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Abstract

For a pseudovariety V of ordered semigroups, let S (V) be the class of sofic subshifts whose syntactic semigroup lies in V. It is
proved that if V contains Sl− then S (V ∗ D) is closed under taking shift equivalent subshifts, and conversely, if S (V) is closed
under taking conjugate subshifts then V contains LSl− and S (V) = S (V ∗ D). Almost finite type subshifts are characterized as
the irreducible elements of S (LInv), which gives a new proof that the class of almost finite type subshifts is closed under taking
shift equivalent subshifts.
c© 2006 Elsevier B.V. All rights reserved.

MSC: 20M07; 37B10; 20M35

1. Introduction

Given a finite alphabet A, a subshift of AZ is a non-empty compact subset of AZ that is closed under the
shift operation and its inverse. There is a natural bijection between subshifts and non-empty factorial prolongable
languages. The subshift is called sofic if the corresponding language is rational. Two subshifts are conjugate if there is
a shift commuting homeomorphism between them. It is an open question whether there is an algorithm for deciding if
two sofic subshifts are conjugate or not. The notion of shift equivalence is strictly weaker than conjugacy. For a long
time it was an open problem whether the two notions coincided or not [22,23]. The shift equivalence between sofic
subshifts is decidable [21].

Pseudovarieties of semigroups are useful for classifying varieties of rational languages, via Eilenberg’s
correspondence theorem [17]. A more refined classification of rational languages using pseudovarieties of ordered
semigroups was successfully introduced by Pin [30]. It is natural to ask which pseudovarieties define classes of sofic
subshifts closed under taking conjugate subshifts. To be more precise, for a pseudovariety V of ordered semigroups
let S (V) be the class of sofic subshifts whose (ordered) syntactic semigroup lies in V, where the syntactic semigroup
of a subshift is the syntactic semigroup of the corresponding factorial prolongable language. In this paper it is proved
that if V contains the pseudovariety Sl− of commutative idempotent monoids in which the neutral element is a global
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minimum, then S (V ∗ D) is closed under taking conjugate subshifts. After obtaining this result, the author has
recently observed that its unordered version can be easily deduced from Theorem 2.7 in [14], which is a theorem
about ζ -semigroups as recognition structures for sofic subshifts. Conversely, we prove that if S (V ∗ D) is closed
under taking conjugate subshifts then V contains LSl− and S (V) = S (V ∗ D).

One of the most successful approaches in the research on pseudovarieties of semigroups over the last two
decades involves profinite methods, namely through the study of free and relatively free profinite semigroups. The
elements of free profinite semigroups are sometimes called profinite words or pseudowords. They can be seen as a
generalization of ordinary words. The equational description of pseudovarieties by means of formal identities between
pseudowords established by Reiterman [36] is one of the seminal motivations for the profinite approach in the study of
pseudovarieties. The author developed in [15] some tools for using pseudowords in the study of subshifts. With them
he obtained some new conjugacy invariants. The present paper is a sequel to [15], namely through the exploration
of one of its main instrumental results, which appears here in Theorem 2.10. The exploration of links between the
theory of profinite semigroups and concepts from symbolic dynamics began with the papers [2,5]. Almeida also
established in [3] a connection between the minimal subshifts over a given alphabet and the corresponding free
profinite semigroup, which leads to a better understanding of the structure of such semigroups.

The search for conjugacy invariants in the syntactic semigroup of a sofic subshift is also performed in [10], where a
shift equivalence invariant is introduced, which defines a hierarchy of irreducible sofic subshifts, and it is proved that
the first level of the hierarchy is the class of almost finite type subshifts. This class has practical interest for coding
theory, and for several reasons it is a meaningful class above the class of irreducible finite type subshifts, as stated
in [10]; see [25, Chapter 13.1] and [8].

The paper is organized as follows. Section 2 is dedicated to preliminary definitions and results, some of which are
recovered from [15]. Section 3 contains the results describing which classes defined by pseudovarieties of semigroups
are closed under taking conjugate subshifts. Section 4 is dedicated to the characterization of some significant classes
of sofic subshifts defined by pseudovarieties in the way described in Section 3. We deduce a new proof of the
conjugacy invariance of the class of almost finite type subshifts by showing that they are the irreducible members
of S (LInv). Finally, in Section 5 we prove that the conjugacy invariants that we have established are also shift
equivalence invariants, with a proof depending on previous results about conjugacy invariance.

Our main reference for symbolic dynamics is the book of Lind and Marcus [25]. For background on classical
semigroup theory, rational languages and finite automata see for example [29]. For the study of pseudovarieties from
a profinite semigroup theory perspective, see the introductory text [4].

2. Preliminaries

2.1. Subshifts and sliding block codes

Let A be an alphabet. All alphabets in this paper are assumed to be finite. The semigroup of finite non-empty words
(or blocks) on letters of A is denoted by A+; the empty word is denoted by 1 and A∗ is the monoid A+

∪ {1}. The set
of words over A with length n is An . Let AZ be the set of sequences of letters of A indexed by Z. The shift in AZ is the
bijective function σA (or just σ ) from AZ to AZ defined by σA((xi )i∈Z) = (xi+1)i∈Z. We endow AZ with the product
topology with respect to the discrete topology of A. Note that AZ is a compact Hausdorff space. From here on compact
will mean both compact and Hausdorff. A shift dynamical system or subshift of AZ is a non-empty closed subset X
of AZ such that σA(X ) ⊆ X and σ−1

A (X ) ⊆ X . A factor of (xi )i∈Z is a finite sequence xi xi+1 . . . xi+n−1xi+n , where
i ∈ Z and n ≥ 0. If X is a subset of AZ then we denote by L(X ) the set of factors of elements of X . A subset K of
a semigroup S is factorial if it is closed under taking factors, and it is prolongable if for every element u of K there
are a, b ∈ S such that aub ∈ K . It is easy to prove that the correspondence X 7→ L(X ) is a bijection between the
subshifts of AZ and the non-empty factorial prolongable languages of A+.

A sliding block code G between the subshifts X of AZ and Y of BZ is a function G : X → Y for which there
are integers k, l ≥ 0 and a function g : Ak+l+1

→ B such that G(x) = (g(x[i−k,i+l]))i∈Z. We say that g is a
block map of G with memory k and anticipation l. The sliding block code G depends only on the restriction of g to
Ak+l+1

∩ L(X ). We use the notation G = g[−k,l]
: X → Y . If n ≥ l, m ≥ k and h : Am+n+1

→ B is defined by
h(a−ma−m+1 . . . an−1an) = g(a−ka−k+1 . . . al−1al), with ai ∈ A, then h is a block map of G with memory m and
anticipation n. In particular, one can choose a block map with equal memory and anticipation.
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It is well known [19] that a map G : X ⊆ AZ → Y ⊆ BZ between subshifts is a sliding block code if and only if
it is a continuous function such that G ◦ σA = σB ◦ G. Note that the identity transformation of a subshift is a sliding
block code, the composition of two sliding block codes is a sliding block code and the inverse of a bijective sliding
block code is a sliding block code. A bijective sliding block code is called a conjugacy. Two subshifts are conjugate
if there is a conjugacy between them. A conjugacy invariant is a property of subshifts that is preserved under taking
conjugate subshifts. See [25] for the definition and computation of ordinary conjugacy invariants like the zeta function
and entropy.

