, so we include only the necessary condition’s

proof. Suppose A = {ay,...,a;},wherer = [A| Z2m+2>4,and | A" Al =m(r —m) + 1.
Consider the vector space over (0,

W= {Zﬂiai (Bi € @}
i=1

and let n = dimg W < r. From Lemma 2 there exists a basis of W*, {g, ..., gu}, such that, for
t=1,...,n,

|{gl(a1)’ e gt(ar)” =r.
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Without loss of generality we assume that aj, . .., a, are ordered in such way that
gi(ar) < gi(a) <--- < gi(ar).

We consider the elements in A" A given by

bir=ar+- - +ap_1+a, i=m,...r,
bijj=ar+ - +am—jtai+ar—jpr+-- +ar,
—_—

m—j j—1
i=m—j+2,...,r—j+1, j=2,....,m

and the m subsets of A" A given by

Bi={i1:i=m,...,r},

Bj={bl-,j:i=m—j+2,...,r—j+1}, j=2,...,m.

Since g1(a1) < g1(a) < --- < g1(a,), we have

81bm,1) < g1(bmy1,1) < --- < g1(by1) (3)
and
81(hr—jt2,j-1) <81(bm—j+2,j) <81(bm—j+3,;) <+ <g1(br—j+1,j) <81 (bm—j+1,j+1)s
j=2,...,m. 4)
Hence the sets By, By, ..., B, are pairwise disjointand, from | A A| = m(r —m) + 1,itfollows
that
m
Am A= B;. 5)
j=1

Letje{l,....m—1}Fori=m—j+2,...,r— jlet

cGgj=a+--t+ap—j1+am—jy1+a +ar—jp2+---+ar.
—_—

m—j—1 j—1

Suppose j > 2. Since ¢; j € A" A and g1(bm—j12,j) < g1(ci,j) < g1(bm—j+1,j+1), it follows
thatc; j € B; \ {bm—j+2,j}-

Therefore, from g1(cm—j42,j) < g1(Cm—j+3,j) <--- < gi1(cr—j,j) and (4), we have ¢; ; =
bi41,;. Hence

Au—jy1+ai=ay_j+ajy, i=m—j+2,...,r—j, j=2,...,m—L
Next we prove that this is also true for j = 1. Form + 1 <i < r — 1 we have
81(bmt1,1) < gi(ci;1) < g1(bm2)

andsoci1 € B1 \ {bm,1, bi+1,1}. From g1 (cm+1,1) < g1(Cm+2,1) < -+ < g1(cr—1,1) and (3), we
have ¢; 1 = bj41,1, thatis, a,, + a; = am—1 + aiy1.
Thus we have proved that

Al — G =Am—jyl —Am—j, Jj=1,....m—1, t=m—j+2,...,r—j. (6)
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r>m+3
First suppose m = 2. From (6) we have

aiv1—ai=ax—ay, i=3,...,r—1. (7)

Since r > 5 and
gila +a) <gi(as+ar—1) < gr(arp1 +ap), t=2,...,r—1,

from (5) it follows that a3 + a,_1 € {a| + a,, ap + a,}.
Then a3 + a,—1 = az + a,, since, from (7), a; + a, = a + ar—1 # a3z + ar—1.
Hence, for m = 2 we have

aiv1 —ai=ar—ay, i=12,...,r—1.

Next we prove that this is also true for m > 3. Suppose m > 3. Fori e {I,...,m — 2},
taking j =i andt = m — i 4+ 2 in (6) we obtain d,,—;j4+3 — Am—i+2 = Am—i+1 — Qm—i-
Taking j=i+1and t=m—(G+1)+3<r—(@G+1) in (6) we obtain a,_;+3 —
Am—i+2 = dm—i — Am—i—1-

Then a,,—j 41 — am—i = am—i — am—i—1,fori =1,...,m —2.
Hence
aiv1 —ai=ay—ay, i=1,....m—1.

Taking j =2 and t = m in (6) we get a1 — am = Am—1 — Am—2 = az — aj.

Fori =m+1,...,r — l,taking j = landt =iin(6) wehavea;+| —a; = a,, — apm—1 =
ay —daj.

