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Abstract

The aim of this paper is to derive a reduced model for a piezoelectric plate and to study its actuator and sensor capabilities. In the first
part, we focus on the asymptotic modeling for thin plates formed by stacking layers of different piezoelectric materials. In the asymptotic
model, the mechanical and electric unknowns are shown to be partly decoupled. In the second part, we study the actuator and sensor
capabilities of this model. We use two discrete non-differentiable multi-objective optimization problems, which are solved by genetic
algorithms. Several numerical results are reported.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials belong to a class of smart materi-
als that exhibit electromechanical coupling, which provides
them with actuator and sensor capabilities. The mechanical
deformation generated by the application of an external
electric field to the material is known as piezoelectric effect,
and the converse phenomenon as sensor effect. These prop-
erties make piezoelectric devices extremely useful in a wide
range of practical applications in aerospace, mechanical,
electrical, civil and biomedical engineering (see, e.g., [1,2]).

The aim of this paper is twofold: In the first part, we
derive a new asymptotic model for a thin laminated plate
formed by stacking several layers of different piezoelectric
materials. Then, in the second part, the actuator and sensor
capabilities of this plate model are studied.

The first part (Section 2), in which the plate model is
derived, is composed of three subsections. After the nota-
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tions and the description of the three-dimensional plate
equations (Section 2.1), in Section 2.3 we state the two-
dimensional (2D) asymptotic model for the thin laminated
plate. This is accomplished in two steps. Firstly, in Section
2.2 the plate model found in [11] (for a thin piezoelectric
plate with monoclinic elastic coefficients and modified pie-
zoelectric coefficients independent of the thickness
variable) is generalized to the case of a completely non-
homogeneous anisotropic piezoelectric plate (cf. (7), Theo-
rem 2.1 and Corollary 2.1). It is found that the solution of
this 2D asymptotic model (given by (12)–(18) consists of
the Kirchhoff–Love mechanical displacement (whose tan-
gential and transverse components are coupled) and the
electric potential; the latter is an explicit function of the dif-
ference of the prescribed electric potentials on the lower
and upper face of the plate, and of the tangential and trans-
verse mechanical displacements of the plate’s middle plane
(cf. (12) in Theorem 2.1). This is in contrast to the models
in [9,11], where the transverse and tangential components
of the mechanical displacement are decoupled and a differ-
ent formula for the electric potential is found. In Section
2.3, our 2D-model (12)–(18) for non-homogeneous
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anisotropic piezoelectric plates is specified to the case of a
thin laminated plate formed by stacking several layers of
different piezoelectric anisotropic materials. Clearly, this
type of laminated plate can be considered as a plate made
of one lamina with a non-homogeneous anisotropic mate-
rial. Assuming that the material coefficients of each layer
are independent of x3 (the middle plane of the plate is
assumed to lie in the x1x2-plane), we prove that the electric
potential is a quadratic polynomial in x3 with coefficients
that depend on the tangential and transversal mechanical
displacements of the plate’s middle plane (cf. (32)). This
means, that the electric potential can be easily derived a
posteriori from the mechanical deformation.

In the second part of the paper (Section 3), we numeri-
cally study the actuator and sensor capabilities of our
model. Section 3.1 is devoted to a brief description of the
finite element model for the 2D asymptotic laminated plate.
This discrete model is obtained applying standard finite ele-
ments to the 2D asymptotic laminated plate model found
in Section 2.3. Using two multi-objective and non-differen-
tiable optimization problems, in Section 3.2 we study the
smart capabilities of a laminated plate. For the actuator
effect, we intend to maximize the displacement while mini-
mizing the number of regions where a non-zero electric
potential is applied. A similar multi-objective problem is
used to study the sensor effect. These optimization prob-
lems are solved by the elitist genetic algorithms described
in [3]. We remark that the numerical study for the actuator
problem presented in this paper constitutes a continuation
of results in the previous work [4]. Differently from the
model considered in the present paper, in [4] the plates
under consideration are mechanically monoclinic and the
modified piezoelectric coefficients are independent of the
thickness variable. Thus, the tangential and transversal
mechanical displacements are uncoupled and the problem
simplifies considerably.

Finally, in Section 3.3 several numerical tests are
reported. They illustrate the actuator and the sensor capa-
bilities of a thin laminated plate formed by two piezoelec-
tric anisotropic layers made of PZT materials.

Before finishing this introduction, we mention related
approaches and results that can be found in literature.
We first refer to [5,6] for the description of the asymptotic
method in the case of thin elastic plates. Extensions of this
method can be found in [7–11] for thin piezoelectric plates
and in [12] for thin piezoelectric shells. For the case of pie-
zoelectric plates, the corresponding asymptotic models dif-
fer mainly due to the different materials, scaling techniques
and electric boundary conditions. We refer as well the
works [13–15] for the modeling (without using the asymp-
totic method), the finite element discretisation and the
numerical simulation of the actuator effect of piezoelectric
thin shells. Theoretical formulations for the analysis of
laminated composite plates with integrated sensors and
actuators are presented in [16]. Analysis, modeling and
numerical simulation of piezoelectric actuators can be
found in [17–19]. For other works reporting the optimal
placement of piezoelectric actuators and sensors in plates
we refer, e.g., [20,21] and the for the same kind of problem
using genetic algorithms see, e.g., [22].
2. The asymptotic model

In this section, we first describe in Section 2.1 our nota-
tions and recall the three-dimensional (3D) equations for a
thin non-homogeneous anisotropic piezoelectric plate.
Then, in Section 2.2 we give in (7) the variational formula-
tion of the corresponding two-dimensional (2D) asymp-
totic model. Moreover, in Theorem 2.1 we prove that this
variational formulation is equivalent to a simpler one,
and, in Corollary 2.1 we show that Theorem 2.1 generalizes
theorem 3.4 of [11]. In Section 2.3, the 2D asymptotic plate
model defined in Theorem 2.1 is considered for the special
case of a thin laminated plate made of stacked layers of dif-
ferent piezoelectric anisotropic materials.
2.1. The 3D piezoelectric plate model

Let OX1X2X3 be a fixed three-dimensional coordinate
system, x � R2 a bounded domain with a Lipschitz contin-
uous boundary ox, and c0, c1, ce and cs subsets of ox. We
assume that c0 5 ; and use c1 = oxnc0 and cs ¼ ox n ce,
where ce can be empty. We consider the sets

X¼x�ð�h;hÞ; C� ¼x�f�hg; Cþ ¼x�fþhg;
C� ¼x�f�hg; CD¼ c0�ð�h;hÞ; C1¼ c1�ð�h;hÞ;
CN ¼C1

[
C�; CeN ¼ cs�ð�h;hÞ; CeD¼C�

[
ðce�ð�h;hÞÞ;

where X ¼ �x� ½�h; h� (that is, X and its boundary) repre-
sents a thin plate with middle surface x and thickness 2h,
with h > 0 a small constant, C+ and C� are, respectively,
the upper and lower faces of X, the sets CD, C1 and CeN

are portions of the lateral surface ox� ð�h; hÞ of X, and
finally CN and CeD are portions of the boundary oX of X.
The points of X are denoted by x ¼ ðx1; x2; x3Þ, where the
first two components (x1,x2) 2 x and x3 2 (�h,h).

Throughout the paper, the Latin indices i, j,k, l, . . .
belong to the set {1,2,3}, the Greek indices a,b,l, . . . vary
in the set {1,2} and the summation convention with respect
to repeated indices is employed, that is, aibi ¼

P3
i¼1aibi.

Moreover, we denote by a � b ¼ aibi the inner product of
the vectors a = (ai) and b = (bi). The upper subscript > rep-
resents the transpose of a matrix or a vector. Given a func-
tion h(x) defined in X we denote by h,i or oih its partial
derivative with respect to xi, that is, h;i ¼ oih ¼ oh

oxi
, and by

h,ij or oijh its second partial derivative with respect to xi

and xj, that is, h;ij ¼ oijh ¼ o2h
oxioxj

. We denote by
m ¼ ðm1; m2; m3Þ the outward unit normal vector to oX, by
the same letter m ¼ ðm1; m2Þ the outward unit normal vector
to ox, and finally by om# ¼ maoa# the outer normal deriva-
tive along ox of # : x! R.

