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Abstract

Using some well known concepts on orthogonal polynomials, some recent results on the location of eigenvalues of tridiagona
matrices of very large order are extended. A significant number of important papers are unified.
(© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

There has been increasing interest in tridiagonal matiicée last few decades in various areas, such as numerical
analysis, special functions, partial differential equations, and, naturally, linear algebra. The evaluation of the spectr
of the matrices involvedeems to be essential.

Our aim is unifying a significant number of important papers which deal with the spectra of tridiagonal matrices,
bringing the results together in opéace, unifying them in the context di& theory of orthogonal polynomials. We
have generalized some recent works on the behavior aifevalues of some tridi@nal matrices which contain a
Toeplitz matrix in the upper left block tthe case of a general Jacobi matrix. Finally, we give some examples.

2. Orthogonal polynomials
One o the most important tools in the study of orthogonal polynomials is the so-called Favard theorem, which
states that any orthogonal polynomial sequence (QP$hso is characterized by a three-term recurrence relation
XPn(X) = anPny1(X) + BnPn(X) + ¥nPr-1(X), n=0,1,2,... (2.1)

with initial conditionsP_1(x) = 0 andPo(x) = const # 0, where{an}n>0, {Bn}n>0 and{yn}n>0 are sequences of
complex numbers such thafy,+1 #O0foralln=0,1,2,....

The next proposition is known as the Separation Thedmrthe zeros and tells us that the (distinct) zero®ef
andP,;1 are mutually separate.
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Theorem 2.1 ([3, p. 28]).In (2.1)let Bh € R and yn+1 > Oforalln = 0,1, 2, .. .. Then, for each n, P, hasn real
and distinct zeros, denoted in increasing order by xn1 < Xp2 < -+ < Xpn. Furthermore, the interlacing inequalities
Xn+li < Xni < Xn+ti+1 (0 =1,...,n)holdforeveryn=1,2,....

Notice that the three-term recurrence relat{@arl) can be written in matrix form as
Po(X) Po(x) 0
P1(X) P1(X) 0
X : = Jnt1 . + anPnt1(X) E
Pn(X) Pn(X) 1
whereJn1 is a Jacobi matx of ordern + 1, defined by
Bo o
Y1 B oo
g1 = o . n=0,1,2,..)).
Bn-1 on-1
n Pn

It follows that if {Xn; }’j‘:1 is the st of zeros of the polynomidt,, then eactxy; is an eigenvalue of the corresponding
Jacobi matrixJ, of ordern, and anassociated eigenvector(iBo(Xnj), P1(Xnj), ..., Ph—1(Xnj )]'. FromTheorem 2.1
the eigenvalues ady1 are distinct and interlace strictly with the eigenvaluegpf

Given afamily of orthogonal polynomial$Pn}n>0 defined by(2.1) with «n = 1 for all n (so that{Pn}n>0 is a

monic OPS) withy, > O foralln = 1,2, ..., we may déine theassociated polynomials of orderr (r a positive
integer){ Prﬁr)}nzo, n=20,12, ..., viathe shiftedrecurrence
P00 = X = ) PV 00 = v P10, n=0,1,2,... (2.2)

with P") =0 andP{"” = 1[2].
Led by the above definition, Ronveaux and Van Assche construct&piampw family of orthogonal polynomials,
the anti-associated polynomials for the family {Pn}n>0, denoted by{ P@;P}nz& obtained by pushing down a given

Jacobi matrix and by introducing in the empty upper left corner new coefficientéi =r,r — 1,..., 1), with 1's
on the upper subdiagonal and new coefficients> 0,i =r — 1,r — 2,..., 0 on the lower subdiagonal. The new
Jacobi matrix is then of the form
Bor 1
Y—r+1 B-rt1 1
Yrt2
B-1
Yo

If {Qn}n>0 satisfiesQ_1 =0, Qo =1 and
Qn+1() = (X = Br+n)Qn(X) = Y—r4nQn-1(x), n=01,....,r -1,
then, clearly,
P (x) = Qn(x), n=0,1,....r