Given an alphabet A and k ≥ 1, consider the alphabet Ak . To avoid ambiguities, we represent an element w1 . . . wn
of (Ak)+ (with wi ∈ Ak) by 〈w1, . . . , wn〉. For k ≥ 0 let Φk be the function from A+ to (Ak+1)∗ defined by

Φk(a1 . . . an) =

{
1 if n ≤ k,
〈a[1,k+1], a[2,k+2], . . . a[n−k−1,n−1], a[n−k,n]〉 if n > k,

where ai ∈ A and a[i, j] = ai ai+1 . . . a j−1a j . It is easy to see that, if X is a subshift of AZ and i, j ≥ 0 are such that

i + j = k, then the restriction of the sliding block code Φ[−i, j]
k to X is a conjugacy between X and Φ[−i, j]

k (X ). A
one-block code is a sliding block code having a block map with memory and anticipation zero.

Remark 2.1. For every sliding block code G there are one-block codes G1 and G2 such that G1 is a conjugacy and
G = G2 ◦ G−1

1 .

Proof. For a sliding block code G = g[−k,k]
: X → Y let G1 be the inverse of the restriction Φ[−k,k]

2k : X →

Φ[−k,k]

2k (X ) and let G2 = g[0,0]
: Φ[−k,k]

2k (X ) → Y . �

A subshift X is sofic if L(X ) is rational. We use the term graph-automaton for an automaton such that all states
are initial and final. An automaton is essential if all states lie in a bi-infinite path on the automaton. One can see that
X is sofic if and only if L(X ) is recognized by an essential finite graph-automaton. We say that a graph-automaton
presents the subshift X if it recognizes L(X ).

A subshift X of AZ is irreducible if for all u, v ∈ L(X ) there is w ∈ A∗ such that uwv ∈ L(X ). Irreducibility
is a conjugacy invariant. A sofic subshift is irreducible if and only if it is presented by a strongly connected finite
graph-automaton [18].

A subshift of AZ is of finite type if there is a finite subset F of A+ such that L(X ) = A+
\ A∗F A∗. Note that

finite type subshifts are sofic. Moreover, the class of sofic subshifts is the smallest class of subshifts containing the
finite type subshifts and closed under taking the image of a sliding block code. This was how sofic subshifts were first
introduced by Weiss in [38], together with the first characterizations using finite automata and semigroups.

A subshift presented by a finite graph-automaton in which every letter acts on at most one state is called an edge
subshift. The subshifts of finite type are precisely those that are conjugate with an edge subshift. The following result
is well known (see [25, Theorem 2.1.8]).

Proposition 2.2. A subshift X is of finite type if and only if there is an integer n ≥ 0 such that whenever
uv, vw ∈ L(X ) and v has length greater than n, then uvw ∈ L(X ).

A state v of the minimal automaton of L(X ) is a K -state if there is x ∈ X such that the set of words labeling
a path from the initial state to v contains infinitely many words of the form x−n x−(n−1) . . . x−1, with n ≥ 1. The
Krieger cover of a sofic subshift X is the essential graph-automaton obtained from the minimal automaton of L(X )
by deleting all the states that are not K -states [28, Section 5].

The edge subshift obtained from the Krieger cover of X by labeling in its graphical representation different arrows
with different letters is called the Krieger edge subshift of X . Krieger proved in [24] that if X and Y are conjugate
sofic subshifts, then their Krieger edge subshifts are also conjugate. If the sofic subshift X is irreducible then its
Krieger cover has a unique terminal strongly connected component which is a graph-automaton presenting X [11].
This graph-automaton is named the Fischer cover of X .

2.2. Pseudowords

A compact semigroup is a semigroup endowed with a compact topology for which the semigroup operation is
continuous; if moreover the topology is zero-dimensional (that is, generated by open sets that are closed) then we say
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that it is a profinite semigroup. In [4] we can find other equivalent definitions of profinite semigroup. Note that finite
semigroups are profinite with respect to the discrete topology. Given an alphabet A, there is a profinite semigroup
Â+, in which A+ embeds as a dense subsemigroup, such that for every map ϕ from A into a profinite semigroup S,
there is a unique continuous homomorphism ϕ̂ : Â+ → S whose restriction to A is ϕ. The semigroup Â+ is, up to
isomorphism of compact semigroups, the unique profinite semigroup with this property; for that reason it is called the
free A-generated profinite semigroup. For constructions of Â+ see [4]. The definition of the free A-generated profinite
monoid Â∗ is similar to that of Â+. Considering the empty word as an isolated point of Â+∪{1}, we can view Â+∪{1}

as being Â∗. Elements of Â∗ are called pseudowords.
Let w be a pseudoword of Â+. For a ∈ A, we say that a is a letter of w if a is a factor of w. A prefix (respectively,

suffix) of w is a pseudoword u of Â∗ such that w = uπ (respectively, w = πu) for some π in Â∗. For n ≥ 1, let A<n

be the set of words of A+ with length less than n. If w ∈ Â+ \ A<n then w has a unique prefix and a unique suffix of
length n, denoted respectively by in(w) and tn(w) [1]. If w ∈ A<n then we define in(w) = tn(w) = w.

Let us consider within the alphabet A = {a1, . . . , an} with n elements the order in which ai is the i-th letter. Let
π ∈ Â+. For a profinite semigroup S, denote by πS the n-ary operation on S that maps (s1, . . . , sn) ∈ Sn to the image

of π under the unique continuous homomorphism ϕ : Â+ → S such that ϕ(ai ) = si . Note that if ψ : S → T is
a continuous homomorphism between profinite semigroups then ψ(πS(s1, . . . , sn)) = πT (ψ(s1), . . . , ψ(sn)). In the
absence of confusion we may drop the index S in πS(s1, . . . , sn) and write π(s1, . . . , sn).

The next lemma generalizes to pseudowords the way in which a word appears as a factor of a finite product of finite
words.

Lemma 2.3 ([5, Lemma 8.2]). Let X = {x1, . . . , xn} be an alphabet with n elements. Let A be also an alphabet.
Consider pseudowords w ∈ X̂+ and v1, . . . , vn ∈ Â+. Suppose that u is a finite factor of w Â+(v1, . . . , vn).
Then u is either a factor of some vi or w has a factor xi0 xi1 . . . xik xik+1 (with xi j ∈ X) such that u factors as
u = ui0vi1 . . . vik uik+1 where ui0 is a suffix of vi0 and uik+1 is a prefix of vik+1 .

The following lemma is easily proved using the fact that the closure of a rational language is open [4, Theorem
3.6].

Lemma 2.4 ([15]). If L is a factorial rational language of A+ then the closure of L in Â+ is factorial.

If s is an element of a profinite semigroup S, then sn! converges to the unique idempotent in the closure of the
subsemigroup generated by s; this idempotent is denoted by sω. Let e and f be idempotents of S. We say that an
element u of S is bounded by e and f (in this order) if u = eu f . An element is idempotent-bound if it is bounded by
some pair of idempotents.