Now, let N represent any open subset of Rn, with
n = 2,3. We define DðNÞ to be the linear space of functions
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infinitely differentiable and with compact support on N,
and denote by D0ðNÞ the dual space of DðNÞ, often called
the space of distributions on N. For m = 1 or m = 2 and
p = 2, the Sobolev spaces H mðNÞ (also denoted by
W m;2ðNÞ) are defined by

H 1ðNÞ ¼ fv 2 L2ðNÞ : oiv 2 L2ðNÞ; for i ¼ 1; . . . ; ng;
H 2ðNÞ ¼ fv 2 L2ðNÞ : oiv; oijv 2 L2ðNÞ;

for i; j ¼ 1; . . . ; ng;

where L2ðNÞ ¼ fv : N! R;
R

N jvj
2dN < þ1g and the

partial derivatives are interpreted as distributional
derivatives.

We suppose that a piezoelectric anisotropic and non-
homogeneous material occupies the bounded thin plate
X � R3. We denote by C = (Cijkl), P = (Pijk) and e ¼ ðeijÞ,
respectively, the elastic (fourth-order) tensor field, the
piezoelectric (third-order) tensor field, and the dielectric
(second-order) tensor field that characterize the material
properties. The coefficients Cijkl, Pijk, eij are sufficiently
smooth functions defined in �x� ½�h; h� that satisfy the
following symmetry properties: P ijk ¼ P ikj, eij ¼ eji, Cijkl ¼
Cjikl ¼ Cklij.

Moreover, the plate is clamped along CD, and subject to
an applied electric potential u0 on CeD (uþ0 and u�0 are the
restrictions of u0 to C+ and C�, respectively). In addition,
f ¼ ðfiÞ : X! R3 represents the density of the applied
body forces acting on the plate X, g ¼ ðgiÞ : CN ! R3 the
density of the applied surface forces on CN (g+ and g�

are the restriction of g to C+ and C�, respectively). We
assume that there is neither electric charge in X (this means
that the material is dielectric) nor on CeN .

In the framework of small deformations and linear pie-
zoelectricity, the three-dimensional static equations for the
piezoelectric plate are the following: Find a displacement

vector field u : X! R3 and an electric potential u : X!
R3 such that

rij ¼ CijkleklðuÞ � P kijEkðuÞ in X; ð1Þ
Dk ¼ P kijeijðuÞ þ eklElðuÞ in X; ð2Þ
rij;j ¼ �fi in X; ð3Þ
Di;i ¼ 0 in X; ð4Þ
u ¼ 0 on CD; rijmj ¼ gi on CN ; ð5Þ
Dimi ¼ 0 on CeN ; u ¼ u0 on CeD: ð6Þ

In (1)–(6), r ¼ ðrijÞ : X! R9 is the stress tensor field,
D ¼ ðDkÞ : X! R3 the electric displacement vector field
and eðuÞ the linear strain tensor defined by

eðuÞ ¼ ðeijðuÞÞ; eijðuÞ ¼
1

2
ðoiuj þ ojuiÞ

and EðuÞ is the electric vector field defined by

EðuÞ ¼ ðEiðuÞÞ; EiðuÞ ¼ �oiu:

Eqs. (1) and (2) are the constitutive equations evidencing
the electromechanical coupling, (3) represents the equilib-
rium mechanical equation, (4) the Maxwell–Gauss equa-
tion, (5) are the displacement and traction boundary
conditions, and finally (6) represents the electric boundary
conditions.

2.2. The 2D asymptotic piezoelectric anisotropic plate model

Now, we apply the asymptotic analysis procedure to the
variational formulation of the 3D piezoelectric anisotropic
plate model (1)–(6). As the plate thickness 2h approaches 0,
this 3D model leads to a limit model that is a reduced 2D
model, henceforth called the 2D asymptotic piezoelectric
anisotropic plate model, or shortly, the 2D asymptotic
plate model. The arguments used to mathematically justify
this limit model can be found in [11], see also [9]. Its vari-
ational formulation is the following

Find ðu;uÞ 2 V KL �Wl; such that:

aððu;uÞ; ðv;wÞÞ ¼ lðv;wÞ 8ðv;wÞ 2 V KL �Wl0;

u ¼ u0; on C�:

8><
>: ð7Þ

Here VKL is the Kirchhoff–Love mechanical displacement
space defined by

V KL ¼ fv¼ ðv1; v2; v3Þ 2 ½H 1ðXÞ�3 : 9g¼ ðg1;g2;g3Þ
2 ½H 1ðxÞ�2 �H 2ðxÞ; vaðxÞ ¼ gaðx1;x2Þ � x3oag3ðx1;x2Þ;
v3ðxÞ ¼ g3ðx1;x2Þ; g1jc0

¼ g2jc0
¼ g3jc0

¼ 0; omg3jc0
¼ 0g

and Wl, Wl0 are the spaces associated to the admissible elec-
tric potentials defined by

Wl ¼ fw 2 L2ðXÞ : o3w 2 L2ðXÞg;
Wl0 ¼ fw 2 L2ðXÞ : o3w 2 L2ðXÞ; wjC� ¼ 0g:

Moreover

aððu;uÞ; ðv;wÞÞ ¼
Z

X
AabcqeabðuÞecqðvÞdXþ

Z
X

p33o3uo3wdX

�
Z

X
p3ab½eabðuÞo3w� eabðvÞo3u�dX;

and

lðv;wÞ ¼
Z

X
f � vdXþ

Z
CN

g � vdCN :

The modified coefficients Aabcq, p3ab and p33 depend only on
Cijkl, Pijk and eij and are defined by

Aabcq ¼ Cabcq�
Cab33C33cq

C3333

þCab33

Cm333

C3333

bdmadcq�Cabm3bdmadcq;

p3ab ¼ P 3ab�
Cab33

C3333

P 333þCab33

C33m3

C3333

bdmcd�Cabm3bdmcd;

p33 ¼ e33þ
P 333P 333

C3333

� P 333

C33m3

C3333

bdmcdþ P 3m3bdmcd;

ð8Þ
where

adcq ¼ C33cqCd333 � Cd3cqC3333; cd ¼ Cd333P 333 � C3333P 3d3;

½bdm� ¼ ½Cd333C33m3 � Cd3m3C3333��1
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where the latter equality is to be understood as identity be-
tween two matrices. We observe that this limit problem (7)
is an extension of Theorem 3.3 in [11] (established for the
case Cabc3 ¼ 0 ¼ Ca333) to the general case of anisotropy.
In fact, (7) differs from the corresponding limit problem de-
fined in Theorem 3.3 of [11] with respect to the formulas (8)
for the modified coefficients Aabcq, p3ab and p33. One easily
checks that in case of Cabc3 ¼ 0 ¼ Ca333, the formulas in
(8) are identical with those given in Theorem 3.3 of [11]:
the so-called reduced elastic coefficients Aabcq turn to (cf.
formula (41) in [11])

Aabcq ¼ Cabcq �
Cab33C33cq

C3333

; ð9Þ

the modified piezoelectric coefficients p3ab and correspond-
ing vector p3 are now equal to (cf. formula (42) in [11])

p3ab ¼ P 3ab �
Cab33

C3333

P 333; p3 ¼ ½ p311 p322 p312 � ð10Þ

and the scalar field p33 is now (cf. formula (43) in [11])

p33 ¼ e33 þ
P 333P 333

C3333

þ 1

det
C1313 C1323

C2313 C2323

� �

�
P 323

�P 313

� �> C1313 C1323

C2313 C2323

� �
P 323 � P 313½ �: ð11Þ

The procedure to obtain the more general formulas (8)
for Aabcq, p3ab and p33 for the general case of anisotropy
is the same as indicated in [11] (cf. Section 5 in [11]). It suf-
fices to use the equations (35) in [11] with non-zero Cabc3

and Ca333 to derive the new formulas for jij (cf. (34) in
[11]) and subsequently introduce these jij in the two equa-
tions of formula (40) of [11]. The latter step results in the
new formulas (8) for Aabcq, p3ab and p33.

Remark 2.1. In Section 3.3 we consider a laminated plate,
whose layers are made of monoclinic piezoelectric materi-
als with elastic, piezoelectric and dielectric coefficients that
are independent of x3 in each layer. Thus, the material of
each layer satisfies Cabc3 ¼ 0 ¼ Ca333, and therefore, for
each layer the corresponding coefficients Aabcq, p3ab and p33

are defined by (9)–(11). It is also proven in [11], Theorem
3.3, that for the case of a plate with Cabc3 ¼ 0 ¼ Ca333,
problem (7) admits a unique solution (u,u). One easily
verifies that this uniqueness result also holds true for the
variational Eq. (7), where we consider a laminated plate,
whose layers are made of monoclinic piezoelectric materi-
als, as that used in Section 3.3.

A straightforward computation shows that (7) can be
reformulated: in fact, it is equivalent to an easier model,
in which the Kirchhoff–Love displacement u is the unique
solution of a two-dimensional piezoelectric plate model
defined on the plate’s middle plane. Provided u has been
found, the electric potential u is an explicit function of
the prescribed electric potential on the lower and upper
surface and the tangential and transverse components of
this Kirchhoff–Love mechanical displacement u. This result
is stated in the next Theorem 2.1.