Thus

aiv1—ai=a—a, i=1,...,r—1,

that is, A is an arithmetic progression with first term a; and difference a; — a;.

r=m-+2

In this case, from (6), we have

Am—j+3 — Am—j+2 = Qm—j+1 — m—j, Jj=1,...,m— 1.
That is,

ar —ay, if miseven,

oty — ot = o — o1 = - - - e
m+2 — Am+1 m — dm—1 a3 —ay, if misodd

Il
e e,

and

az —ap, if miseven,
Am+1l — A = ap—1 —ap-2 =+ = ar — aj lfmlSOdd
Let

a3 —ap, if miseven,

a>» —ay, if miseven,
d= . .
ar —ay, if misodd.

/_
az —ay, if misodd, and d_{

If m = 2 then r = 4 and condition (2) or condition (3) holds accordingtod = d’ ord # d'.
Suppose m > 3. Since r = m + 2, we have
By = {bm,1, bmt1,1, bms2,1} = b1 +{0,d", d + d'}

and
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B2 = {bm,Z, bm+1,2} = bm,l + {2d + d/, 2d + Zd/}

Letz=aj+ -+ am-3+am-1+am~+am+1 =bu1+d+2d € N"A.

From g1(z) < g1(bm—1.3) it follows that z € By U B,.

Thend +2d' € {0,d’,d +d’,2d + d’, 2d + 2d’}. Analyzing the five possibilities we con-
clude that only d + 2d’ = 2d + d’ is admissible. Thend = d’ = ay — a1 and A is an arith-
metic progression with first term a; and difference a, — a;. O

3. Elementary divisors

Let m > 2, let [ be a field of zero characteristic and let V be a finite dimension vector space
over [ such that dim V > m. Let f be a linear operator on V. The following characterization of
the elementary divisors of D(f) is well known [4,5].

Let

X —p)", i=1,2,...,¢

be the elementary divisors of f, where i1, ..., ¢ € T are not necessarily distinct. Letky, ka, . . .,
k¢ be nonnegative integers such that

ki+k+---4+k=m and k <n;, i=12,...,¢ )
Letry, rp, ..., r¢ be nonnegative integers such that

2ri ki — ki), i=1,2,...,¢. )

Fors € {1,2,..., ¢} define

N
Ey =ky(ng —ks) —2rg+1 and & = ZEl-.
i=1

For q1, g2, . . ., q¢—1 integers such that

I <gs <min{és —2(q1 +---+gs-1)+5s -1, Eg1}, s=1....0-1, (10)
define

N, .. re gy qe—1) =6 —2(qi+q2+ -+ qe-1) + £ — L.
Lets € {1,2, ..., £}. For each positive integer j we denote by py ; the number of partitions of j

into not more than k; parts, each part at most ny — ks and define ps o = 1.
Foreachs € {1,2,..., ¢} let

o — 1, if g =0,
P Ps.ry — Psirg—1,  if rg > 0.

Theorem 1 [4,5]. The elementary divisors of D(f) are

) N1, esle,q1505q0—1)
(X — stus> , C1Cc2---Cp times,
s=1

when ki, ..., k¢, r1, ..., e, q1, ..., qe—1 Tun over the sets of nonnegative integers satisfying

(8)-(10).
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Remark 1. For ky, ..., kg, 71,...,70,41, ..., qe—1 satisfying (8)—-(10), we have

14
N1, g o) < Ee— L+ 1<) ko(ng — ko) + 1.
s=1

Remark 2. If we consider rj =---=r,=0and g1 =---=¢q¢—1 =1, we obtain ¢y = --- =
ce = 1and

¢
n0.....0.1,.... )= ki(ng—k)+ 1.
—_——— ——
¢ 1 s=1
It follows that, if k{ + - - - + kg =mand 0 < k; <n;,i =1,...,¢, then

¢
(X - Z ks
s=1

is an elementary divisor of D(f).

) Zf:l ks (ns—ks)+1

The following well known results can be obtained as corollaries from Theorem 1.