In [1, Lemma 10.6.1] it is proved that Φk : A+
→ (Ak+1)∗ has a unique continuous extension Â+ → ̂(Ak+1)∗,

which we also denote by Φk . For a map g : A2k+1
→ B let ĝ be the unique continuous monoid homomorphism from

̂(A2k+1)∗ into B̂∗ that extends g. Denote by ḡ the map ĝ ◦Φ2k . The coding process described by g is extended to every
pseudoword of Â+ by ḡ:

Lemma 2.5. For all u, v ∈ Â+ we have:

ḡ(uv) = ḡ(u)ḡ(t2k(u)v) = ḡ(u i2k(v))ḡ(v) = ḡ(u ik(v))ḡ(tk(u)v). (2.1)

Proof. We first prove by induction on the length of v that for all u, v ∈ A+ we have

Φk(uv) = Φk(u)Φk(tk(u)v). (2.2)

If u ∈ A+ and a ∈ A, then

Φk(ua) = Φk(u) · tk+1(ua) = Φk(u) · tk(u)a = Φk(u) · Φk(tk(u)a),

which proves the initial step of the induction. Suppose that u, v ∈ A+ verify (2.2). Then, by the already proved initial
step,

Φk(uva) = Φk(uv) · Φk(tk(uv)a)
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= Φk(u) · Φk(tk(u)v) · Φk(tk(uv)a)

= Φk(u) · Φk(tk(u)v) · Φk(tk(tk(u)v)a)

= Φk(u) · Φk(tk(u)va).

This finishes the induction proof of the equality (2.2) for all u, v ∈ A+. Since A+ is dense in Â+ and Φk , tk
are continuous, equality (2.2) also holds for all u, v ∈ Â+. The proof that for all u, v ∈ Â+ we have Φk(uv) =

Φk(u ik(v))Φk(v) is similar. Since ḡ is the composition of the homomorphism ĝ with Φ2k , we have therefore proved
the two first equalities of (2.1).

It remains to prove that ḡ(uv) = ḡ(u ik(v)) ḡ(tk(u)v). We divide the proof into three cases. First, if u = u1u2 and
v = v1v2, with ui , vi ∈ Â∗ and u2, v1 ∈ Ak , then

ḡ(uv) = ḡ(u1 · u2v1v2)

= ḡ(u1i2k(u2v1v2)) · ḡ(u2v1v2)

= ḡ(u1u2v1) · ḡ(tk(u)v)

= ḡ(uik(v)) · ḡ(tk(u)v).

If u is a word of A+ with length less than k, then uik(v) has length less than 2k, thus ḡ(uik(v)) = ĝ(1) = 1 and
ḡ(uv) = ḡ(tk(u)v) = ḡ(uik(v)) ḡ(tk(u)v). The case where v is a word of A+ with length less than k is similar. �

Given a subshift X of AZ, let Mir(X ) be the set of pseudowords whose finite factors belong to L(X ). We call
Mir(X ) the mirage of X in Â+. Note that Mir(X ) is a union of J -classes. We have L(X ) ⊆ Mir(X ). In general
Mir(X ) and L(X ) are different, when X is sofic [15].

Lemma 2.6 ([15]). Let G = g[−k,k]
: X → Y be a sliding block code. Then ḡ

(
L(X )

)
⊆ L(Y) ∪ {1} and

ḡ(Mir(X )) ⊆ Mir(Y) ∪ {1}.

Lemma 2.7 ([15]). Let G = g[−k,k]
: X ⊆ AZ → Y ⊆ BZ be a conjugacy and let G−1

= h[−l,l]
: Y → X be its

inverse. Consider an element v of Â+. If r and s are words of length k + l such that rvs ∈ Mir(X ) then v = h̄ḡ(rvs).

2.3. The syntactic semigroup of a sofic subshift

A binary relation K on a semigroup S is stable if r K s implies trK ts and rtK st for all r, s, t ∈ S. The semigroup
congruences are the stable equivalence relations. Let L be a language of A+. The following quasi-order, called
syntactic order, is stable:

v≤L u ⇔ [∀x, y ∈ A∗, xuy ∈ L ⇒ xvy ∈ L].

The equivalence relation generated by ≤L is a semigroup congruence, the syntactic congruence of L . The quotient
of A+ by the syntactic congruence of L is called the syntactic semigroup of L . We denote it by Syn(L). Let δL be
the canonical homomorphism from A+ into Syn(L). Consider in Syn(L) the relation also denoted ≤L (or simply ≤)
such that δL(v)≤L δL(u) if and only if v≤L u. It is a well-defined partial order. An ordered semigroup is a semigroup
equipped with a stable partial order for multiplication. The syntactic semigroup of L equipped with the partial order
≤L is an ordered semigroup, which in the absence of confusion is also denoted Syn(L) and named syntactic semigroup
of L . The language L is rational if and only if Syn(L) is finite, in which case δL has a unique extension to a continuous
homomorphism δ̂L : Â+ → Syn(L).

Lemma 2.8 ([15]). Let u and v be elements of Â+. If L is a rational language of A+ then

δ̂L(v)≤L δ̂L(u) ⇔
[
∀x, y ∈ Â∗, xuy ∈ L ⇒ xvy ∈ L

]
.

Let X be a subshift of AZ and let Syn(X ) be the syntactic semigroup of L(X ). We denote respectively by δX
and δ̂X the homomorphisms δL(X ) and δ̂L(X ). The subshift AZ is usually named the full shift of AZ; its syntactic
semigroup is trivial. Suppose that X is not the full shift. Then Syn(X ) is a non-trivial semigroup with a zero denoted
by 0. One can easily prove that, for all u ∈ A+, δX (u) = 0 if and only if u 6∈ L(X ) [12]. This implies that if X is
sofic then, for all u ∈ A+, δ̂X (u) = 0 if and only if u 6∈ L(X ). The zero is the maximal element of Syn(X ) for ≤L(X ),
because if u ∈ A+

\ L(X ) then xuy 6∈ L(X ) for all x, y ∈ A∗.
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Lemma 2.9. Let G = g[−k,k]
: X ⊆ AZ → Y ⊆ BZ be a conjugacy between sofic subshifts. Let u be an idempotent-

bound element of Mir(X ). If ḡ(u) ∈ L(Y) then u ∈ L(X ).

Proof. Let h be a block map of G−1 with memory and anticipation l. Let e and f be idempotents of Â+ such that
u = eu f , and let r = ik+l(e) and s = tk+l( f ). Then there are e0, f0 such that u = re0u f0s. By Lemma 2.7 we
have e0u f0 = h̄ḡ(u), thus u is a factor of h̄ḡ(u). Since ḡ(u) ∈ L(Y), by Lemma 2.6 we have h̄ḡ(u) ∈ L(X ). Hence
u ∈ L(X ) by Lemma 2.4. �

Theorem 2.10 ([15]). Let G = g[−k,k]
: X ⊆ AZ → Y ⊆ BZ be a conjugacy between sofic subshifts. Let e and f

be idempotents of Â+ . Let u and v be elements of Â+ such that u = eu f , v = ev f , u ∈ L(X ) and v ∈ Mir(X ).
Then δ̂X (v) ≤ δ̂X (u) if and only if δ̂Y (ḡ(v)) ≤ δ̂Y (ḡ(u)).