Theorem 2.1 (Equivalent reformulation of Problem (7)).
Let ðu;uÞ 2 V KL �Wl be the unique solution of problem (7),

where ua ¼ na � x3oan3, u3 ¼ n3, and n ¼ ðn1; n2; n3Þ. Then,

the electric potential u satisfies

uðx1; x2; x3Þ ¼ u�0 ðx1; x2Þ þ
Z x3

�h

p3ab

p33

� aab

p33

c
� �

eabðnÞ
�

�
p3ab

p33

y3 �
bab

p33

c
� �

oabn3 þ
uþ0 � u�0

p33

c
�

dy3;

ð12Þ

where uþ0 and u�0 are the restrictions of u0 to C+ and C�,

respectively, and

aab ¼
Z þh

�h

p3ab

p33

dx3; bab ¼
Z þh

�h
x3

p3ab

p33

dx3;

c ¼
Z þh

�h

1

p33

dx3

� ��1

ð13Þ

are functions defined on the middle plane w of the plate.

Moreover, u 2 V KL is the solution of the variational equation

Find u 2 V KL such that : �aðu; vÞ ¼ �lðvÞ 8v 2 V KL;

ð14Þ
where for any v ¼ ðg1 � x3o1g3; g2 � x3o2g3; g3Þ 2 V KL

�lðvÞ¼
Z

X
f � vdXþ

Z
CN

g � vdCN �
Z

X
ðuþ0 �u�0 Þ

p3ab

p33

ceabðvÞdX;

ð15Þ
and

�aðu; vÞ ¼
Z

x
½N abðuÞeabðgÞ þMabðuÞoabg3�dx: ð16Þ

Here, ðN abðuÞÞ and ðMabðuÞÞ are the components of second-

order tensor fields associated to the Kirchhoff–Love displace-
ment u given by the following matrix formula

N abðuÞ
MabðuÞ

� �
¼ O

ecqðnÞ
ocqn3;

� �
;

where the 6 · 6 matrix O is (in general) non-symmetric. Its
components are functions of the middle plane x, namely

O ¼
Rþh
�h Babcq dx3 �

Rþh
�h Dabcq dx3

�
Rþh
�h x3Babcq dx3

Rþh
�h x3Dabcqdx3

" #
6�6

ð17Þ

with

Babcq ¼ Aabcq þ
p3abp3cq

p33

�
p3abacq

p33

c

Dabcq ¼ x3Aabcq þ x3

p3abp3cq

p33

�
p3abbcq

p33

c:
ð18Þ

In particular, the bilinear form �að:; :Þ in (16) is non-symmetric
(if O is non-symmetric), and the tangential ðn1; n2Þ and trans-

verse n3 components of the unknown displacement u are

coupled in (14).
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Proof. Considering v=0 in (7) we obtainZ
X
½p33o3u� p3abeabðuÞ�o3wdX ¼ 0:

Since DðXÞ is dense in Wl0 (see, e.g., [9]), we can take
w 2 DðXÞ, which gives

�
Z

X
o3½p33o3u� p3abeabðuÞ�wdX ¼ 0:

Hence, o3½p33o3u� p3abeabðuÞ� ¼ 0 and thus, there exists
d1 2 D0ðxÞ such that

�p33o3uþ p3abeabðuÞ ¼ d1 in D0ðxÞ;
or equivalently, because eabðuÞ ¼ eabðnÞ � x3oabn3,

o3u ¼
p3ab

p33

½eabðnÞ � x3oabn3� �
1

p33

d1: ð19Þ

After integration over x3 this yields

uðx1; x2; x3Þ ¼ uðx1; x2;�hÞ þ
Z x3

�h

p3ab

p33

½eabðnÞ

� y3oabn3�dy3 �
Z x3

�h

1

p33

d1 dy3: ð20Þ

Since uðx1; x2;�hÞ ¼ u�0 ðx1; x2Þ and uðx1; x2;þhÞ ¼ uþ0 ðx1;
x2Þ we choose x3 ¼ þh in the previous expression to deter-
mine d1:

uðx1; x2;þhÞ ¼ uðx1; x2;�hÞ þ
Z þh

�h

p3ab

p33

dx3

� �
eabðnÞ

�
Z þh

�h
x3

p3ab

p33

dx3

� �
oabn3

�
Z þh

�h

1

p33

dx3

� �
d1;

and clearly this equation is exactly the same as

uþ0 ¼ u�0 þ aabeabðnÞ � baboabn3 � c�1d1;

or equivalently

d1 ¼ c½u�0 � uþ0 þ aabeabðnÞ � baboabn3�: ð21Þ
Finally, inserting this d1 in (20) we directly obtain formula
(12) for the electric potential.

Choosing now w = 0 in (7) we get
Z Z

X

AabcqeabðuÞecqðvÞdXþ
X

p3abeabðvÞo3udX

¼
Z

X
f � vdXþ

Z
CN

g � vdCN : ð22Þ

For the derivative o3u given in (19) with d1 as defined in
(21) we have

o3u ¼
p3ab

p33

� aab

p33

c
� �

eabðnÞ �
p3ab

p33

x3 �
bab

p33

c
� �

oabn3

þ uþ0 � u�0
p33

c;
and introducing this latter formula in (22) we obtainZ
X
½BabcqeabðnÞ�Dabcqocqðn3Þ�ðeabðgÞ� x3oabg3ÞdX

¼
Z

X
f � vdXþ

Z
CN

g � vdCN �
Z

X
ðuþ0 �u�0 Þ

p3ab

p33

ceabðvÞdX;

ð23Þ

which is precisely the variational Eq. (14). h

For later use we remark that for the last term on the
right-hand side of (23) holdsZ

X
ðuþ0 � u�0 Þ

p3ab

p33

ceabðvÞdX

¼
Z

x
ðuþ0 � u�0 ÞcðaabeabðgÞ � baboabg3Þdx: ð24Þ

In Corollary 2.1 we show that Theorem 2.1 is a general-
ization of Theorem 3.4 in [11].

Corollary 2.1 (Theorem 3.4 of [11]). Suppose that Cabc3 ¼
0 ¼ Ca333 and in each layer the coefficients p3ab and p33 are

independent of x3. Then (12) becomes

uðx1; x2; x3Þ ¼ u�0 ðx1; x2Þ

þ
Z x3

�h
�

p3ab

p33

y3

� �
oabn3 þ

uþ0 � u�0
2h

� �
dy3;

ð25Þ
which is precisely the formula (88) of [11] after integration

with respect to the thickness variable. Moreover, problem
(14) coincides with problem (56) of [11] (we remark that

h = 1 in (56) of [11]), because in this case

�lðvÞ ¼
Z

X
f � vdxþ

Z
CN

g � vdCN �
Z

X

uþ0 � u�0
2h

p3abeabðvÞdx;

ð26Þ
and

�aðu; vÞ ¼
Z

x
½N abðuÞeabðgÞ þMabðuÞoabg3�dx; ð27Þ

where ðN abðuÞÞ and ðMabðuÞÞ are defined by the following

matrix formula

N abðuÞ

MabðuÞ

" #
¼O

ecqðnÞ

@cqn3

" #

¼

Rþh
�h Aabcqdx3 �

Rþh
�h x3Aabcqdx3

�
Rþh
�h x3Aabcqdx3

Rþh
�h ðx3Þ2 Aabcqþ

p3abp3cq

p33

� �
dx3

2
64

3
75 ecqðnÞ

@cqn3

" #

ð28Þ

with Aabcq, p3ab and p33 given by (9)–(11).