Forn > r the anti-associated polynomials satisfy the three-term recurrence relation

P00 = (X = BP0 — P 10, n=0,12,....
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The anti-associated ponnomiBﬁ;P can be represented as a linear combination of the original faRilgnd the
associated polynomiaLah(f)1 in the following way:

PP (0 = QrOOPa0) — 90Qr-100P Y 00, n=0,1,2,.... 2.3)
3. Eigenvaluesof tridiagonal Toeplitz matrices

A most important OPS is the Chebyshev polynomial of the second Kihydn>0, which sdisfies the three-term
recurrence relations

XUn(X) = Uny1(X) + Un_1(X),

foralln = 1,2, ..., with initial conditionsUp(x) = 1 andU1(x) = 2x. It is well known (cf. [3], e.g.) that eaclu,,
alsosatisfies

sin(n + 1)
sing
foralln =0, 1, 2..., from which one easily deduce the orthogonality relations

1
f Un ()Upm(X)v/1 — x2dx = %an,m.
-1
Let T, be ann-by-n real tridiagonal Toeplitz matrix defined by

g1

Un(X) = , X=co0s0 (0<6 <m)

Tn _ y . .. eRan , (3'1)
. o
y B
with y > 0. The characteristic polynomial @f, is pn(2) = (/¥)"Un <%> and the eigenvalues @f, are the zeros
of pn(A) given by:

Theorem 3.1. The eigenvaluesof T, are

V%11
rM=p—2 —,
e=p WCOS(nH)

fore=1,2...,n.
If y <0, thenpn(A) = (i/=y)"Un <2ikfi3 )

.

4. Eigenvalues of Jacobi matrices

Let us consider the following blockedomposition of a tridiagonal matrix:

Br 1

Y—r+1 P-r+1 1

Y—r+42

Vi

Yk=1 PBk-1
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Fig. 1. A possible intersection of the graphs= Qr (x)/Qr_1(x) andy = yg Pﬁ)l(x)/H((x).

EPATHEY A

Kulkarni et al. [8] referred to this matrix as a pseudo-Toeplitz matvhenever the leftipper block is a Toeplitz
matfix.
The characteristic polynomial dt" is given byPk(;r”(x) defined in(2.3) i.e,,

P& () = Qr (0 PcX) — 70Qr-100 P, (%).

YoPPL 0

B I-€ the solutions

This means that the eigenvaluesTdﬁ‘ are the intersections of the graphic rii’&) and
of the equation

Q0 WP
Q-1x) P«

are eigenvalues ofX.
Under these conditions, let

Qr (X)
Qr—1(¥)’
According to B, p. 24],

Qr () Qr-1(x) = Qr(x)Qy_4(x) > 0.

(4.1)

pr(X) :=

(1)
Thereforep; is strictly increasing. Using a similar argument we may prove that the function definéoeg‘gy)@ is
strictly decreasing (cf.3, p. 8§), with yo > 0. (SeeFig. 1)
The next proposition is a generalization to any Jacobi matrix of Theorem 38 afifl the poof uses essentially
the same arguments.

Theorem 4.1. Let &, ..., & bethezerosof Q;. Then,for j = 1,...,r 4+ 1, each interval (§j_1, j) contains one

more root of Pk(;rr ) (X) than there are zeros of Pﬁ)l(x) /P (X).

In [6] da Fonseca generalized thissultto any acyclic matrix in a graph theoretical context.
As an immediate eansequence of thEheorem 4.1if we join the setof zeros ofQ, and of Pk(f)l and order them

non-decreasingly, then in each interval with as exgemwo consecutive elements, there exists one zeT&oThis
is essentially the main result of][and of [1], which relates the spread of the eiwalues of the Jacobi matrix to the
spread of the eigenvalues of its upper left and lower right blocks.