2.4. Pseudovarieties of ordered semigroups

A pseudovariety of ordered semigroups is a class of finite ordered semigroups closed under taking ordered
subsemigroups, finite direct products and images under order-preserving homomorphisms of semigroups. A
pseudovariety of semigroups is a pseudovariety of ordered semigroups closed under taking images under
homomorphisms of semigroups; since the identity map is a homomorphism, the order takes no role in this notion,
which therefore corresponds to the usual notion of pseudovariety of (unordered) semigroups. The class Com of finite
commutative semigroups is a pseudovariety of semigroups. Pseudovarieties of ordered monoids and pseudovarieties
of monoids are defined similarly, using the notions of submonoid and homomorphism of monoid. The class Sl− of
commutative ordered monoids such that every element is idempotent and greater than or equal to the neutral element
is a pseudovariety of ordered monoids. It is not a pseudovariety of monoids. The smallest pseudovariety of monoids
containing Sl− is the class Sl of commutative monoids whose elements are idempotents. If V is a pseudovariety of
ordered semigroups or monoids then the class LV of ordered semigroups whose ordered submonoids are in V is a
pseudovariety of ordered semigroups.

For an alphabet A with n letters, let π and ρ be elements of Â+. We say that the formal inequality π ≤ ρ is a
pseudoidentity over A. The formal equality π = ρ is seen as the set of pseudoidentities {π ≤ ρ, ρ ≤ π}. If S is a
profinite ordered semigroup with order ≤S , then we say that S satisfies the pseudoidentity π ≤ ρ if for all n-tuples
(s1, . . . , sn) in Sn we have πS(s1, . . . , sn)≤S ρS(s1, . . . , sn). A class V is a pseudovariety of ordered semigroups if
and only if there is a set Σ of pseudoidentities (possibly over distinct alphabets) such that V is the class of finite
ordered semigroups satisfying all pseudoidentities in Σ [32,27]. We denote by [[Σ ]] the pseudovariety V defined by
Σ , and we then say that Σ is a basis of pseudoidentities for V. Furthermore, V is a pseudovariety of semigroups
if and only if it has a basis of formal equalities between pseudowords [36]. Similar definitions and results hold for
pseudovarieties of ordered monoids, with the obvious changes. For example,

Sl− = [[xy = yx, x2
= x, 1 ≤ x]],

LSl− = [[zωxzωyzω = zωyzωxzω, zωxzωxzω = zωxzω, zω ≤ zωxωzω]].

A variety of languages is a family W that associates to each finite alphabet A a set WA+ of rational languages of
A+ with the following properties:

1. for every alphabet A, the set WA+ is closed under taking a finite number of unions and intersections;
2. for every alphabet A, if L ∈ WA+ then for every a ∈ A the languages {w ∈ A+

: aw ∈ L} and
{w ∈ A+

: wa ∈ L} belong to WA+;
3. if ϕ : A+

→ B+ is a homomorphism and L ∈ WB+ then ϕ−1(L) ∈ WA+.

For a pseudovariety V of ordered semigroups let V be the class of languages whose syntactic semigroup belongs
to V. The correspondence V → V is a bijection between pseudovarieties of ordered semigroups and varieties of
languages [30], and VA+ is closed under taking complements in A+, for an arbitrary alphabet A, if and only if V is a
pseudovariety of semigroups [17].

The locally testable languages of A+ are the languages that can be obtained from the languages of the form
A∗wA∗, wA∗ and A∗w, where w ∈ A+, applying a finite number of unions, intersections and complements in A+.
The following characterization is a fundamental result in finite semigroup theory.
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Theorem 2.11 ([13,26,41,40]). The class of locally testable languages is the variety of languages corresponding to
LSl.

J.-E. Pin and P. Weil proved in [35] an ordered version of Theorem 2.11. The negatively locally testable languages
of A+ are the languages that can be expressed with a finite number of unions and intersections of languages of the
form A+

\ A∗wA∗, A+
\ wA∗, A+

\ A∗w and A+
\ {w}, with w ∈ A+.

Theorem 2.12 ([35]). The class of negatively locally testable languages is the variety of languages corresponding to
LSl−.

3. Invariant pseudovarieties

For a class C of ordered semigroups, let S (C) be the class of subshifts whose syntactic semigroup is in C. We
say that a class of subshifts is a conjugacy invariant if it is closed under taking conjugate subshifts. In this section we
identify all conjugacy invariants S (V) such that V is a pseudovariety of ordered semigroups.

Proposition 3.1. Let G = g[0,0]
: X ⊆ AZ → Y ⊆ BZ be a one-block conjugacy between sofic subshifts. Let ρ and

π be pseudowords over an alphabet X with n elements such that the finite factors of π are factors of ρ, and such that
ρ = eρ f and π = eπ f for some idempotents e and f of X̂+. If Syn(Y) satisfies π ≤ ρ, then so does Syn(X ).

Proof. Suppose that Syn(X ) does not satisfy π ≤ ρ. Then there is a n-tuple (s1, . . . , sn) of elements of Syn(X ) such
that πSyn(X )(s1, . . . , sn) 6≤ ρSyn(X )(s1, . . . , sn). For each i let wi be a word of A+ such that δX (wi ) = si . Because δ̂X
is a continuous homomorphism, we have δ̂X (π(w1, . . . , wn)) 6≤ δ̂X (ρ(w1, . . . , wn)). Then δ̂X (ρ(w1, . . . , wn)) 6= 0,
because 0 is the maximal element of Syn(X ). Hence ρ(w1, . . . , wn) ∈ L(X ). By Lemma 2.4, every finite factor of
ρ(w1, . . . , wn) belongs to L(X ). By Lemma 2.3 this implies π(w1, . . . , wn) ∈ Mir(X ), because the finite factors of
π are factors of ρ. Then, since ρ(w1, . . . , wn) and π(w1, . . . , wn) are bounded by the idempotents e(w1, . . . , wn)

and f (w1, . . . , wn), from Theorem 2.10 we deduce δ̂Y ḡ(π(w1, . . . , wn)) 6≤ δ̂Y ḡ(ρ(w1, . . . , wn)). Hence, since δ̂Y ḡ
is a continuous homomorphism, we have

πSyn(Y)(δ̂Y ḡ(w1), . . . δ̂Y ḡ(wn)) 6≤ ρSyn(Y)(δ̂Y ḡ(w1), . . . δ̂Y ḡ(wn)). �

Let us recall that a graph is a 4-tuple Γ = (V (Γ ), E(Γ ), α, β) such that V (Γ ) and E(Γ ) are disjoint sets, and α, β
are maps from E(Γ ) to V (Γ ). The elements of V (Γ ) and E(Γ ) are the vertices and the edges of Γ , respectively. We
say that an edge x goes from u to v if α(x) = u and β(x) = v. If β(x) = α(y) then x and y are said to be consecutive.

Denote by A(Γ ) the alphabet E(Γ )∪ V (Γ ). Let ζΓ be the unique continuous homomorphism from Ê(Γ )+ to Â(Γ )+

that sends an element x from E(Γ ) to α(x)ωx β(x)ω. We say that an element of Ê(Γ )+ is a Γ -profinite-path if every
factor of π with length two is a product of consecutive edges of Γ . Two Γ -profinite-paths π and ρ are coterminal if
α(i1(π)) = α(i1(ρ)) and β(t1(π)) = β(t1(ρ)).