Proof. In fact, if p3ab and p33 are independent of x3, then

aab ¼ 2h
p3ab

p33

; bab ¼ 0; c ¼ p33

2h
;



390 L. Costa et al. / Computers and Structures 85 (2007) 385–403
and

p3ab

p33

� aab

p33

c ¼
p3ab

p33

� 2h
p3ab

p2
33

p33

2h
¼ 0;

therefore (12) turns to (25), and (26) is obtained from (15)
replacing c by p33

2h . We also have

p3abp3cq

p33

�
p3abacq

p33

c ¼
p3abp3cq

p33

�
p3ab

p33

2hp3cq

p33

p33

2h
¼ 0:

Thus, the coefficients Babcq and Dabcq defined in (18) are
equal to

Babcq ¼ Aabcq; Dabcq ¼ x3 Aabcq þ
p3abp3cq

p33

� �
: ð29Þ

Consequently the bilinear formula (16)–(18) turns to (27)
and (28) with the coefficients Babcq and Babcq defined by
(29). h

We emphasize that Theorem 2.1 is a generalization of
the results found in [9,11] to the case of a completely
non-homogeneous anisotropic piezoelectric plate. In par-
ticular the explicit formula (12) for the electric potential
now depends both on the tangential and transverse compo-
nents of the mechanical displacement. This formula is not
found in [9,11] where it is assumed that the material is
mechanically isotropic and monoclinic, respectively, and
where it is also supposed that the modified piezoelectric
coefficients are independent of the thickness variable.
Moreover it is worth mentioning that a similar asymptotic
procedure as the one used to obtain the model described in
Theorem 2.1 (which relies on the method developed for-
merly in [5] for elastic plates) was applied in [7,8] to derive
asymptotic models for anisotropic piezoelectric thin plates.
But the latter models differ from the one described in The-
orem 2.1 of the present paper. Namely the asymptotic elec-
tric potentials are not the same. This is due to different
scaling techniques, different types of boundary conditions
and also different types of anisotropic materials. In [7]
the first-order asymptotic electric potential satisfies a two-
dimensional Poisson–Neumann problem with an effective
dielectric constant accounting for electromechanical cou-
plings. In [8] it is found that the asymptotic electric poten-
tial has two different formulas depending on the type of the
electric boundary conditions – a short-circuited or an insu-
lated plate. For the case of a short-circuited plate (this
means the plate is submitted to prescribed electric poten-
tials on the upper and lower faces and to a surface electric
charge on its lateral surface) the asymptotic electric poten-
tial is a quadratic polynomial of the thickness variable x3

(and that coincides with formula (25) of the present paper
when the material is mechanically monoclinic and the mod-
ified piezoelectric coefficients are independent of the thick-
ness variable). For the case of an insulated plate (that is a
plate which is electric charge-free on whole its boundary)
the asymptotic electric potential is constant in the plate’s
thickness variable.
2.3. The laminated piezoelectric plate model

In this subsection, the 2D asymptotic plate model
defined in Theorem 2.1 is applied to a thin laminated plate
made of several stacked layers of different piezoelectric
anisotropic materials. We assume that, in each layer the
elastic, piezoelectric and dielectric coefficients are indepen-
dent of x3. This special material structure enables particular
formulas for the functions, matrices and vectors involved
in the definition of the 2D asymptotic plate model of The-
orem 2.1. Below, we give the detailed form for the matrix O

and the electric potential u.
2.3.1. The matrix O

As before, the global plate X ¼ �x� ½�h; h�, has middle
plane w � R2 and global thickness 2h. The material and
geometric properties of each lamina are indexed by the
letter s. We assume that there are k laminas, numbered
from the lower face to the upper face of the global plate
X. We do not impose any geometrical symmetry in the
distribution of these k laminas with respect to the middle
plane w of the global plate. Let ts be the thickness of
lamina s and jzsj the distance from w to the middle
plane of lamina s, measured along the axis OX3, where
zs is positive if lamina s is above w and negative if it is
below. In particular, the sum of the thicknesses of the k

laminas must be equal to 2h, that is
Pk

s¼1ts ¼ 2h. In this
setting, the coefficients aab, bab and c introduced in (13)
become

aab ¼
Z þh

�h

p3ab

p33

dx3 ¼
Xk

s¼1

ps
3ab

ps
33

ts;

bab ¼
Z þh

�h
x3

p3ab

p33

dx3 ¼
Xk

s¼1

ps
3ab

ps
33

zsts;

c ¼
Z þh

�h

1

p33

dx3

� ��1

¼
Xk

s¼1

ts

ps
33

 !�1

; ð30Þ

and for the components of the matrix O in (17) we getZ þh

�h
Babcq dx3¼

Xk

s¼1

As
abcqþ

ps
3abps

3cq

ps
33

�
ps

3abacq

ps
33

c
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Bs
abcq

ts;

Z þh

�h
x3Babcq dx3¼

Xk

s¼1

As
abcqþ

ps
3abps

3cq

ps
33

�
ps

3abacq

ps
33

c
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Bs
abcq

tszs;

Z þh

�h
Dabcq dx3¼

Xk

s¼1

As
abcqþ

ps
3abps

3cq

ps
33

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

D1s
abcq

tszs�
Xk

s¼1

ps
3abbcq

ps
33

c
� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

D2s
abcq

ts;

and
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Z þh

�h
x3Dabcq dx3 ¼

Xk

s¼1

As
abcq þ

ps
3abps

3cq

ps
33

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D1s
abcq

1

12
ðt3

s þ 12tsz2
s Þ

�
Xk

s¼1

ps
3abbcq

ps
33

c
� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

D2s
abcq

tszs:

Therefore, the matrix O as defined in (17) becomes a sum
Olam of (in general non-symmetric) matrices, namely

Olam¼
Xk

s¼1

Bs
abcqts �D1s

abcqtszsþD2s
abcqts

�Bs
abcqtszs D1s

abcq
1

12
ðt3

s þ12tsz2
s Þ�D2s

abcqtszs

" #
6�6

:

ð31Þ

This matrix (31) induces the bilinear form �að:; :Þ in (16) for
the laminated plate. Note that the third term on the right-
hand side of the linear form �lð�Þ in (15) is defined by (24),
where the coefficients aab, bab and c are given by (30).

2.3.2. The electric potential u
Let us now turn to the formula of the electric potential

for the case of the laminated plate. If x3 belongs to lamina
i, with 1 6 i 6 k, we obtain from (12)

uðx1; x2; x3Þ ¼ u�0 ðx1; x2Þ þ
Xi�1

s¼1

ps
3ab

ps
33

� aab

ps
33

c
� �

tseabðnÞ
�

� tszs

ps
3ab

ps
33

� ts
bab

ps
33

c
� �

oabn3 þ
uþ0 � u�0

ps
33

cts

�

þ
pi

3ab

pi
33

� aab

pi
33

c
� �

x3 � zi þ
ti

2

� �
eabðnÞ

�
pi

3ab

pi
33

x2
3 � zi �

ti

2

� �2
� �

1

2
oabn3

þ bab

pi
33

c x3 � zi þ
ti

2

� �
oabn3 þ

uþ0 � u�0
pi

33

c x3 � zi þ
ti

2

� �
:

ð32Þ

Of course, if x3 belongs to lamina 1, the sum
Pi�1

s¼1½� � �� on
the right-hand side of (32) disappears. We also remark that
u is a quadratic polynomial of the thickness variable.

3. Numerical study of actuator and sensor effects

In this second part, we discretize the model obtained in
Section 2.3 using standard finite elements. Moreover, by
means of mulitiobjective optimization problems we numer-
ically analyze actuator and sensor capabilities of this lam-
inated piezoelectric plate model.

3.1. The discrete model

Applying the finite element method to (14) and (12)
leads to a discrete laminated piezoelectric plate model,
which is stated in the below Theorem 3.1. In the sequel
we assume that the plate’s middle plane is a rectangular
domain x that is discretized using m ¼ n1n2 axis-parallel
rectangles xe, i.e., x ¼
Sm

e¼1x
e. We suppose xe ¼

½ae
1; b

e
1� � ½ce

2; d
e
2� and denote he

1 ¼ be
1 � ae

1 and he
2 ¼ de

2 � ce
2,

that is, fxeg is affine equivalent to the reference element
x̂ ¼ ½�1;þ1� � ½�1;þ1�.

Bilinear and non-conforming higher-order finite ele-
ments (cf. [23]) are chosen to approximate the tangential
and transverse displacement fields ðn1; n2Þ and u3 ¼ n3 of
the Kirchhoff–Love displacement u, respectively. Eight
degrees of freedom of the bilinear finite element are the val-
ues of ðn1; n2Þ at the vertices of xe, and the 12 degrees of
freedom characterizing the non-conforming finite element
are the values of u3, u3,1 and u3,2 at the vertices of xe. We
also utilize the 2 · 8-matrix M and the 12 · 1-vector Ne

that correspond, respectively, to the four shape functions
of the bilinear finite element and the twelve shape functions
corresponding to the non-conforming finite element
defined in x̂ (cf. (26) and (27) in [4]). Moreover, let Le

and Se be the matrices that correspond to the derivatives
of the shape functions of the bilinear and the non-conform-
ing finite elements, respectively (cf. (38) and (39) in [4]).

