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Abstract

In this paper, we use the analytic theory for 2 and 3-Toeplitz matrices to obtain the explicit expressions for
the eigenvalues, eigenvectors and the spectral measure associated to the corresponding infinite matrices. As al
application we consider two solvable models related with the so-called chain model. Some numerical experiments
are also included.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

k-Toeplitz matrices are tridiagonal matrices of the fofra- [ai,j]zjzl (with n > k) such that
itk jrk=a;j (G, j=12,...,n—k),
so that they aré-periodic along the diagonals parallel to the main diag¢®lWhenk = 1 it reduces
to a tridiagonal Toeplitz matrix.
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The interest of the study @f Toeplitz matrices appears to be very important not only from a theoretical
point of view (in linear algebra or numerical analysis, e.g.), but also in applications. For instance, it is
useful in the study of sound propagation problems [2¢3).

In this paper, we present a complete study of the eigenproblems for tridiagonal 2 and 3-Toeplitz
matrices, including the spectral measure associated to the corresponding infinite Jacobi matrices, and
then we apply the results to the study of the so called chain models in Quantum Physics. Since we hope
that our discussion could be of interest both to readers working on Applied Mathematics and Orthogonal
Polynomials as well as physicists, we will further develop the w{il& 14—17]ncluding several results
on tridiagonak-Toeplitz matrices that follow from the results in those papers but not explicitly included
there. Of particular interest is the symmetric case because of its interest in the study of quantum chain
models.

In fact, one of the main problems in Quantum Physics is to find the solutions of the stationary Schr6-
dringer equation

H| D) = ¢| D), (1.1)

where # is the Hamiltonian of the system amds the energy corresponding to the stabe. A usual
method for solving Eq. (1.1) is to expand the unknown wave functidhsn the “discrete” basis (not
necessarily orthogonaf)®x)};2 4, i.e.,

N
@) =) Cnildy). (1.2)
k=1

Substituting Eqg. (1.2) in (1.1) and multiplying k¥,,| and taking into account the orthogonality of the
functions|®;) we obtain the following linear system of equations

N

Z CNi{ P | A | Dy) = eCpm- (13)
k=1

If we denote the matrix element®,, |#° | @) by h,,;, then we can rewrite (1.3) in the matrix form

hi1 hi2 ... hin-1 hin Cn1 Cn1
h21 hoa2 ...  hon-1 han Cn2 Cn2
h31 hz2 ... h3n-1 h3 Cn3 Cn3
. = N . A Y (1.4)
hy-1 hy-12 ... hy_in-1 hyn-1N Cn_1n Cn_1n
hyi  hy2 ... hyn-1 hnn CnN CnN

In general, the computation of the eigenvalues (and also the eigenvectors) for an arbitrary matrix, as
the previous one in (1.4), is very difficult since it is equivalent to the problem of finding the roots of a
polynomial of degreeV. Moreover, the numerical algorithms (Newton's Method, etc.) are, in general,
unstable for largeV. For this reason simpler models (which are easier to solve and numerically more
stable and economic) have been introduced. One of these models is the scltaithethodelvhich has
been successfully used in Solid State Phygi@3, Nuclear Physicf22], and Quantum Mechani¢$1],
etc. In fact, any quantum model can be transformed into the correspoctatiiy modelsee[10] and
references therein).
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In our previous pap€gt] we have briefly considered the 2-periodic chain model—ethestant chain
mode] i.e., when the sequencés,} and{b,} are constants equal o andb, respectively, has been
considered if10]—i.e., when the sequencés,} and{b,} are periodic sequences with period 2, i.e.,
{an} = {a,b,a,b,...} and{b,} = {c,d, c,d,...}. For such models it is possible to obtain analytic
formulae for the values of the energy (eigenvaluesyodnd its corresponding wave functions. Here we
will conclude the study started [] for the two chain model and will present the complete study of the
3-periodic chain model.

The structure of the paper is as follows. In Section 2, we give the needed mathematical background.
Section 3 is devoted to some applications of the theory of tridiagbiTaeplitz matrices in quantum
physics: concretely to the so-called chain model.