Corollary 1. Ifay, ..., a, € F are the distinct eigenvalues of f and
X —a)"i, j=12,...,8, i=1,...,r

are the elementary divisors of f then

r Si
a(D(f)) = Zm,-a,- mi+---+m, =m,m; € Ny andm,'<2n,~,j,i =1,...,r
i=1 j=1

Corollary 2. If f is of simple structure then also D(f) is of simple structure.

Corollary 3

L Ao (f) Co(D(f));
2. Ifdim V = |6 (f)| then A" (f) = o(D(f)).

For m = 2 there is a considerably simpler characterization for the elementary divisors of D(f).

Theorem 2 [2, Chapter 7, Theorem 2.6]. Let
X —u)h, i=1,2,...,¢

be the elementary divisors of f, where 1, . .., jug € F are not necessarily distinct. The elementary
divisors of the restriction of the derivation associated with f to A*V are:

1, if n;is even,

3, if njisodd, Isise

(X —2udk, k:2ni—3,2ni—7,...,{

and

(X — i — pp)" =20 1 < Cminfng,ng), 1<i<j <L
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4. Main result

Theorem 3. Let m > 2 and let V be a finite dimension vector space over a field of zero charac-
teristic, F, such thatdim 'V > m. Let f be a linear operator on V such thatr :=|o (f)| > m. Let
D(f) be the restriction of the derivation associated with f to N™V. Then

deg(Pp(r)) = m(deg(Pr) —m) + 1
if and only if one of the following conditions holds:
D r=m=dimV,;

2Q)r=m+1=dimV;
(3) The elementary divisors of f are

X —=b1,....X —bp_1, (X —bp)?,

where by, ..., b, € F are distinct;
@) r > m + 1 and the elementary divisors of f are

X —b;, sijtimes, i=1,...,r,
where by, ..., b, is an arithmetic progression with first term by, sy = - -+ = s,—1 = 1 and
Sr—m+42 = =8 = L;

(5) m = 2 and the elementary divisors of f are
X—b (X—-b-g? X-b-2g,

where b, q € Fand q + 0;
(6) m = 2 and the elementary divisors of f are

X—-b, X—-b—q, X—-b—q', X—-b—q—¢,

whereb € T, q,q' € F\ {0}, ¢ # q' and q + q' #0;
(7) m = 2 and the elementary divisors of f are

(X —b1)*, (X —b2)*,
where by, by € F and by * by.

Proof
Sufficient condition

(1), (2) and (6) In any of these cases f is of simple structure and dim V = |o(f)|. Then
(Corollaries 2, 3 and Proposition 1)
deg(Pp(s)) = lo(D(f )] = A" o (f)| =m(r —m)+ 1 = m(deg(Pr) —m) + 1.

(3) From Corollary 1, the eigenvalues of D(f) are the m elements

m
Gi=bm+ Y by, i=1...m
j=1
j#i
and (Remark 2) X —z1, X — 22, ..., X — Zm—1, (X — 2p)* are elementary divisors of
D(f). Since dim A"V = (mr:l) = m + 1, it follows that
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m—1
Ppipy=X -z [[(X =2

i=1
and deg(Pp(r)) = m + 1 = m(deg(Py) - m) + 1.
(4) Suppose b; = by + (i — 1)g, where g € F \ {0}. From Corollary 1,

r
G(D(f))z{mbl—i—q Zmi(i — 1) :mi+---+m,=mand 0<m; <sj, i:l,...,r}.
i=1

Sinces; =---=sp—1=land s,y =---=s85 =1,

-
{Zmi(i—l):m1+~--+mr=mand0<mi<si,i=1,...,r}

i=1
_ [y — mogen] o,
Then

m(m — 1) m(m + 1)
,mr —
2 2

U(D(f))={mb1+qz:ze[ ]ﬂN}:/\’"c(f).