If n is the number of nodes in the finite element mesh, as
approximation of the displacements ðn1; n2; n3; n3;1; n3;2Þ in
x we obtain the vector u 2 R5n defined by

u ¼ ½ utg utv � 2 R2nþ3n with

utg ¼ ðu1j; u2jÞnj¼1; utv ¼ ðu3j; u31j; u32jÞnj¼1;

where utg and utv are, respectively, the approximations of
the tangential and transverse displacements ðn1; n2Þ and
ðn3; n3;1; n3;2Þ. This means that u1j, u2j and u3j, u31j, u32j are
the approximations of n1, n2 and n3, n3;1, n3;2, respectively,
at the node j of the finite element mesh x. Moreover, if P is
an arbitrary set of indices, we denote by utvP , utgP the sub-
vectors of utv and utg respectively, whose components have
their indices in P.

Let also

F i ¼
Z þh

�h
fi dx3 þ gþi þ g�i ; for i ¼ 1; 2; 3;

ftg ¼ ½ F 1 F 2 �> and f tv ¼ F 3

be the vectors associated to the density of the mechanical
forces acting on the middle plane x of the plate, and let
the vectors ps

3, alam and blam (related to the material coeffi-
cients p3, aab and bab of the laminated plate, cf. (10) and
(30)) be defined by

ps
3 ¼ ½ ps

311 ps
322 ps

312 � for each layer s;

alam ¼ ½ a11 a22 a12 �; blam ¼ ½ b11 b22 b12 �:

Then we have the following theorem.

Theorem 3.1. The finite element discrete problem associated

to (14) is

Find u ¼ ½ utg utv � 2 R5n such that:

utgI ¼ 0; utvJ ¼ 0;

Ku ¼ F :

8><
>: ð33Þ
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The equations utgI ¼ 0 and utvJ ¼ 0 represent the discrete

boundary conditions for the displacements. At the element

level, the square matrix K and the vector F are defined by

Ke and Fe, respectively. The 20 · 20 matrix Ke is in general

non-symmetric and depends on the laminated material

coefficients

Ke ¼ he
1he

2

4

Z
x̂

Le> 0

0 Se>

" #
20�6

Olam
6�6

Le 0

0 Se

� �
6�20

 !
dxe;

where Olam is the material matrix defined in (31). The vector

Fe has 20 components and is related to the mechanical forces

and the applied electric potential uþ0 and u�0 . Assuming that
the surface mechanical force g = 0 in C1 and fa, gþa , g�a are

independent of x3 2 ½�h; h� we obtain

F e ¼
F e

tg

F e
tv

� �
; where

F e
tg ¼

he
1he

2

4

Z
x̂

M>ftg � ðuþ0 � u�0 ÞcLe>
Xk

s¼1

ps
3
>

ps
33

ts

" #
dx̂;

F e
tv ¼

he
1he

2

4

Z
x̂

N e>ftv þ ðuþ0 � u�0 ÞcSe>
Xk

s¼1

ps
3
>

ps
33

tszs

" #
dx̂:

ð34Þ
It is worth noticing that the nodal displacements utg and utv in

(33) are coupled (due to the definition of Olam in (31)).

Furthermore, if x3 belongs to lamina i, 1 6 i 6 k, the finite

element approximation of the electric potential (32) in

xe � ð�h;þhÞ is defined by

uðx1; x2; x3Þjxe�ð�h;þhÞ

’ u�0 þ
Xi�1

s¼1

ps
3

ps
33

� alam

ps
33

c
� �

tsLeue
tg

�

� tszs
ps

3

ps
33

� ts
blam

ps
33

c
� �

Seue
tv þ

uþ0 � u�0
ps

33

cts

�

þ pi
3

pi
33

� alam

pi
33

c
� �

x3 � zi þ
ti

2

� �
Leue

tg

� pi
3

pi
33

x2
3 � zi �

ti

2

� �2
� �

1

2
Seue

tv þ
blam

pi
33

c x3 � zi þ
ti

2

� �
Seue

tv

þ uþ0 � u�0
pi

33

c x3 � zi þ
ti

2

� �
; ð35Þ

and if x3 belongs to lamina 1, the sum
Pi�1

s¼1½. . .� disappears

on the right-hand side of (35).

Proof. The arguments are similar to those used in Theorem
3.1 in [4], so we omit the proof. We remark that to obtain
the above form, we have assumed that the surface mechan-
ical force g = 0 in C1 and fa, gþa , g�a are independent of
x3 2 ½�h; h� in order to simplify the formulas for the vector
F. Otherwise the expression for Fe in (34) would consist of
more terms. Furthermore, to obtain (35), it suffices to use
(32) and apply the following standard finite element
approximations for each finite element xe
ðn1; n2Þ ’ Mue
tg; ½e11ðnÞ e22ðnÞ 2e12ðnÞ� ’ Leue

tg;

u3 ¼ n3 ’ Neue
tv; ½o11n3 o22n3 2o12n3� ’ Seue

tv: �

Remark 3.1. The finite element code for the discrete model
described in the previous theorem is available on request
(cf. http://www.mat.uc.pt/~isabelf/poci59502.html, code
Lampiezo.m).
3.2. Optimization problems

We now describe the optimization problems that model
the actuator and the sensor effect of the discrete 2D lami-
nated piezoelectric plate model (defined in Theorem 3.1).
For the actuator problem we vary the location of the
applied electric potential difference uþ0 � u�0 , and for the
sensor problem the location of the applied mechanical
loads. Moreover, for both problems, we may also change
the order of the different materials and the thickness of
each lamina. Before presenting the actuator and sensor
optimization problems, we define the optimization
variables.

3.2.1. Optimization variables

We consider three optimization variables: the vector t of
thicknesses, the vector mat of materials and the vector loc

representing the location of the non-zero applied electric
potential difference uþ0 � u�0 or the non-zero applied
mechanical loads ftg and ftv. The vectors t and mat are
defined by

t¼ðt1; t2; . . . ; tkÞ; with
Xk

s¼1

ts¼ 2h; ts > 0;

mat¼ðmat1;mat2; . . . ;matkÞ; matr 6¼mats; for r¼ sþ1:

The components of both vectors are numbered from the
lower to the upper face of the laminated plate, and layers
with zero thickness, or repeated materials are not allowed.

Next we define the vector loc. We assume that the non-
zero applied electric potential differences or mechanical
loads may act in regions of x with the same size. These
regions are numbered and the finite element discretization
of x is chosen such that the borders of the regions consist
of edges of adjacent finite elements. Then, the optimization
variable loc is defined by

loc ¼ ði; j; peÞ; ð36Þ

where 1 6 i 6 mj is the number of regions of x that consist
of j P 1 adjacent finite elements (mj is the total number of
regions), where the non-zero electric potential difference or
mechanical loads are applied. The set pe contains i elements
of Y j ¼ f1; 2; . . . ;mjg representing the location of these re-
gions. In particular, pe ranges over all subsets of Yj with
cardinality i, that is pe 2 Cmj

i ðY jÞ.
For example, for a rectangular mesh with 20 · 20 finite

elements setting loc ¼ ð3; 4� 4; ½1; 4; 8�Þ means that the
non-zero applied electric potential difference or non-zero

http://www.mat.uc.pt/~isabelf/poci59502.html
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applied mechanical loads are acting in three regions of x,
each consisting of 4 · 4 = 16 finite elements, located at
the positions pe ¼ ½1; 4; 8� of Y 16 ¼ f1; . . . ;m16 ¼ 25g.

Since the size of the regions with non-zero electric poten-
tial difference or mechanical load is independent of the
finite element mesh, for finer meshes the number of adja-
cent finite elements j corresponding to the regions in loc

increases. Obviously, for a mesh with m finite elements,
1 6 mj 6 m holds for any j and mj = m for j = 1.
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Fig. 1. Location pe = [l] of each element l 2 Y 16 ¼ f1; . . . ; 25g.

Table 1
Geometric, electric potential and mechanical loadings data

Parameter Unit Value (actuator problem) Value (sensor problem)

L1 m 1 1
L2 m 1 1
h m 0.01 0.01
uþ0 V �100 0
u�0 V 0 0
f = (fi) N (0,0,0) (10,10,10)
g = (gi) N (0,0,0) (10,10,10)

Table 2
Elastic, piezoelectric and dielectric data of the two materials

Parameter Unit PZT-5A ceramic value PZT-5 ceramic value

E1 GPa 67 62
E2 = E3 GPa 67 54.9
m12 = m13 = m23 0.31 0.31
G12 = G13 GPa 25.57 23.6
G23 GPa 25.57 18
P31 = P32 C m�2 �9.30032142 �12.006
P33 C m�2 20.3638 17.277
P15 = P26 C m�2 14.5749 15.812
e33 F m�1 15.31742 · 10�9 22.99 · 10�9
3.2.2. Actuator optimization problem

The actuator effect of a piezoelectric material (also
called the inverse piezoelectric effect) is the mechanical
deformation generated by applying an external electric field
to the material. The aim of this subsection is to present the
optimization problem that focuses on the maximization of
the actuator effect of the laminated piezoelectric plate
model.