Proposition 3.2. Let Γ be a finite graph. Let π and ρ be coterminal Γ -profinite-paths. Suppose that every letter of π
is a letter of ρ. Then S ([[ζΓ (π) ≤ ζΓ (ρ)]]) is a conjugacy invariant.

Proof. Let n and m be the number of edges and vertices of Γ , respectively. Let xi be the i-th edge of Γ , and let y j
be the j-th vertex, with 1 ≤ i ≤ n and 1 ≤ j ≤ m. Denote by αi and βi the integers such that α(xi ) = yαi and
β(xi ) = yβi .

By the Remark 2.1, we are reduced to the case where there is a one-block conjugacy G = g[0,0]
: X → Y . Let

u be a finite factor of ζΓ (π). By Lemma 2.3 there is i such that xi is a factor of π and u is a factor of yωαi xi yωβi , or
there are i, j such that xi x j is a factor of π and u is a factor of (yωαi xi yωβi )(y

ω
α j x j yωβ j ). The arguments for the first case

are included in the second case, so we only consider the latter. Since π is a Γ -profinite-path, the edges xi and x j are
consecutive. Hence βi = α j and u is a finite factor of yωαi xi yωβi x j yωβ j . Again by Lemma 2.3, u is a finite factor of
yωαi xi yωβi or of yωα j x j yωβ j . These pseudowords are factors of ζΓ (ρ), because every letter of π is a letter of ρ. Hence
every finite factor of ζΓ (π) is a factor of ζΓ (ρ). Since π and ρ are coterminal, the pseudowords ζΓ (π) and ζΓ (ρ) are
bounded by some idempotents yωi0

and yωj0 . Therefore, by Proposition 3.1, if Syn(Y) satisfies ζΓ (π) ≤ ζΓ (ρ) then so
does Syn(X ).
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Conversely, suppose that Syn(X ) satisfies ζΓ (π) ≤ ζΓ (ρ). Let A and B be the alphabets of X and Y , respectively.
Let h be a block map of G−1 with memory and anticipation k. Let t1, . . . , tn, c1, . . . , cm ∈ Syn(Y). The remainder of
the proof amounts to showing that

π(cωα1t1cωβ1, . . . , cωαn tncωβn) ≤ ρ(cωα1t1cωβ1, . . . , cωαn tncωβn). (3.1)

Since 0 is the maximal element of Syn(Y), we only consider the case where the right side is different from 0. Since
the letters of π are letters of ρ, we can assume that every edge of Γ is a letter of ρ. Then for all i ∈ {1, . . . , n} we
have cωαi ti c

ω
βi 6= 0. For every i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, there are τi , γ j ∈ B̂+ such that δ̂Y (τi ) = ti and

δ̂Y (γ j ) = c j . Then δ̂Y (γ ωαiτiγ
ω
βi ) = cωαi ti c

ω
βi 6= 0, thus γ ωαiτiγ

ω
βi ∈ L(Y). Consider the pseudowords

e j = h̄(tk(γ ωj ) γ
ω
j ik(γ ωj )), wi = h̄(tk(γ ωαi ) · γ ωαiτiγ

ω
βi · ik(γ ωβi )).

Observe that wi = eαiwi eβi . The pseudoword tk(γ ωαi ) · γ
ω
αiτiγ

ω
βi · ik(γ ωβi ) is a factor of γ ωαi · γ ωαiτiγ

ω
βi · γ ωβi = γ ωαiτiγ

ω
βi ,

thus it belongs to L(Y) by Lemma 2.4. Hence wi ∈ L(X ) by Lemma 2.6, and ḡ(wi ) = γ ωαiτiγ
ω
βi by Lemma 2.7.

Then, since δ̂Y ḡ is a continuous homomorphism,

for θ ∈ {π, ρ}, θ(cωα1t1cωβ1, . . . , cωαn tncωβn) = θ(δ̂Y ḡ(w1), . . . , δ̂Y ḡ(wn))

= δ̂Y ḡ(θ(w1, . . . , wn)). (3.2)

Because wi = eαiwi eβi and e j is idempotent, for θ ∈ {π, ρ} we have

δ̂X (θ(w1, . . . , wn)) = θ(δ̂X (eα1)
ω δ̂X (w1)δ̂X (eβ1)

ω, . . . , δ̂X (eαn)
ω δ̂X (wn)δ̂X (eβn)

ω).

Therefore, since Syn(X ) satisfies ζΓ (π) ≤ ζΓ (ρ), we have

δ̂X (π(w1, . . . , wn)) ≤ δ̂X (ρ(w1, . . . , wn)). (3.3)

Let u be a finite factor of ρ(w1, . . . , wn). By Lemma 2.3 there is i such that u is a factor ofwi , or there are i, j such
that xi x j is a factor of ρ and u is a factor of wiw j . In the first case we have u ∈ L(X ) because wi ∈ L(X ). Consider
the second case. Since wiw j = wi eβiw j , we conclude that u is a factor of wi eβi = wi or a factor of eβiw j , by
Lemma 2.3. Since xi x j is a factor of ρ, we have βi = α j , thus eβiw j = w j . Hence u is a factor of wi or of w j , which
are both elements of L(X ), thus u ∈ L(X ). Hence ρ(w1, . . . , wn) ∈ Mir(X ). Since ρ(cωα1t1cωβ1, . . . , cωαn tncωβn) 6= 0,

by (3.2) we have ḡ(ρ(w1, . . . , wn)) ∈ L(Y). For θ ∈ {π, ρ} the pseudowords wi0 = ei0wi0 and w j0 = w j0 f j0 are
respectively a prefix and a suffix of θ(w1, . . . , wn), thus θ(w1, . . . , wn) is bounded by the idempotents ei0 and f j0 .
Then by Lemma 2.9 the pseudoword ρ(w1, . . . , wn) belongs to L(X ). Hence we also have π(w1, . . . , wn) ∈ L(X )
by (3.3). From (3.3) and Theorem 2.10 we conclude that δ̂Y ḡ(π(w1, . . . , wn)) ≤ δ̂Y ḡ(ρ(w1, . . . , wn)). By (3.2) this
is the same as (3.1). �

A semigroupoid is a graph endowed with an associative rule of composition between consecutive edges. A
morphism of semigroupoids is a morphism of graphs that respects the rule of composition. Sets and semigroups
can be viewed as one-vertex graphs and semigroupoids, respectively. Just like a finite set A defines a unique free
profinite A-generated semigroup, a finite graph Γ defines a unique free profinite Γ -generated semigroupoid, denoted
by Γ̂+ [6,20]. The two concepts coincide when Γ is a set. Then there is a unique continuous semigroupoid morphism

εΓ : Γ̂+ → Ê(Γ )+ whose restriction to E(Γ ) is the identity. The image of the edges of Γ̂+ under εΓ is the set of
Γ -profinite-paths.