Since f is of simple structure, also D(f) is of simple structure and deg(Pp(r)) =
lo(D(f)] =rm —m? + 1 =mdeg(Py) —m? + 1.
(5) From Theorem 2 the elementary divisors of D(f) are

(X —2b—¢q)%, X—-2b—2q, X—-2b—2q, (X—2b-3q)>

Then Pp(s) = (X —2b—2¢)(X —2b —q)*(X —2b —3¢q)> and deg(Pp(s) =5=

2deg(Pyr) — 3.
(7) In this case Pp(r) = (X —2b1)(X —2b2)(X — b1 — by)3 and deg(Ppp) =5=
2deg(Py) — 3.

Necessary condition

Suppose deg(Pp(f)) = mdeg(Py) — m?+1.Letai, ...,a, € F (where r > m) be the dis-
tinct eigenvalues of f and let

X —a)hi, j=1,2,...t, i=1,...,r

be the elementary divisors of f, where, for each i, n;:=n; 1 > n;2 > --- > n; ;. Then Py =
(X —ap" - (X —ap)".

Consider the Q-vector space, W = {ZLI Bia; - Bi € @}. Let d be its dimension and let
{g1, ..., gq} be abasis of W* satisfying the conditions in Lemma 2, for the distinct elements in
W,ai,ap,...,a.

From Lemma 2, g1(ay), g1(a2), ..., g1(a,) are distinct rational numbers. Without loss of
generality we assume that ag, ap, . .., a, are ordered in such way that

g1(ar) < gi(ax) < --- < gi1(ar). (11)

We consider two cases: r > m + 1 and r = m.
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Dr>m+1
As in the proof of Proposition 1 we consider the m subsets of W given by

={aq1+---+ap-1+a :i=m,...,r},

Bj— ar+---+am—jta+ar—jp2+---+

ar:i=m—j+2,...,r—j+1¢,
— —
m—j j—1
j=2,....,m
Forj=1,...,mlet¢; and @; be, respectively, the minimum and the maximum of g;(B;), that
is,

o1 =gi1(a1) +---+ gi1(am),
D1 = gi(ar) + -+ g1(am—1) + g1(ar),

¢j=gi(a) +---+g1am—j) +g1@m—j2) + g1(ar—j12) +--- + g1(ay),

m—j

j—1
j=2,....,m

’

D =gi(a) +---+giam—j) +g1ar—j+1) +g1(ar—j42) +--- + g1(ay),

m—j

j—1
j=2,...,m.
As we have seen in Proposition 1, ¢1 < @1 < ¢pp < P2 < -+ < ¢y < Dy

Hence the elements in the disjoint union U'/'.Ll B are m(r —m) + 1 distinct eigenvalues of
D(f), with associated elementary divisors

mel N\ Tr =D =1)+1
(X—ai—Zak> , l=m, ..., T

k=1

m—j p S =D+, 2 (k= D+ = D) +1
S ¥ a ,

k=1 k=r—j+2

i=m—j+2,...,r—j+1, j=2,....,m

Let 7 (X) be the product of these elementary divisors. Then

m—1
deg(t(X)) = (r —m + 1) <an —m+ 1) +Zn,
k=1
m r—j+l1 m—j

+Z Z an+ Z ng+n; —m+1

i=m

j=2i=m—j+2 = k=r—j+2
m—1
=(r—m) Y ng+deg(Py) + (—m + )(rm —m* + 1)
k=1

(r—m—l)z an-i- Z i | + D (deg(Pf) = n—jy1)
=2

k=r—j+42 j=2



502 C. Caldeira / Linear Algebra and its Applications 424 (2007) 492-509

m—1

=@ —m—1)> ng+mdeg(Py) + (—m+ D)(rm —m* + 1)
k=1

+(r—m—1)z an—l— Z
j=2 \(k=1 k=r—j+2

Since n; > 1, for all i, we have

deg(t(X)) = r —m — 1)(m — 1) + mdeg(Py) + (—m + 1)(rm — m?* + 1)
+(r—m—1)(m —1)?
> mdeg(Pyr) — m?+ 1.