For a mesh with m finite elements and n global nodes,
the mechanical displacement of the plate is determined by
the displacements ðn1; n2; n3Þ that define the Kirchhoff–
Love displacement u of the nodes in the plate’s middle
plane. For an arbitrary node j in the middle plane’s mesh,
the corresponding three-dimensional displacement ðn1; n2;
n3Þ is approximated by ðu1j; u2j; u3jÞ. Fixing the applied
mechanical forces and the boundary conditions, the nodes’
displacements depend on the location of the non-zero
applied electric potential difference loc ¼ ði; j; peÞ as well
as on the thickness and material vector t ¼ ðt1; . . . ; tkÞ
and mat ¼ ðmat1; . . . ;matkÞ. Of course, for each fixed triple
ðloc; t;matÞ exists a node in the mesh that attains a maxi-
mum displacement dðloc; t;matÞ, that is

dðloc; t;matÞ ¼ max
j¼1;...;n

kðu1j; u2j; u3jÞkR3 ;

where k � kR3 is the usual Euclidean norm in R3.
Our objective is to maximize dðloc; t;matÞ choosing

appropriate loc ¼ ði; j; peÞ, t ¼ ðt1; . . . ; tkÞ and mat ¼
ðmat1; . . . ;matkÞ, where pe ranges over all the subsets of
Yj with i distinct elements. At the same time we want to
minimize the number i of regions of x with non-zero elec-
tric potential difference. Therefore, two objectives are con-
sidered: the maximization of the displacements and the
minimization of the number i of regions. This corresponds
to the following non-differentiable multi-objective actuator
optimization problem

max
ðloc;t;matÞ

dðloc; t;matÞ ¼ max
ðloc;t;matÞ

ðmaxj¼1;...;nkðu1j; u2j; u3jÞkR3

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{dðloc;t;matÞ

Þ ^ min i

subject to :

loc ¼ ði; j; peÞ; pe 2 Cmj
i ðY jÞ; #pe ¼ i; i ¼ 1; 2; . . . ;mj;

t ¼ ðt1; t2; . . . ; tkÞ;
Pk
s¼1

ts ¼ 2h; ts > 0; s ¼ 1; . . . ; k;

mat ¼ ðmat1;mat2; . . . ;matkÞ; matr 6¼ mats; for r ¼ sþ 1;

Find u ¼ ½utgutv� 2 R5n such that :

utg I1
¼ utg I2

¼ 0; utvJ1
¼ utvJ2

¼ utvJ3
¼ 0;

Ku ¼ F ðloc;t;matÞ:

8><
>:

2
666666666664

2
666666666666666664

ð37Þ
Note that the vector F depends on ðloc; t;matÞ, cf. (34). To
emphasize this dependence, we write F ðloc;t;matÞ instead of F.

Note that for multi-objective problems such as (37), the
aim is to characterize the set of so-called Pareto optimal
solutions; these are solutions that cannot improve the
performance of the first objective function (the node’s
displacement dðloc; t;matÞ) without worsening the perfor-
mance of the second one (the number i of regions where
the applied electric potential difference is non-zero) and
vice-versa. If we drop the second objective, that is min i,
the multi-objective problem becomes an optimization
problem with only one objective, namely to achieve a max-
imal node’s displacement choosing ðloc; t;matÞ appropri-
ately for fixed i in loc.
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We point out that (37) is a combinatorial problem, since
different combinations of the positions for the applied elec-
tric potentials, of the layer’s thicknesses and the order of
the materials lead to a different displacement of the nodes.
In particular, the set Cmj

i ðY jÞ, that is, the admissible set for
the optimization variable pe is of cardinality Cmj

i ¼
mj!

i!ðmj�iÞ!
(for instance, for a mesh with mj = 25 and i = 3 we have
C25

3 ¼ 2300). Even if the numbers Cmj
i can be reduced due

to symmetries in the problem formulation, they become
very large.

Obviously, the solutions of the optimization problem
(37) strongly depend on the mechanical loadings and the
boundary conditions imposed to the plate. In order to
achieve a better understanding of the actuator effect, we
assume that all the mechanical loadings f = (fi) and
g = (gi) vanish. To analyze the influence of the boundary
conditions, we consider a plate that is clamped on different
parts of the lateral surface (this means that we vary the def-
inition of the set c0 � ox).
3.2.3. Sensor optimization problem

The sensor effect of a piezoelectric material (also called
the direct piezoelectric effect) consists in the generation of
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Fig. 2. Pareto curves: maximal displacement d versus number of regions i (w
multi-objective problem for BC = 1 (upper left plot), BC = 2 (upper right plo
an electric field in the material that is subject to an imposed
mechanical force. In this subsection we describe the optimi-
zation problem related to the maximization of the sensor
effect of the discrete laminated piezoelectric plate model.
The optimization variables are those defined above, that
is, ðloc; t;matÞ. As objective functional we choose the max-
imum value of the electric potential u (cf. (35)) at a pre-
defined thickness zs for each lamina s. That is, for a mesh
with m finite elements we consider the non-differentiable
function

elpotðloc; t;matÞ ¼ max
e¼1;...;m

max
s¼1;...;k

jujxe�fzsgj:

We notice that the discrete electric potential ujxe�ð�h;þhÞ
depends on ðloc; t;matÞ by means of the Kirchhoff–Love
displacement u, which is the solution of Ku ¼ F ðloc;t;matÞ,
cf. (33) and (35).

Analogously to the actuator optimization problem, the
objective is not only to maximize elpotðloc; t;matÞ, but also
to minimize the number i of regions of x with non-zero
mechanical forces. Therefore, two objectives are consid-
ered, which leads to the following sensor multi-objective
optimization problem
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here the electric potential difference uþ0 � u�0 is applied) for the actuator
t), BC = 3 (lower left plot) and BC = 4 (lower right plot).
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max
ðloc;t;matÞ

elpotðloc; t;matÞ¼ max
ðloc;t;matÞ

ðmaxe¼1;...;mmaxs¼1;...;k jujxe�fzsgÞj
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{elpotðloc;t;matÞ

Þ ^ min i

subject to :

loc¼ði;j;peÞ; pe2Cmj
i ðY jÞ; #pe¼ i; i¼ 1;2; . . . ;mj;

t¼ðt1; t2; . . . ; tkÞ;
Pk
s¼1

ts ¼ 2h; ts > 0; s¼ 1; . . . ;k;

mat¼ðmat1;mat2; . . . ;matkÞ; matr 6¼mats; if r¼ sþ1;

ujxe�fzsg defined in ð35Þ:

2
6666664

2
6666666666664

ð38Þ

Unlike the actuator optimization problem we assume in
this case non-zero mechanical forces and applied electric
potential all nil.
3.3. Numerical tests

In this subsection, we describe the data and the solutions
of our numerical tests. Moreover, we give a brief explana-
tion of the genetic algorithms used to solve the multi-objec-
tive optimization problems (37) and (38).
3.3.1. Data

Let us consider a fixed three-dimensional coordinate
system OXYZ and a laminated plate X ¼ ½0; L1� � ½0; L2��
½�h;þh� with thickness 2h and a rectangular middle plane
x ¼ ð0; L1Þ � ð0; L2Þ. The set x is partitioned into a mesh
of m sub-rectangles, where electrodes or mechanical loads
are imposed. We assume a laminated plate consisting of
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Fig. 3. Pareto curves: maximal electric potential elpot versus number of region
problem for BC = 1 (upper left plot), BC = 2 (upper right plot), BC = 3 (low
two layers made of two different piezoelectric materials.
The parameters zs and ts for s ¼ 1; 2 (related to the thick-
ness ts and introduced before in Section 2.3) are defined as

z1 ¼ �
hþ h0

2
þ h0; t1 ¼ hþ h0;

z2 ¼
h� h0

2
þ h0; t2 ¼ h� h0; ð39Þ

where h0 2 R is such that �h < h0 < h. Layer 1 is below x
while layer 2 is above, and if h0 ¼ 0 then t1 = t2 and both
layers have the same thickness. If h0 > 0 (respectively,
h0 < 0) layer 1 (respectively, layer 2) is thicker than layer
2 (respectively, layer 1).

