

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Journal of Computational and Applied Mathematics 200 (2007) 283-286

www.elsevier.com/locate/cam

On the eigenvalues of some tridiagonal matrices

C.M. da Fonseca*

Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal

Received 13 December 2004

Abstract

A solution is given for a problem on eigenvalues of some symmetric tridiagonal matrices suggested by William Trench. The method presented can be generalizable to other problems.

© 2006 Elsevier B.V. All rights reserved.

MSC: 15A18; 65F15; 15A09; 15A47; 65F10

Keywords: Tridiagonal matrices; Eigenvalues; Recurrence relations; Chebyshev polynomials

1. Inverse of a tridiagonal matrix

In [4], Trench proposed and solved the problem of finding eigenvalues and eigenvectors of the classes of symmetric matrices:

$$A = [\min\{i, j\}]_{i, i=1,...,n}$$

and

$$B = [\min\{2i - 1, 2j - 1\}]_{i, i=1,\dots,n}.$$

Later Kovačec presented a different proof of this problem [2]. Here a new proof is given. We show that solving this problem is equivalent to solving the eigenvalue problem for tridiagonal matrices with -1 on the 2 on the diagonal except for the (1, 1)-entry.

First note that these two matrices are in fact particular cases of a more general matrix:

$$C = [\min\{ai - b, aj - b\}]_{i = 1}$$

with a > 0 and $a \ne b$. It is very interesting that, under the above conditions, C is always invertible and its inverse is a tridiagonal matrix.

E-mail address: cmf@mat.uc.pt.

[☆] This work was supported by CMUC—Centro de Matemática da Universidade Coimbra.

^{*} Tel.: +351 239 791172; fax: +351 239 832568.

Given an n-by-n nonsingular tridiagonal matrix T

$$T = \begin{pmatrix} a_1 & b_1 \\ c_1 & a_2 & b_2 \\ & c_2 & \ddots & \ddots \\ & & \ddots & \ddots & b_{n-1} \\ & & & c_{n-1} & a_n \end{pmatrix},$$

Usmani [1,5,6] gave an elegant and concise formula for the inverse:

$$(T^{-1})_{ij} = \begin{cases} (-1)^{i+j} b_i \cdots b_{j-1} \theta_{i-1} \phi_{j+1} / \theta_n & \text{if } i \leq j, \\ (-1)^{i+j} c_j \cdots c_{i-1} \theta_{j-1} \phi_{i+1} / \theta_n & \text{if } i > j, \end{cases}$$

where θ_i 's verify the recurrence relation $\theta_i = a_i\theta_{i-1} - b_{i-1}c_{i-1}\theta_{i-2}$, for i = 2, ..., n, with initial conditions $\theta_0 = 1$ and $\theta_1 = a_1$, and ϕ_i 's verify the recurrence relation $\phi_i = a_i\phi_{i+1} - b_ic_i\phi_{i+2}$, for i = n-1, ..., 1, with initial conditions $\phi_{n+1} = 1$ and $\phi_n = a_n$. Observe that $\theta_n = \det T$. See also [3].

Proposition 1.1. For a > 0 and $a \neq b$, the tridiagonal matrix of order n

$$T_{n} = \begin{bmatrix} 1 + \frac{a}{a - b} & -1 & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 & \\ & & & -1 & 1 & \end{bmatrix}$$
(1.1)

is the inverse of (1/a)C.

Proof. We only have to observe that θ_i 's verify the recurrence relation $\theta_i = 2\theta_{i-1} - \theta_{i-2}$, for $i = 2, \ldots, n-1$, and $\theta_n = \theta_{n-1} - \theta_{n-2}$, with initial conditions $\theta_0 = 1$ and $\theta_1 = ((2a-b)/(a-b))$, and ϕ_i 's verify the recurrence relation $\phi_i = 2\phi_{i+1} - \phi_{i+2}$, for $i = n-1, \ldots, 2$, with initial conditions $\phi_{n+1} = 1$ and $\phi_n = 1$. \square

2. Eigenpairs of a particular tridiagonal matrix

According to the previous section, the problem of finding the eigenvalues of C is equivalent to describing the spectra of a tridiagonal matrix. Here, we give a general procedure to locate the eigenvalues of the matrix T_n (1.1).