From deg(Pp(f)) = mdeg(Py) — m? + 1 it follows that Pp(f) = t(X) and

m
o(D(f) =B
j=1
Suppose that ny > 2 or ¢ > 2 for some £ € {1, ..., m — 1}. Then

m—
¢ =2ag+ Z aj € o(D(f)).
j=1
Jj#EL
Since
m—1 m

g1(0) = gia) + Y gi(a) < Y gi(a) = i,

i=1 i=1
we obtain a contradiction with (12).
Suppose that ng > 2 orty > 2, forsome £ € {r —m + 2, ..., r}. Then

d =2ay + Z aj € o(D(f))

j=r—-m+2
j#t
and, from
r r
ad=gi@)+ Y, g@)> Y gq@)=9
Jj=r—m+2 Jj=r—m+1

we obtain a contradiction with (12).
Hence

nj=t;=1 for ief{l,.... m—1}U{r—-—m+2,...,r}h

12)

(13)

From [oc(D(f)| =m(o(f)l—m)+ 1< | A" o (f)] and Ao (f) C o(D(f)) we conclude

that
a(D(f)) = A"o(f)
and | A" o (f)l =m(jo(f)| —m) + 1.

(14)
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Then (Proposition 1) one of the following conditions holds:

@r=m+1:
If m > 3 then, from (13), wehaven; =, = 1,i =1, ..., r. Condition (2) holds. If m = 2
then r = 3 and, from (13),n; = n3 =t =t3 = 1.If np = 1o = 1 then condition (2) holds.
Suppose ny > 2 or t, > 2. Then, from (14) and Corollary 1, we have

2ap € o (D(f)) = {a1 + a2, a1 + a3, ay + az}.

Therefore 2a> = a; + a3 and o (f) is an arithmetic progression with first term a; and
difference ap — ay. If np, = 1 condition (4) holds.

Suppose ny > 2. From deg(Py) = ny + 2 it follows that deg(Pp(y)) = 2ny + 1.

Hence

Ppipy =X —ar —a)"* (X — a1 —a3)(X —ax —a3)™.

Since 2a; = aj + a3 and (X — 2a2)?273 is an elementary divisor of D(f) we get ny =
2. Suppose t» > 2. Then (X — a2)? and (X — ap)™2 are elementary divisors of f and
(X = 2ap)™2%! = (X — a; — a3)™211 is an elementary divisor of D( f) and this leads to
a contradiction. Then #» = 1 and condition (5) holds.

(b) o (f) is an arithmetic progression:
Let b and d be, respectively, the first term and the difference of that arithmetic progression.
Since b,b+d € W, then also d € W and g1(b), g1(b+d),...,g1(b+ (r — 1)d) is an
arithmetic progression in @ with difference g;(d) # 0 (from (11)).
Ifg1(d) > Otheng(b) < g1(b+d) <--- < g1(b+ (r — 1)d) and so, from (11), we have
a=b+ ({—1d,fori=1,...,r.
Ifgi(d) <Othena; =b+ (r —i)d,fori=1,...,r.
From (13) wehaven; =t;, = 1 foralli e {1,...,.m — 1} U{r—-m+2,...,m}.If fisof
simple structure then condition (4) holds.
Suppose f is not of simple structure. Then, from (13), it follows that r —m + 1 > m and
ng = 2forsomel € {m, ..., r —m + 1}.Let £ be the smallest elementin {m, ..., r —m +
1} such that ny > 2. Notice that £ <r —m + 1 < r — 1. Suppose £ < r — 2 and consider

m—1
X = E aj+ai, i=m,... ¢
Jj=1

m—2
yi:Za./—i-a,'—}-ar, i=L04+1,....,r—1; (15)
j=1
m—2
Ui:zaj—i—ag+a,~, i=m,...,r.
j=1

Since 81(xm) < g1(xm+1) < -+ < g1(xe) < g1(vm) < g1(Wm+1) < --- < g1(vy) <
g1(es1) < -+- < g1(yr—1) < ¢3, the elements in (15) are 2r — 2m + 1 distinct eigen-
values of D(f), notin | J_; B;.

From (13) and ny = --- = ny—1 = 1, we conclude that

X—=xi), i=m,...,0—1;
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(X —xe)";

X —y)M, i=L+1,...,r—1;

(X —vp)eti=l o i=m, i £ L
(X_Ul)zng—3

are elementary divisors of D(f).