We refer the reader to [31] for a straightforward introduction to the notions of ordered semigroupoid and
pseudovariety of ordered semigroupoids. Since an intersection of pseudovarieties of ordered semigroupoids is also
a pseudovariety of ordered semigroupoids, if V is a pseudovariety of ordered semigroups then we can consider the
smallest pseudovariety of ordered semigroupoids containing V, called the global of V and denoted by gV. Given a
finite graph Γ , let π and ρ be coterminal edges of Γ̂+; the formal triple (π ≤ ρ;Γ ) is called a pseudoidentity over
Γ ; we say that a semigroupoid S satisfies (π ≤ ρ;Γ ) if ϕ(π) ≤ ϕ(ρ) for all continuous morphisms of semigroupoids
ϕ : Γ̂+ → S. In the same way as with semigroups, every pseudovariety of ordered semigroupoids is defined by a
set of pseudoidentities over finite graphs. This is explicitly proved in [6,20] for the unordered case, and in [32,27] for
pseudovarieties of ordered semigroups; the proof for the general case is a routine based on those cases.
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For an ordered semigroup S, let SE be the ordered semigroupoid defined as follows: the vertices are the idempotents
of S, the edges from e to f are the triples (e, s, f ) such that s = es f , the composition of edges is given by
(e, s, f )( f, t, g) = (e, st, g), and (e, s, f ) ≤ (e, t, f ) if and only if s ≤ t .

In [34,31] the reader can find information about the semidirect product of two pseudovarieties of ordered
semigroups. For this paper it is only necessary to know that such semidirect product is itself a pseudovariety
of ordered semigroups, together with some more facts that we shall provide. We are interested in semidirect
products in which the second factor is one of the pseudovarieties Dk = [[yx1 . . . xk = x1 . . . xk]] with k ≥ 1, or
D =

⋃
k≥1 Dk = [[yxω = xω]].

Theorem 3.3 (Delay Theorem). Let V be a pseudovariety of ordered semigroups containing some non-trivial monoid.
Let S be a finite semigroup. Then S ∈ V ∗ D if and only if SE ∈ gV.

The Delay Theorem for pseudovarieties of ordered semigroupoids was proved in [31] in the monoidal context, with
a proof that also holds for the version presented here.

Theorem 3.4. If V is a pseudovariety of ordered semigroups containing Sl− then S (V∗D) is a conjugacy invariant.

Proof. Let Σ be a basis of pseudoidentities for gV. Let S be a finite semigroup. By the Delay Theorem, we have
S ∈ V ∗ D if and only if SE ∈ gV. On the other hand, SE satisfies (π ≤ ρ;Γ ) if and only if S satisfies
ζΓ (εΓ (π)) ≤ ζΓ (εΓ (ρ)). Therefore,

V ∗ D =

⋂
(π≤ρ;Γ )∈Σ

[[ζΓ (εΓ (π)) ≤ ζΓ (εΓ (ρ))]].

By Proposition 3.2 we only have to show that all letters of εΓ (π) are letters of εΓ (ρ). Suppose that there is a letter z
that is a factor of εΓ (π) but not of εΓ (ρ). Since gV contains Sl−, it contains the two-element monoid M = {0, 1} such
that 0 is a zero and 1 ≤ 0 (in fact Sl− is generated by M). Hence M satisfies (π ≤ ρ;Γ ). Since M is a one-vertex
semigroupoid, that means that M satisfies εΓ (π) ≤ εΓ (ρ). Let ϕ be the unique continuous homomorphism from

Ê(Γ )+ to M such that ϕ(z) = 0 and ϕ(x) = 1 if x is a letter distinct from z. Then 0 = ϕ(εΓ (π)) ≤ ϕ(εΓ (ρ)) = 1,
which is absurd. �

Corollary 3.5. If V is a pseudovariety of ordered semigroups or monoids containing Sl− then S (LV) is a conjugacy
invariant.

Proof. We have LV = LV ∗ D, for any pseudovariety V (in [1, Proposition 10.6.13] we find a proof for the unordered
case easily adaptable for the ordered case). �

Example 3.6. Let X and Y be the irreducible sofic subshifts with the following presentations:

X • b
$$

a

��

•a
$$

b 33

c ++
• a

zz
doo

•

a

ZZ c

::

Y • c
$$

a

��

•a
$$

b 33

c ++
• a

zz
doo

•

a

ZZ b

::

The pseudovariety V = [[x3
= x2

]] contains Sl, thus S (LV) is a conjugacy invariant. We have X 6∈ S (LV), since
δX (aba)3 = 0 6= δX (aba)2 and δX (a)Syn(X ) δX (a) is a submonoid of Syn(X ). On the other hand, with some
calculations one verifies that Y ∈ S (LV). Hence X and Y are not conjugate. The subshifts X and Y have equal
entropy, zeta function and Krieger edge shift. Moreover, the invariant for sofic subshifts obtained in [15, Theorem
4.12] is the same in X and Y . This invariant is also related with the syntactic semigroup.
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Example 3.7. The classes S (LSl), S (Com ∗ D) and S (LCom) are all distinct. Consider the following sofic
subshifts:

X : •
c //

a

��
•

d //

b

��
•

a

�� e // •

b

��
Y : •

c //

a

��
•

d //

a

��
•

b

�� e // •

b

��

We can decide if a subshift belongs to Com∗D, since Thérien and Weiss proved that Com∗D = [[yωx1zωx2 yωx3zω =

yωx3zωx2 yωx1zω]] [37]. Performing some computations, we conclude that X ∈ S (LCom) \ S (Com ∗ D) and
Y ∈ S (Com ∗ D) \ S (LSl). In particular X and Y are not conjugate.

We proceed with the determination of all conjugacy invariants of the form S (V), with V a pseudovariety of ordered
semigroups.

Proposition 3.8. Let V be a variety of languages. If V contains all the languages of the form A∗wA∗ with w ∈ A+

and A an alphabet, then V also contains the languages of the form wA∗, A∗w or {w}.

Proof. Let V be the pseudovariety of ordered semigroups corresponding to V . If Σ is a basis of pseudoidentities for
V, then V =

⋂
(π≤ρ)∈Σ [[π ≤ ρ]]. It follows that it suffices to assume that V = [[π ≤ ρ]] for some pseudowords π, ρ

over an alphabet X = {x1, . . . , xn}. Let b a letter which is not in X , and let B = X ∪ {b}. Let L = B∗b ik(ρ)B∗. Then
L ∈ VB+, and so

δ̂L(π) = π(δ̂L(x1), . . . , δ̂L(xn)) ≤ ρ(δ̂L(x1), . . . , δ̂L(xn)) = δ̂L(ρ).

Therefore δ̂L(bπ) ≤ δ̂L(bρ). Since bρ ∈ L , it follows from Lemma 2.8 that bπ ∈ L . Then there are z, t ∈ B̂∗ such
that bπ = zb ik(ρ)t . Suppose that z 6= 1. Then there is z′

∈ B̂∗ such that bπ = bz′ bik(ρ)t . In an equality between
pseudowords, equal prefixes (and suffixes) can be canceled [1, Exercise 10.2.10]. Therefore π = z′ bik(ρ)t , which is
impossible since b is not a factor of π . Hence z = 1 and bπ = bik(ρ)t , and so ik(π) = ik(ρ). Similarly, tk(π) = tk(ρ).
Since k is arbitrary, it follows that π = ρ, or π and ρ are both infinite pseudowords.