In the sequel, we fix a 20 · 20 finite element mesh for the
middle plane x; the finite elements and the nodes are num-
bered from the left side ls ¼ f0g � ½0; L2� to the right side
rs ¼ fL1g � ½0; L2� and from the bottom side bs ¼
½0; L1� � f0g to the top side ts ¼ ½0; L1� � fL2g of x. We
consider four types of clamped boundary conditions
(abbreviation BC). If BC = 1, x is clamped only on the
bottom side (c0 ¼ bs); if BC = 2, x is clamped on the left,
bottom and right sides (c0 ¼ ls [ bs [ rs); if BC = 3, x is
clamped on the two opposite left and right sides
(c0 ¼ ls [ rs); finally, if BC = 4, x is clamped on the two
consecutive bottom and right sides (c0 ¼ bs [ rs). We sup-
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s i (where the mechanical loads are applied) for the sensor multi-objective
er left plot) and BC = 4 (lower right plot).
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pose that the non-zero applied electric potential difference
(for actuator multi-objective problem (37)) or the non-zero
applied mechanical loads (for the sensor multi-objective
problem (38)) may act in i = 1 up to i = 25 regions consist-
ing of 16 = 4 · 4 adjacent finite elements
of the 20 · 20 mesh (we recall that the definition of
i in given in (36)), located at the positions pe � Y 16 ¼
f1; . . . ;m16 ¼ 25g as explained in Fig. 1.

The exact data for the geometry, the electric potential
and the mechanical loadings are given in Table 1.
Table 3
Solutions loc, h0, mat, node and d for the actuator optimization problem (mes

BC loc =(i, j,pe) h0

1 (1,4 · 4, [4]) 0.00125
(2,4 · 4, [4,5]) 0.00125
(3,4 · 4, [3,4,5]) 0.00125
(4,4 · 4, [3,4,5,9]) 0.00125

Fig. 4 ! (5,4 · 4, [2,3,4,5,9]) 0.00125
2 (1,4 · 4, [23]) 0

(2,4 · 4, [17,23]) 0
(3,4 · 4, [18,23,24]) 0
(4,4 · 4, [18,19,23,24]) 0

Fig. 5 ! (5,4 · 4, [17,18,19,22,23]) 0
3 (1,4 · 4, [3]) 0

(2,4 · 4, [2,3]) 0
(3,4 · 4, [2,3,8]) 0
(4,4 · 4, [2,3,7,8]) 0

Fig. 6 ! (5,4 · 4, [2,3,7,8,9]) 0
4 (1,4 · 4, [1]) 0.00125

(2,4 · 4, [1,2]) 0.00125
(3,4 · 4, [1,2,3]) 0.00125
(4,4 · 4, [1,2,3,7]) 0.00125

Fig. 7 ! (5,4 · 4, [1,2,3,6,7]) 0.00125

Table 4
Solutions loc, h0, mat, e and elpot for the sensor optimization problem (mesh:

BC loc = (i, j,pe) h0

1 (1,4 · 4, [21]) 0.00875
(2,4 · 4, [21,22]) 0.00875
(3,4 · 4, [16,21,22]) 0.00875
(4,4 · 4, [16,21,22,23]) 0.00875

Fig. 8 ! (5,4 · 4, [16,17,21,22,23]) 0.00875
2 (1,4 · 4, [24]) 0.00875

(2,4 · 4, [23,24]) 0.00875
(3,4 · 4, [23,24,25]) 0.00875
(4,4 · 4, [22,23,24,25]) 0.00875

Fig. 9 ! (5,4 · 4, [19,22,23,24,25]) 0.00875
3 (1,4 · 4, [23]) 0.00875

(2,4 · 4, [23,24]) 0.00875
(3,4 · 4, [23,24,25]) 0.00875
(4,4 · 4, [22,23,24,25]) 0.00875

Fig. 10 ! (5,4 · 4, [19,22,23,24,25]) 0.00875
4 (1,4 · 4, [21]) 0.00875

(2,4 · 4, [21,22]) 0.00875
(3,4 · 4, [21,22,23]) 0.00875
(4,4 · 4, [21,22,23,24]) 0.00875

Fig. 11 ! (5,4 · 4, [16,21,22,23,24] 0.00875
The piezoelectric, dielectric and elastic coefficients of the
two materials (Pijk, eij and Cijkl) are given in (40) and Table
2. In particular, the elasticity matrix (Cijkl) in terms of the
Young’s moduli E1, E2, E3, the Poisson’s ratios m12, m13, m23

and the shear moduli G12, G13, G23 of the material are
shown. All the data displayed in Table 2 correspond
exactly to two PZT ceramic materials used in [26]. The
materials are orthotropic with constant elastic, piezoelec-
tric and dielectric coefficients (cf. Tables VIII and XI in
[26]).
h: 20 · 20)

mat = (mat1, mat2) Node d

(PZT-5, PZT-5A) 441 1.248183E�05
(PZT-5, PZT-5A) 441 2.293397E�05
(PZT-5, PZT-5A) 441 3.348424E�05
(PZT-5, PZT-5A) 441 4.029649E�05
(PZT-5, PZT-5A) 441 4.680007E�05
(PZT-5, PZT-5A) 431 4.818227E�06
(PZT-5, PZT-5A) 431 6.438335E�06
(PZT-5, PZT-5A) 432 8.721058E�06
(PZT-5, PZT-5A) 432 1.042312E�05
(PZT-5, PZT-5A) 430 1.190036E�05
(PZT-5, PZT-5A) 11 4.828368E�06
(PZT-5, PZT-5A) 10 6.808695E�06
(PZT-5, PZT-5A) 10 8.708387E�06
(PZT-5, PZT-5A) 10 1.038399E�05
(PZT-5, PZT-5A) 10 1.183562E�05
(PZT-5, PZT-5A) 421 6.536013E�06
(PZT-5, PZT-5A) 421 1.287488E�05
(PZT-5, PZT-5A) 421 1.719750E�05
(PZT-5, PZT-5A) 421 2.051966E�05
(PZT-5, PZT-5A) 421 2.366497E�05

20 · 20)

mat = mat1, mat2 e elpot

(PZT-5, PZT-5A) 5 0.894998
(PZT-5, PZT-5A) 5 1.654821
(PZT-5, PZT-5A) 5 2.380768
(PZT-5, PZT-5A) 6 3.011719
(PZT-5, PZT-5A) 6 3.615470
(PZT-5, PZT-5A) 380 0.295855
(PZT-5, PZT-5A) 380 0.535390
(PZT-5, PZT-5A) 380 0.676532
(PZT-5, PZT-5A) 380 0.792569
(PZT-5, PZT-5A) 380 0.903534
(PZT-5, PZT-5A) 380 0.239884
(PZT-5, PZT-5A) 380 0.535988
(PZT-5, PZT-5A) 380 0.677186
(PZT-5, PZT-5A) 380 0.793471
(PZT-5, PZT-5A) 380 0.904455
(PZT-5, PZT-5A) 360 0.556523
(PZT-5, PZT-5A) 360 1.099163
(PZT-5, PZT-5A) 360 1.594584
(PZT-5, PZT-5A) 360 1.972989
(PZT-5, PZT-5A) 360 2.330120
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Fig. 4. Actuator optimization problem: transverse displacement of the plate’s middle plane for BC = 1 (left plot) and corresponding optimal position
pe = [2,3,4,5,9] of the regions where the non-zero electric potential difference is applied (right plot).
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Fig. 5. Actuator optimization problem: transverse displacement of the plate’s middle plane for BC = 2 (left plot) and corresponding optimal position
pe = [17,18,19,22,23] of the regions where the non-zero electric potential difference is applied (right plot).
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Fig. 6. Actuator optimization problem: transverse displacement of the plate’s middle plane for BC = 3 (left plot) and corresponding optimal position
pe = [2,3,7,8,9] of the regions where the non-zero electric potential difference is applied (right plot).
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Fig. 7. Actuator optimization problem: transverse displacement of the plate’s middle plane for BC = 4 (left plot) and corresponding optimal position
pe = [1,2,3,6,7] of the regions where the non-zero electric potential difference is applied (right plot).