Then
r—1
mdeg(Py) — m? +1>2f0—m+ng+ Z nl—l—Z(ng—{—n,—l)
i={+1 i=m
i#t
r—j+1
+2n[—3+2 Yoon
j=3i=m—j+2
r—1
= mdeg(Py) —m>+1>€—m —3+Zn,+Zn,+(r—m)(ng—l)
i={ i=m
m r—j+l1
+nz+2 Z
=3 i=m—j+2
= mdeg(Py) —m*> 4+ 1= £ —m —3+ (deg(Py) — £) + (deg(Py) —m + 1)
m  r—j+l1
+(r—m+1)ng—r+m+z Z
J=3i=m—j+2
For3<j<mwehavem —j<m—-3andr—j>r—m.So,ifi<m—j+1lori>
r—]+2thennl = 1. Hence Z;zrfiljﬂn, = deg(Py) —m and

mdeg(Py) —m? +1>2deg(Pf) —m —2—r+ (r —m+ Dng
+ (m — 2)(deg(Pr) —m)

= -m*+1>@—-m+Dng—r—m—m>+2m—2

= F—m+Dng<r—m+3.

From the last inequality, since we are assuming that ny > 2, we have r = m + 1 and,
from £ < r —2 =m — 1, we obtain a contradiction with (13). Then £ = r — 1 and, from
L <r —m+ 1, it follows that m = 2.

So, if f is not of simple structure then m = 2, n,_1 > 2 and

ni=t=1 forie{l,....,r}\{r —1}.

In this case,

xi=ar+a, i=2,....,r—1;

vi=a,_1+ta, 1=2,...,r
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are 2r — 3 distinct eigenvalues of D(f). Since n; = 1 fori # r — 1 we obtain

r

r—1
2deg(P) =32 mi+ Y (e t+nm—1)+2n1 =3
i=2 i=2

i#r—1

= 2deg(P)—3 > deg(P) —2+(r—2)(n,_1 — 1) +deg(Ps) —n,_1 —1+2n,_1 =3
=220 -0 —1).

Since r > m + 1 = 3, it follows that » = 3 and np = 2. From (13) we have t; = t3 = 1.
Suppose , > 2. Then (X — ap)? and (X — ap)™2? are elementary divisors of f and

X —a — az)z, (X —apy — a3)2, (X — Zaz)n“'H

are elementary divisors of D(f) associated to distinct eigenvalues. Hence 5 =

deg(Pp(y)) = 5 + na 2, whichleads to a contradiction. Then #; = 1 and condition (5) holds.
(©m=2r=4ando(f) =a+{0,q,q,q+q'},forsomea € F, q,q" € F\ {0} such that

q+#q andq+q' #0.

First we prove that f is of simple structure. From (13) ny = n4 = 1. Hence Py = (X —

a1)(X —a2)"* (X — a3)"*(X — aq4) and deg(Pp(yr)) = 2n2 + 2n3 + L.

On the other hand, since a» + a3 € A20(f) = o (D(f)) and

o(D(f)) = B1UBy={a) +a,a+a3 a1 +as4,a +as,a3 + as},

it follows that a» + a3 = a; + a4 and, from Theorem 2, we have

Ppipy=(X—a1—a2)" (X —a1—a3)" (X —ay—a3)"*" (X —ay—ag)"> (X —az —as)"™.

Then ny = n3 = 1 and f is of simple structure.

Fromo (f) =a+{0,q,q’,q + ¢’} it follows that

oa(D(f) = Ao (f) =2a+1q.9', g +q. 29 +q',q +24'}.
Let

X —a, stimes
X —a—gq, sptimes
X —a—gq', s3times

X—a—q—q', s4times

be the elementary divisors of f. From (13) we know that, at least, two of the numbers
S1, 82, 83, 84 are equal to 1.

If 51 = 5o = 53 = 54 = 1 then condition (6) holds.