For an alphabet A and an element w of A+, let K be one of the sets {w}, wA∗ or A∗w. Its closure K in
Â+ equals, respectively, {w}, w Â∗ or Â∗w. Let z1, . . . , zn ∈ A+ and x, y ∈ Â∗. Let u = xπ(z1, . . . , zn)y and
v = xρ(z1, . . . , zn)y. Then u = v or u and v are both infinite pseudowords such that ik(u) = ik(v) and tk(u) = tk(v)
for all k ≥ 1. Therefore u ∈ K if and only if v ∈ K . Hence π(δ̂K (z1), . . . , δ̂K (zn)) = ρ(δ̂K (z1), . . . , δ̂K (zn)) by
Lemma 2.8. Since the words zi are arbitrary, this means that the syntactic semigroup of K satisfies π = ρ, and so
K ∈ V . �

The version of Proposition 3.8 for varieties corresponding to pseudovarieties of (unordered) semigroups was proved
in [16], with arguments depending on the fact that such varieties are closed under complementation.

Proposition 3.9. Let V be a pseudovariety of ordered semigroups. If S (V) is a conjugacy invariant then V ⊇ LSl−.
Moreover, if V is a pseudovariety of semigroups then V ⊇ LSl.

Proof. Let V be the variety of languages corresponding to V. By Theorem 2.12 and the dual of Proposition 3.8, to
prove V ⊇ LSl− it suffices to show that the languages of the form A+

\ A∗wA∗ are in VA+.
For n ≥ 2, denote by B−

n the unique finite aperiodic ordered semigroup (up to isomorphism) with a zero and with a
unique non-null J -class having n idempotents and just one idempotent in eachR-class and in eachL-class, and where
the order relation is given by s ≤ t if and only if s = t or t = 0. Let B−

1 be the trivial semigroup. Let C be a two-
letter alphabet. The syntactic semigroup of CZ is trivial, thus CZ belongs to S (V). Therefore the conjugate subshift
Φ[0,1]

1 (CZ) also belongs to S (V). The syntactic semigroup of Φ[0,1]

1 (CZ) is isomorphic to B−

2 , thus B−

2 ∈ V. As is
stated in [31], it is not difficult to verify that B−

n is an ordered subsemigroup of an image under an order-preserving
homomorphism of a direct product of copies of B−

2 . Hence B−
n ∈ V. It is easy to see that the syntactic semigroup of

an irreducible edge subshift whose corresponding presentation has n vertices is isomorphic to B−
n (see the argument

in the proof of Theorem 12 of [9]). Hence S (V) contains all irreducible finite type subshifts, since they are conjugate
with irreducible edge subshifts.

Consider an alphabet A and an element w of A+. Let b be a letter not in A, and consider the alphabet B = A ∪{b}.
Denote by ϕ the inclusion homomorphism A+

→ B+. The language L = B+
\ B∗wB∗ is clearly factorial, and it is
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prolongable because if u ∈ L then bub ∈ L . Moreover, if u and v are elements of L then ubv ∈ L . Thus L defines an
irreducible finite type subshift. Hence L ∈ V . Since A+

\ A∗wA∗
= ϕ−1(L), we have A+

\ A∗wA∗
∈ V .

The varieties of languages corresponding to pseudovarieties of semigroups are closed under complementation.
Then it follows from Theorems 2.11 and 2.12 that every pseudovariety of semigroups containing LSl− must contain
LSl. �

The languages of finite type subshifts are negatively locally testable. Therefore, from Proposition 3.9 we deduce
that it is not possible to use an invariant of the form S (V) to detect non-conjugate subshifts of finite type, where V is
a pseudovariety of ordered semigroups.

Before we go to the next proposition, we note that LSl− = LSl∩L[[1 ≤ x]], thus S (LSl−) = S (LSl)∩S (L[[1 ≤

x]]).

Proposition 3.10. The classes S (LSl−), S (LSl) and S (L[[1 ≤ x]]) are distinct.

Proof. It is proved in [33] that the syntactic semigroup of a language L of A+ belongs to L[[1 ≤ x]] if and only
if L is a finite intersection of languages of the form A+

\ u0 A∗u1 A∗
· · · uk−1 A∗uk , with k ≥ 0 and ui ∈ A∗.

Therefore, if A is the two-letter alphabet {a, b}, the subshift X of AZ defined by the factorial prolongable language
A+

\ A∗abA∗a2bA∗ belongs to S (L[[1 ≤ x]]). We have δX (b) = δX (b)2. Since ba2ba2b 6∈ L(X ) and ba2b ∈ L(X ),
we have δX (b)ωδX (a2)δX (b)ωδX (a2)δX (b)ω 6= δX (b)ωδX (a2)δX (b)ω, thus X 6∈ S (LSl).

On the other hand, let Y be the subshift with the following presentation:

•

d

�� c // •

a

��

b

ZZ

b
((
•

a

��

b

ZZ
b

hh
c // •

e

��

We have cabac ∈ L(Y) and cac 6∈ L(Y), thus δY (a) 6≤ δY (aba). Since δY (a) = δY (a)2, we deduce that
Y 6∈ S (L[[1 ≤ x]]). One can verify that Y ∈ S (LSl). �

A consequence of Propositions 3.9 and 3.10 is that there is not a pseudovariety of semigroups V such that
S (LSl−) = S (V). More generally, we do not know if there are distinct pseudovarieties of ordered semigroups
V and W such that S (V) is a conjugacy invariant and S (V) = S (W). On the other for all k, l ≥ 1, if k 6= l then
Dk 6= Dl , and one can prove that S (Dk) is the class of the full shifts, which is not closed under taking conjugate
subshifts.

Lemma 3.11. Let V be a pseudovariety of ordered semigroups containing LSl− and let k be a positive integer. If L
belongs to the variety of languages defined by V ∗ Dk then Φk(L) \ {1} belongs to the variety of languages defined
by V.

Proof. The variety of languages corresponding to W ∗ Dk is described in [35, Theorem 4.22] when W is a
pseudovariety of ordered monoids, but the corresponding statement and proof also holds when W is a pseudovariety
of ordered semigroups, with obvious modifications. Let A≤k be the set of words over A with length less or equal
than k. Let V be the variety of languages defined by V. By the referred version of [35, Theorem 4.22], the language
L \ A≤k is the union of a finite family (Ri )i∈I of sets of the form Ri = pi A∗

∩ A∗si ∩ Φ−1
k (Ki ), with pi , si ∈ Ak+1

and Ki ∈ V(Ak+1)+. One can easily verify that

Φk(L) \ {1} =

⋃
i∈I

[
(Φk(A

+) \ {1}) ∩ pi (A
k+1)∗ ∩ (Ak+1)∗si ∩ Ki

]
.