Corollary 4.2. Let

{—oo=po<y1=< < ¥n-1 < Yn = 00}
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the union of the zeros of Q; and those of Pk(Pr be ordered in a non-decreasingly way, withn = r + k. Thenin each
interval (yi—1, ), fori =1, ..., n, thereis exactly one different eigenval ue of Trk.

Bar-On [1] considered a tridiagonal Toeplitz matrix ofdar 1024 with the main diagonal equal to 2 and unit
subdiagonals, and gave sharper bounds for the exact eigenvalues of the matrix. Namelyh&oram 3.1the
eigenvalues of such a matrix are given analytically by

= dsi? 2 k=1 1024

Suppose that we are looking for the 307th eigenvalue which is
A307 = 0.821951265246423

According toCorollary 4.2, withr = 511,307 lies in the interval
(v306 = 0.818480596282257/307 = 0.825420593702442

Sinceyspg is the 153th zero 0fQs511 and

1
Péz)z(moa)
Ps23(y306)

A3p7is in the interval

(0.81959361812708D.825420593702442
&)
where the new limit is the 157th zero 8§23, apole of 22 pue to monotonicity we can easily generalize this result,
improving the bounds of the original interval, for example in the following way.
PP o)

Theorem 4.3. Suppose that Trk has an eigenvalue 1 in theinterval (ye, ye+1)- If ye isazero of Q, and o0 < 0,

then yk isintheinterval (6, y¢+1), where 6 isthe minimum of all the zeros of P, and of Q,_1 greater than y,.
5. Examples

The results obtained by Kulkarni et al. if][are in fact consequences of the previews sections. For example, they
analyzed some particular cases of pseudo-Toeplitz matrices like

a b
c
T{(a,b,c) = b
c a|b
C1 | a1
which is a particular case of
Br 1
Y—r+1 B-rt1 1
Trl — Y—r+2 T T ) (51)
. - 1
y-1 B-1| 1
Yo | Po

From(4.1), there energesP1(z) = z— Bp and, thust(Pl(z) =1.Letns, ..., nr—1 bethe zeros o®,_1. We may
state thdollowing:
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Fig. 2. A possible intersection of the graphs= ¢y _2(X)/¢r (x) andy = (x2 — 2a)/a(2e — a).

Theorem 5.1. If nj_1 < Bo < nj for some j, then there are precisely two additional roots of (4.1), exactly onelying
in each of theintervals (nj 1, fo) and (Bo, 7j).

Taking motivation from the study of antipodal tridiagonal patterns #&5]), an intereing case to study is that
when the Toeplitz matrix is affected layperturbation in the upper left and in the lower right blocks. Let us consider
the tridiagonal matrix with main diagonal equal to zero, wher@ > O:

01
|0 1

TLL .= €« . (5.2)

1
e 01
a |0

The characteristic polynomial d‘f,l’l is given by

Pn(X) := (X2 — 20)¢r (X) — at(2€ — a)r—2 (X) ,

where

b (%) = (V&) Ur <2X_¢z) |

If « = 2¢, the egenvalues o1 are the zeros afy and 2/ and—2,/e. Otherwise, ifx is an eigenvalue of bt
then it is an intersection of the gphics of the functions defined by
2 _
¢r—2(X) and > 201 '
¢r (X) o(2¢ —a)

The functiong, _2/¢; is even and on the positive real axis is dechegsand the second function is a parabola with
vertex— . (SeeFig. 2)

r+1)
fore =1,2..., L%J — 1 andfort = L%J +1,...,r — 1. If o > 2¢, then here are two eigenvalues in the interval

If Ap = 2/€ cos(ﬂ) fore =1,2...,r,then hereis always one eigenvalue(6f2)in each intervalig, A¢+1),

(Ar, +00) and two in the interval—oo, A1). Otherwise, therés one eigenvalue in the intervé.kLr?J , 0) and another

in <0, )\.l'f?-H_l)
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