Let us consider the set of polynomials $\{Q_k(x)\}$ defined by the recurrence relation given by $Q_0(x) = 1$ and $Q_1(x) = (ax + 1)Q_0(x)$,

$$Q_k(x) = (ax + 2)Q_{k-1}(x) - Q_{k-2}(x)$$
 for $k = 2, ..., n-1$

and

$$Q_n(x) = \left(ax + \frac{2a - b}{a - b}\right) Q_{n-1}(x) - Q_{n-2}(x).$$

Note that each polynomial $Q_k(x)$, for k = 0, ..., n, is of degree k. The last recurrence relation has the following matricial form:

$$x \begin{bmatrix} Q_{n-1}(x) \\ Q_{n-2}(x) \\ \vdots \\ Q_{1}(x) \\ Q_{0}(x) \end{bmatrix} = -\frac{1}{a} \begin{bmatrix} \frac{2a-b}{a-b} & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{bmatrix} \begin{bmatrix} Q_{n-1}(x) \\ Q_{n-2}(x) \\ \vdots \\ Q_{1}(x) \\ Q_{0}(x) \end{bmatrix} + Q_{n}(x) \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}.$$

Since $Q_k(x) = U_k(ax/2 + 2) - U_{k-1}(ax/2 + 2)$, for k = 0, ..., n-1, and

$$Q_n(x) = U_n \left(\frac{ax}{2} + 1\right) - U_{n-1} \left(\frac{ax}{2} + 1\right) - \left(1 - \frac{a}{a - b}\right) \left(U_{n-1} \left(\frac{ax}{2} + 1\right) - U_{n-2} \left(\frac{ax}{2} + 1\right)\right),$$

where $U_k(x)$, for k = 0, ..., n, are the Chebyshev polynomials of second kind of degree k, the zeros of $Q_n(x)$ are exactly the eigenvalues of -(1/a)C, i.e., the (real) values which satisfy the equality

$$p_n(x) := \frac{U_n(ax/2+1) - U_{n-1}(ax/2+1)}{U_{n-1}(ax/2+1) - U_{n-2}(ax/2+1)} = 1 - \frac{a}{a-b} . \tag{2.1}$$

In general, (2.1) means that the eigenvalues of -(1/a)C are the intersections of the graph of $p_n(x)$ with the line y = 1 - a/(a - b).

As a first consequence, consider the case when a=1 and b=0. The eigenvalues of -A are the solutions of the equation $U_n(x/2+1)-U_{n-1}(x/2+1)=0$, which are, for $k=0,\ldots,n-1$,

$$\lambda_k = 2\cos\left(\frac{2k+1}{2n+1}\,\pi\right) - 2.$$

The value of an eigenvector associated to λ_k follows immediately:

$$[Q_{n-1}(\lambda_k) \cdots Q_1(\lambda_k) Q_0(\lambda_k)]^t$$
.

Hence we proved the following:

Theorem 2.1 (Kovačec [2], Trench [4]). The matrix A of order $n, n \ge 3$, has the eigenpairs (λ_k, v_k) given by

$$\lambda_k = \frac{1}{2}(1 - \cos(r_k))^{-1}$$
 and $v_k = [\sin(jr_k)]_{i=1,\dots,n}^t$

where

$$r_k = \frac{2k+1}{2n+1}\pi,$$

for k = 0, ..., n - 1.

If a = 2 and b = 1, then the eigenvalues of -(1/2)B are solutions of the equation $U_n(x + 1) - U_{n-2}(x + 1) = 0$, which are, for k = 0, ..., n - 1,

$$\cos\left(\frac{2k+1}{2n}\pi\right)-1.$$

Remark 2.1. Analogously, for a positive integer n, the tridiagonal matrix of order n

$$M = \begin{bmatrix} -1 & 1 & & & & \\ 1 & -2 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ & & & 1 & -1 + \frac{1}{n} \end{bmatrix}$$

is invertible and its inverse is $M^{-1} = [\max\{i, j\}]_{i,j=1,\dots,n}$. Details are left to the reader.

Acknowledgments

We thank the referees and Renato Alvarez-Nodarse for the suggestions which improved the final presentation.

References

- [1] C.F. Fischer, R. Usmani, Properties of some tridiagonal matrices and their application to boundary value problems, SIAM J. Numer. Anal. 6 (1969) 127–142.
- [2] A. Kovačec, WMY 2000 and PARIS, August 8,1900 (A Celebration and A Dedication), Pre-Print 00-21, Department of Mathematics, University of Coimbra, 2000.
- [3] J.W. Lewis, Inversion of tridiagonal matrices, Numer. Math. 38 (1982) 333-345.
- [4] W.F. Trench, Eigenvalues and eigenvectors of two symmetric matrices, IMAGE Bull. Internat. Linear Algebra Soc. 22 (1999) 28-29.
- [5] R. Usmani, Inversion of a tridiagonal Jacobi matrix, Linear Algebra Appl. 212/213 (1994) 413-414.
- [6] R. Usmani, Inversion of Jacobi's tridiagonal matrix, Comput. Math. Appl. 27 (1994) 59-66.