Suppose s; > 2. Then2a € o (D(f)).Hence2q + g’ = 0org 4+ 2¢’ = 0. Theno (f) isan
arithmetic progression. Similarly, if s; > 2 forsomei € {2, 3, 4}, then o (f) is an arithmetic
progression. As we have seen in (b), condition (4) holds.

D r =m:
First we assume that f is not of simple structure. Then n; > 2 for some i € {1, ..., m}. Let ¢
be the greatest element in {1, ..., m} such that

ng=max{n; :i=1,...,m} > 2.
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Let
m
G=ag+ Y aj, i=1,....m.
=1
J#i
Z1, ..., Zm are distinct eigenvalues of D(f) and, since ng > 2, (X — 20)2i=1 =D+ anq
X =D+20n=2)+1
j#i
X —z) 77 L odi=1,....m, i+t

are elementary divisors of D(f). B
Then, for some monic polynomial g (X) € F[X]\ {0},
X (= DH2(ne=2)+1
m m i
Po(py = ¢(X)(X — z) == WD (X —2) 7% 06
i=1
il
and

deg(q (X)) = mdeg(Pp)—m>+1—deg(Pp)+m—1=Y > (nj—1)—(m—1)(2n;—3)
it
J#i
= (m—1)deg(Pp)—m>+m—> "> "nj+(m—1)(m—2)—(m—1)2n,—3)
itz
J#i

m

= (m—l)deg(Pf)—m2—Z(deg(Pf)—ni —ng)=2(m—Dng+m>+m—1
i=1
i+l

=deg(Py) —mng +m — 1. a7

We consider two subcases:

(i) n; = 1, foralli +£ ¢:
In this case deg(Py) =n;+m—1 and, from (17), we obtain 0 < deg(g(X)) =
(ng —2)(1 — m). Then ng = 2, deg(q(X)) = 0 and

m

Py =X -z’ [[(X = 20).

i=1

i
Supposet; > 2forsomeq € {1,...,m}\ {£}.Then,fori =1,...,m,y; = a4 + Z;":l aj

JFi

isaneigenvalue of D(f)and g1(y1) > g1(y2) > -+ > g1 (ym).Since o (D(f)) = {z1, .. -,
zm} and g1(z1) > g1(z2) > --- > g1(zm), it has to be z; = y;, for all i, which contradicts
ag #ag. Thent, =1,forallg € {1,...,m}\ {£}.
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Now suppose f; > 2. Then (X — ag)? and (X — ap)"t2 are elementary divisors of f. If
£ > 2 then

er:z(njfl)+(nZ*1)+(ne.2*1)+1
(X —z1) /7t
is an elementary divisor of D(f), with degree ny +ng 2 — 1 > 2 and we obtain a contra-
diction. Then £ = 1 and
(X — 22)2_’,”=3(n,-—1>+(n1—1)+<n1,z—1)+1

is an elementary divisor of D(f) with degree n1 +n;2 — 1 > 2. Once more, we obtain a

contradiction. Then#; = 1 foralli € {1, 2, ..., m} and condition (3) holds.
(ii) n; > 2, for some i +£ £:
Let k be the greatest element in {1, ..., m} \ {£} such that

ng=max{n; :i=1,...,6—1,£4+1,...,m}.

From the definition of k, ng > ny > 2 and deg(Py) < ng+ (m — 1)ng. Then 0 <
deg(qg(X)) < (m — )(ngy —ng + 1) and sony € {ng, ng — 1}. Suppose ny = ng — 1. Then
deg(g(X)) =0and

o(D(f) ={z1,...,2Zm}. (18)

If k < ¢ then
m—1
wy =ag+ay+-+am1 =2‘1k+zaj
j=1

j#k

is an eigenvalue of D(f) such that gi(w1) < g1(zm) < --- < g1(z1) and this contradicts
(18).