The languages Φk(A+) \ {1}, pi (Ak+1)∗ and (Ak+1)∗si are negatively locally testable, hence they are in V(Ak+1)+.
Therefore Φk(L) \ {1} ∈ V(Ak+1)+, since Ki ∈ V(Ak+1)+ and V(Ak+1)+ is closed under finite intersections and
unions. �

Theorem 3.12. Let V be a pseudovariety of ordered semigroups. Then S (V) is a conjugacy invariant if and only if
V contains LSl− and S (V) = S (V ∗ D).
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Proof. Suppose that S (V) is a conjugacy invariant. Then V contains LSl− by Proposition 3.9. Let X be a subshift
of AZ belonging to S (V ∗ D). Since V ∗ D =

⋃
k≥1 V ∗ Dk , there is k ≥ 1 such that X ∈ S (V ∗ Dk). The set

Φk(L(X )) \ {1} is the language of a subshift Y of (Ak+1)Z which is conjugate with X . By Lemma 3.11 we have
Y ∈ S (V), thus X ∈ S (V). Hence S (V ∗ D) ⊆ S (V). The reverse inclusion follows from the fact that V ⊆ V ∗ W
for every pseudovariety W. The converse is an immediate consequence of Theorem 3.4. �

4. Syntactic characterizations of some invariant classes of irreducible sofic subshifts

For a pseudovariety V of ordered semigroups, let SI (V) be the class of irreducible subshifts in S (V).
Theorem 3.12 also holds for the operator SI . If Sl− ⊆ V then SI (LV) is a conjugacy invariant by Corollary 3.5.
There is an infinity of such invariant classes:

Example 4.1. Consider the sequence (Xn)n≥1 of irreducible sofic subshifts with the following presentations:

Then Xn ∈ SI (L[[xn+2
= xn+1

]]) \ SI (L[[xn+1
= xn

]]), thus

SI (L[[x2
= x]]) $ SI (L[[x3

= x2
]]) $ SI (L[[x4

= x3
]]) $ · · · .

There are some relevant classes of irreducible sofic subshifts of the form SI (V). We proceed with the description
of some of them.

Proposition 4.2. Let X be a subshift of AZ. Then X is an irreducible subshift of finite type if and only if X ∈

SI (LCom).

Proof. Every subshift of finite type is in S (LSl−), therefore it is also in S (LCom). Conversely, suppose that
X ∈ SI (LCom). Consider elements u, v, w of A+ such that uv, vw ∈ L(X ) and v has length greater than
the cardinality of Syn(X ). We can see with a simple combinatorial argument [1, Proposition 3.7.1] that there are
v1, e, v2 ∈ A+ such that v = v1ev2 and δX (e) is an idempotent. Since e, uv1e, ev2w ∈ L(X ) and X is irreducible,
there are x, y ∈ A+ such that ev2w · x · e · y · uv1e ∈ L(X ). This means that δX (ev2wxeyuv1e) 6= 0. Since the
submonoid δX (e)Syn(X ) δX (e) of Syn(X ) is commutative, we have

δX (eyuvwxe) = δX (eyuv1e)δX (ev2wxe) = δX (ev2wxe)δX (eyuv1e) 6= 0.

Hence eyuvwxe ∈ L(X ) and so uvw ∈ L(X ). From Proposition 2.2 we conclude that X is a subshift of finite type.
�

Let A be the class of aperiodic semigroups. We have Sl ⊆ A and A = LA. A sliding block code G : X → Y is
aperiodic if, for all x ∈ X such that {n ∈ Z+

: σ n(x) = x} 6= ∅, the integer min{n ∈ Z+
: σ n(x) = x} is equal to

min{n ∈ Z+
: σ n(G(x)) = G(x)}. The class SI (A) was characterized in [9] as being the class of irreducible sofic

subshifts that are the image of a subshift of finite type under an aperiodic sliding block code. It was also proved in [9]
that SI (A) is a conjugacy invariant, using a weak version of the invariant obtained in [15, Theorem 4.12].

Let Inv be the pseudovariety generated by semigroups of partial one-to-one transformations. Ash [7] proved that
Inv = [[xωyω = yωxω]]. An almost finite type subshift is an irreducible sofic subshift whose Fischer cover does not
admit a labeled subgraph as in Fig. 1 [8]. It was proved in [10] that the almost finite type subshifts are in SI (LInv).
We next prove the converse. Note that SI (LInv) is a conjugacy invariant since Sl ⊆ Inv.

Theorem 4.3. The class SI (LInv) is the class of almost finite type subshifts.

Proof. We prove the missing part. Suppose that X ∈ SI (LInv) and that X is not of almost finite type. Let F be
the Fischer cover of X . Then there is in F a pattern as in Fig. 1. Since F is strongly connected, it has paths r → p
and r → q labeled v and w. Then p · (zωuvzω)ω(zωuwzω)ω = q and p · (zωuwzω)ω(zωuvzω)ω = p. The monoid
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Fig. 1. Forbidden pattern in the Fischer cover of almost finite type subshifts.

δ̂X (z)ω · Syn(X ) · δ̂X (z)ω is in Inv = [[xωyω = yωxω]], thus (zωuvzω)ω(zωuwzω)ω and (zωuwzω)ω(zωuvzω)ω have
the same action on the states of F. Hence p = q . This is a contradiction. �

All examples of irreducible sofic subshifts that we have so far presented are of almost finite type.

5. Shift equivalence

Let X be a subshift of AZ and let l ≥ 1 be an integer. Consider the alphabet Al of the elements in A+ with length
l. We can naturally embed (Al)+ in A+. The set L(X ) ∩ (Al)+ is a non-empty factorial prolongable language of
(Al)+, thus it defines a subshift X l of (Al)Z. Recall that δX (u) is the equivalence class of u in A+ for the syntactic
congruence of L(X ). It is easy to see that if u ∈ (Al)+ then δX l (u) = δX (u)∩(Al)+, and so the map that sends δX l (u)
into δX (u) is a well-defined one-to-one homomorphism from Syn(X l) into Syn(X ). Hence we can consider Syn(X l)

as a subsemigroup of Syn(X ). The following lemma was proved in [15]. It isolates and generalizes an argument in
the proof of the last theorem of [9].

Lemma 5.1. Let X be a sofic subshift of AZ. For every l ≥ 1 there is l ′ > l such that the set of idempotent-bound
elements of Syn(X ) is contained in Syn(X l ′).

Two subshifts X and Y are shift equivalent if there is l ≥ 1 such that X l and Y l are conjugate. If X l and Y l are
conjugate then for all k ≥ l the subshifts X k and Yk are also conjugate. Conjugate subshifts are shift equivalent, but
the validity of the converse in the finite type case was a major open problem for a long time, until Kim and Roush
found examples showing that it was false [22,23]. There is an algorithm for deciding if two sofic subshifts are shift
equivalent or not, but it is very complicated [21].

Theorem 5.2. Let V be a pseudovariety of ordered semigroups. If S (V) is a conjugacy invariant then it is also a
shift equivalence invariant.

Proof. By Theorem 3.12, we have S (V) = S (V ∗ D), and V contains some non-trivial monoid. By the Delay
Theorem we have

S (V ∗ D) = {Z : Z is a sofic subsift and Syn(Z)E ∈ gV}.

Suppose that X and Y are shift equivalent sofic subshifts. Let l be an integer such that X l and Y l are conjugate. Let
l ′ be as in Lemma 5.1. Since l ′ > l, the subshifts X l ′ and Y l ′ are conjugate. Therefore

Syn(X l ′)E ∈ gV ⇔ Syn(Y l ′)E ∈ gV.

But Syn(X )E = Syn(X l ′)E and Syn(Y)E = Syn(Y l ′)E . �

As a corollary of Theorems 4.3 and 5.2, we recover the following theorem:

Theorem 5.3. The class of almost finite type subshifts is closed under shift equivalence.

See [10] for a different proof of Theorem 5.3 using shift equivalence invariant properties of syntactic semigroups.
In [8, Proposition 4.1] there is a direct proof of the closure of the class of almost finite type subshifts under conjugacy,
from which one can deduce Theorem 5.3 after some additional reasoning.
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