0 50 100 150 200 250 300 350 400
–4

–3.5

–3

–2.5

–2

–1.5

–1

–0.5

0

0.5

1

E
le

ct
ric

 P
ot

en
tia

l

Finite Elements

axis X 

ax
is

 Y
 

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

2

4

6

8

10

12

14

16

x 10
–6

axis X

axis Y 

ax
is

 Z
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P 111 P 122 P 133 P 123 P 131 P 112

P 211 P 222 P 233 P 223 P 231 P 212

P 311 P 322 P 333 P 323 P 331 P 312

2
664

3
775 ¼

0 0 0 0 P 15 0

0 0 0 0 0 P 26

P 31 P 32 P 33 0 0 0
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664

3
775;
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e22 e23

sym: e33
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664

3
775 ¼ e33

1 0 0

0 1 0

0 0 1

2
664

3
775; ð40Þ

C1111 C1122 C1133 C1123 C1131 C1112
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C3333 C3323 C3331 C3312

C2323 C2331 C2312

sym: C3131 C3112

C1212

2
6666666666664

3
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¼

1
E1
� m12
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� m13

E3
0 0 0

1
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� m23

E3
0 0 0

1
E3

0 0 0

1
G23

0 0

sym: 1
G13

0

1
G12

2
666666666666664

3
777777777777775

�1

:

In Tables 1 and 2, the unit symbols m, V, N, GPa,
C m�2 and F m�1 mean, respectively, meter, volt, new-
ton, giga pascal, coulomb per square meter and farad per
meter.
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Fig. 9. Sensor optimization problem: transverse displacement of the plate’s m
ujxe�fz1g on lamina 1 and dotted – ujxe�fz2g on lamina 2) (upper right plot), and
the non-zero mechanical forces are applied (lower plot).
3.3.2. Genetic algorithms

In general, engineering problems involve multiple con-
flicting objectives. For these problems no single solution
that is optimal with respect to all objectives exists. Instead,
there is a set of optimal solutions, known as Pareto optimal
solutions, reflecting compromises between the objectives.
Genetic algorithms (cf. [24]) are population based algo-
rithms and, therefore, particularly suitable to tackle multi-
objective problems. They can, in principle, find multiple
widely different Pareto-optimal solutions in a single run
(cf. [25]). Furthermore, they do not require any differentia-
bility or convexity assumptions and can deal with complex
search spaces, as well as non-convex Pareto fronts.

We apply the elitist genetic algorithm, described in [3] to
the actuator and sensor multi-objective optimization prob-
lems. We note that the genetic algorithm used in this paper
is also similar to the one applied in [4] for the analysis of
the actuator effect of a single plate made of a transversely
isotropic piezoelectric material. However, the mechanical
model considered in the present paper is more complex
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than the one in [4]. In fact, in the present model, the plate is
laminated and made of different materials and therefore the
tangential and transverse mechanical displacements are
coupled (this did not occur in [4]). Moreover we deal with
additional optimization variables related to the thicknesses
of the layers and the order of the materials. We discuss
both the actuator and sensor effects.

We now shortly describe some technical features and the
parameters of this genetic algorithm. For both problems
(37) and (38), the optimization variables loc = (i, j,pe), t

and mat are encoded using binary strings (referred also
as chromosomes) with a total length of 30 bits. The first
25 bits represent the sequence of the 25 regions: 1 means
that a non-zero electric potential difference or a non-zero
mechanical load is applied in this region, while 0 means
that the applied electric potential difference or the mechan-
ical load is equal to zero. Since only two materials are con-
sidered, the next bit suffices to represent the order of the
materials: 1 represents the material vector mat = (mat1,
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Fig. 10. Sensor optimization problem: transverse displacement of the plate’s m
ujxe�fz1g on lamina 1, and, dotted – ujxe�fz2g on lamina 2) (upper right plot) and
the non-zero mechanical forces are applied (lower plot).
mat2), while 0 corresponds to mat = (mat2,mat1). The
remaining 4 bits of the binary string represent the parame-
ter h0 2 R (related to the thicknesses of the layers, cf. (39))
as a small constant ranging from � 7h

8
to 7h

8
, allowing 16

values for h0.
For the actuator problem, to each string we assign a dis-

placement u, which is the solution of the inner linear system
Ku = F in problem (37). For the sensor problem, to each
chromosome we assign the vector of the electrical poten-
tials ujxe�fzsg with s = 1,2, and e ¼ 1; . . . ;m, where m is
the total number of finite elements.

The genetic algorithms is stopped after 100 generations.
In all numerical tests we use an initial population size of
100 chromosomes. A tournament selection, a two point
crossover and a uniform mutation are adopted. The cross-
over probability is 0.7. The mutation probability is given
by 1

b, where b is the binary string length, that is b = 30.
The elitism level considered is 10. The value of sigma share
(rshare) is taken equal to 1. For sharing purposes, the dis-
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tance measure considered is the Hamming distance
between chromosomes (cf. [24]).

3.3.3. Solutions

For all our tests, the stiffness matrices K and force vec-
tors F have been evaluated with the subroutines planre and
platre of the CALFEM toolbox of MATLAB [27]. The
genetic algorithms have been implemented in C++.

The Fig. 2 shows the objective values d of the Pareto
optimal solutions for the actuator multi-objective problem
(37) as a function of the number i of regions. We observe
an increase of the displacement d with the number of
regions i, but for some values of i there are not Pareto opti-
mal solutions. This happens for 23 6 i 6 25 if BC = 1, for
22 6 i 6 25 if BC = 2, for 20 6 i 6 25 if BC = 3, and for
19 6 i 6 25 if BC = 4. This means, for example for the lat-
ter case BC = 4, that to achieve a maximum displacement d

it suffices to apply the electric potential difference to 18
regions, because the application of a non-zero electric
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Fig. 11. Sensor optimization problem: transverse displacement of the plate’s m
ujxe�fz1g on lamina 1, and, dotted – ujxe�fz2g on lamina 2) (upper right plot) and
the non-zero mechanical forces are applied (lower plot).
potential difference in more than 18 regions (in 21 or 23,
for example) will not increase the maximum displacement
value d.

Analogously, Fig. 3 represents the objective values elpot

of the Pareto optimal solutions for the sensor multi-objec-
tive problem (38) as a function of the number i of regions,
where mechanical forces are applied.

We observe the same phenomena as in Fig. 2. In gen-
eral, the objective value elpot increases with the number i,
but for some i there are not Pareto optimal solutions.
Namely, for 24 6 i 6 25 if BC = 1, for 23 6 i 6 25 if
BC = 2, for 18 6 i 6 25 if BC = 3, and for 22 6 i 6 25 if
BC = 4.

Some of the Pareto optimal solutions produced by the
genetic algorithms are also displayed in Table 3 (for the
actuator optimization problem) and Table 4 (for the sensor
optimization problem).

In Table 3, node represents the number of the node, in
which the maximum displacement d is attained. The Figs.
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4–7 (labelling four rows in Table 3) represent the plots of
the transverse displacements of the plate’s middle plane
for the corresponding BC, loc and mat.

In Table 4, e is the number of the finite element where
the maximum electric potential elpot is attained for the
sensor optimization problem. The Figs. 8–11 (labelling
four rows in Table 4) depict the transverse displacement
of the plate’s middle plane and plot the electric potentials
measured at the middle plane of each lamina and at each
finite element for the indicated four groups of BC, loc and
mat.

In Tables 3 and 4, we have omitted all the symmetric
solutions loc, h0 and mat producing the same objective val-
ues d and elpot. In fact, due to the symmetry of the plate
and the boundary conditions, there are always several loca-
tions pe and symmetrical values of h0 and mat that lead to
the same d and elpot.

Finally we have also tested the influence of the refine-
ment of the finite element mesh in the numerical results
produced by the genetic algorithms. We have done experi-
ments with three meshes with 5 · 5, 10 · 10 and 20 · 20
finite elements, which means that the variable j in loc
becomes j = 1 for the 5 · 5 mesh, j = 4 = 2 · 2 for the
10 · 10 mesh and j = 16 = 4 · 4 for the 20 · 20 mesh. For
these three different discretizations we observe a similar
behavior of the objective values d, elpot and h0, mat, as well
as a similar location pe for the optimal regions.

4. Conclusions

In this paper, we have developed a piezoelectric model
for a thin plate made of a completely anisotropic material.
For the sake of validating the model, a laminated plate
with two piezoelectric materials of variable thickness is
used. For this plate, the actuator and the sensor effects
are studied using bi-objective optimizations problems.
Due to their characteristics (non-differentiability and
non-convexity), genetic algorithms are used to obtain
(Pareto-optimal) solutions. For the actuator optimization
problem the objectives are to maximize the mechanical
displacement while, at the same time, minimize the num-
ber of regions where a non-zero electric potential is
applied. For the sensor effect, the objectives are the max-
imization of the electric potential inside the plate while
minimizating the number of regions which are subject to
mechanical loads. For various boundary conditions we
show where to place the applied electric potentials or
the mechanical loads, taking into consideration the thick-
ness and the order of the materials. Future work will aim
at solving problems with more involved optimization vari-
ables and new objectives (e.g., to obtain a pre-defined
mechanical deformation of the plate) using genetic algo-
rithms. Moreover, we also intend to apply techniques
from continuous optimization such as optimal control
for the investigation and the design of smart materials
involving piezoelectric plates.
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