If k > ¢ then

m
wy=ar+tay+---+ay =2ak+Zaj
j=2
J#k
is an eigenvalue of D(f) such that g;(w2) > g1(z1) > --- > g1(z) and this contradicts
(18).
Then ny = ny > 2 and, from the definitions of k and ¢, we have k < £. Also in this case
m—1
wy=ar+ay+---+au_1 =2a; + Zaj

j=1

j#k
is an eigenvalue of D(f) notin {z1, ..., Z;x}. Therefore
0 =D 2)+1
(X —wy) J#k
divides ¢ (X) and, from (17), it follows that

m—1
Y = 1) +20mx —2)+ 1 < deg(P) —mng +m — 1,

j=1
j#k
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that is,
deg(Py) —ng —ny —m + 2+ 2n; — 3 < deg(Pr) —mng +m — 1.

Since ny = ng > ny,, we obtain mny < 2m and ng = ng = 2. Then m + 2 < deg(Py) <
2m.
If m =2 then Py = (X —a))*(X — a2)?, o(D(f)) = {2a1, 2a2, a1 + az} and (Theorem
2)(X —a; — ap)’isan elementary divisor of D( f). Sincedeg(Pp(r)) = 5S5wehave Pp(r) =
(X —2a)(X = 2a2)(X — a1 — a2)’. Suppose #; > 2. Then (X — aj)"1? is another ele-
mentary divisor of f associated with a;. Hence (X — 2a; )”’”2_1 is an elementary divisor
of D(f) and this contradicts n1 2 > 1. Then #; = 1 and, similarly, r, = 1. Condition (7)
holds.
Assume now thatm > 3.Supposen, = 2forsomeq € {1, ..., m} \ {{, k}. Thendeg(Py) >
m + 3. From the definitions of £ and k we have ¢ < k < £. Then

m—1
wy=ar+a+---+au—1 =2ar + Zaj

j=1

J#k
and
m—1
w3 =ag+ar+---+an_1 =2aq+2aj
j=1
i#q

are eigenvalues of D(f) such that g;(w3) < g1(w1) < g1(zZm) < -+ < g1(21)-
Therefore,
S = D22+ S = D422 41
X —wy) (X —w3) /74
has degree, at most, equal to the degree of ¢(X), that is,
2deg(Py) —2m — 2nyy +ng +ng — 2 < deg(Py) —mng +m — 1,

which contradicts deg(Py) > m + 3, since ny = ny = ny = 2 and n,, < 2.
So,forr=m >3 and ny > 2 it must be ny =ng=2and n; =1 fori € {l,...,m}\
{£, k}. Thendeg(Py) = m + 2 and deg(q(X)) = 1. Fromw; € o (D(f)) \ {z1, ..., Zm}, 1t
follows that g(X) = X — wj. Since

Z’j’-’;], (nj—D+2(ng—2)+1
(X —wy) J#
is an elementary divisor of D(f) it follows that £ = m and, from (16), we have

m—1

Pppy =X —w)(X —2)(X —zn)’ [ [(X —2)%.

i=1
i#k
Ifk <m—2,then
m—2
wyg=ar+ai+ -+ a2+ a, =2a; +am+2aj

j=1
J#k
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is also an eigenvalue of D( f), and again we have a contradiction, since g1 (w1) < g1(ws4) <
81(zm) < -+ < g1(z1).

Then k =m — 1. If m > 4 then ws = a3 + --- + am—2 + 2a,,—1 + 2ay, is also an eigen-
value of D(f) and, from g1(w1) < g1(zm) < --- < g1(z1) < g1(ws), we have a contra-
diction.

Thenm =3, =3,k =2, Pf = (X —a1)(X —a2)*(X — a3)? and

Poipy = (X — 233 (X — 2102 (X — 22)(X — wy).

Since (X —2a, — ag)2 is an elementary divisor of D(f), 2a> + a3z € {z1,23} = {a2 +
2a3, a1 + ay + a3}, and, once more, we obtain a contradiction.

Soif r = m and f is not of simple structure then conditions (3) or (7) hold.

For r = m it remains to consider the case f is of simple structure.

Suppose t; > 2 for some € € {1,...,m}. Then z1, ..., z, defined as before, are m distinct
eigenvalues of D(f),towhich X —z;, i =1,...,m, are associated elementary divisors. Then
mdeg(Py) — m?% 4+ 1 > m and this contradicts deg(Py) = m. It follows that ty = --- =1, = 1

and condition (1) holds. [
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