2. Mathematical background
We start with some basic results from the general theory of orthogonal polynomials (sgi)ely.

is known that any orthogonal polynomial sequence (OHS), - it is characterised by a three-term
recurrence relation

XPy(x) =0 Pri1(x) + B, Pu(x) +7,Pr—1(x), n=0,1,2 ... (2.1)

with initial conditionsP_1 =0 andPy=1where{o, },, ~ 0, {#,}, > 0 and{y, },,~ 1 are sequences of complex
numbers such that,y,  ; # 0 for alln >0, or in matrix form

xpn(x) = Jn—l—lpn (x) + OCnPn—l—l(x)env (22)
whereP, (x) = [Po(x), ..., P,(x)]1",e,=[0,0,...,0,1]" € R"* andJ,,1 is the tridiagonal matrix of
ordern + 1

"fo %0 O O 0 07
71 P1 aa O 0 0
0 72 f2 = 0 0
Jopr1=|0 0 93 B3 0 0
0 0 0 0 ... g oma
000 0 0 ... 5,  f |

If {xuj}1<j<n are the zeros of the polynomid,, then it follows from (2.2) that each,; is an
eigenvalue of the corresponding tridiagonal matkpandP,,_1(x,;) := [Po(xzj), .. ., Pn_l(xnj)]T is a
corresponding eigenvector.
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Wheno, =1andy, > 0foralln=1, 2, ... the (monic) polynomial§P, }, - o defined by the recurrence
relation (2.1) arise as denominators of the approximants of the continued fraction

1

71

X = fo- 2

r ﬁl N Yn—1

X = ﬁn—l_

X —fPy—-e— o

-x_ﬁn_-

Under these conditions, by Favard’s theof@{ P, }, - o constitutes an orthogonal polynomial sequence
with respect to a positive definite moment functional, and if the moment problem associated with the
continued fraction is determined, then this linear functional can be characterised by a unique distribution
function, i.e., a functiom : R — R which is nondecreasing, it has infinitely many points of increase and

all the momentsf_JroooO x2ds(x),n=0,1,2, ..., are finite. The numerators of the continued fraction,

denoted by P,fl)},@o, can be given by the shifted recurrence relation
1 1
xPP )= P @) + B PP + 9,1 P (), n=0

with initial conditionstll) =0 andPél) =1. This continued fraction converges to a functiofx; o) and
the general theory of the moment problem ensuresihsfnalytic in the complex plane with a cut along
the support of (i.e., the set of points of increased®f This fact can be summarised by Markov—Stieltjes’s
theorem

P(l) +00
— lim “0"——1@ =F(z;0) = / da(x), z € C\supfo), (2.3)
n—>+00 Py (2) —o00 X —Z

whereug= [_Jr;o do(x) is the first moment of the distributiarn(x) and F is its Stieltjes function. Now,
the functions(x) can be recovered from (2.3) by applying the Stieltjes inversion formula

1

o(x) —ao(y)= lim —/ IF(t +ie, 0)dr,
e—0t T y

where it is assumed thatis normalised in the following way

_o(x+0)+a(x—0)

o(—00) =0, oa(x) 2

and3z denotes the imaginary part of
An important family of orthogonal polynomials are the orthonormal Chebyshev polynomials of second
kind {U,(x)},, > o defined in terms of trigonometric polynomials in ¢oas

sin 1)0
Up(x) = % x = Ccos0.

For these polynomials (2.1) takes the form

U—1=0’ UO:L ZXU}’[(X) =Un+l(x)+Un—1(x)a I’l:O, 1’ 2’ ree -
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They are orthonormal with respect to the distribution function

doy(x) = %\/ 1—x2dx, suppoy)=I[-1,1],

1
f U, (x)Upp (x) doy (x) = On,m;
1

whered, ,, is the Kronecker symbob ,, =1 for k =m, elsewherey ,, =0. The corresponding Stieltjes
function is

-2
Fy(z)= ————==-2(z2—-Vv72-1), zeC\[-11], 2.4
v = ( ) \ (2.4)
where the complex square root is such that +/z2 — 1| > 1 whenever ¢ [—1, 1].

The Chebychev polynomials, are closely related with the tridiagonal 2 and 3 Toeplitz matrices as it
is shown in the next two sections.

2.1. Remarks on tridiagonal 2-Toeplitz matrices

Let By be the irreducible tridiagonal 2-Toeplitz matrix

bp 0 0 0O ...7
a b 0 O
¢ a1 b1 O
0 c1 a2 by
0 0 ¢ a1

oo
=
I

e RMNM N eN, (2.5)

o000l 8

whereb1, bp, ¢1 andcs are positive numbers. Define the polynomials
m(x) = (x —a1)(x —a2)
and

x — b1c1 — baco
2:/b1brcico

whereU, is the Chebyshev polynomial of second kind.
The following theorem holds

P, (x) = (bibacico)"2U, ( ) . n=012...,

Theorem 2.1(Gover[7] and Marcellan and Petronilnfl4]). LetBy,N=1,2, 3, ..., betheirreducible
tridiagonal 2-Toeplitz matrix given b{2.5),whereb1, b, c1, andcz are positive numbers. The sequence
{Sx}, >0 of orthogonal polynomials associated with the matridasis

Sk (x) = (b1b2) " {(Pr(m2(x)) + baca Pr_1(m2(x))},
Sor11(x) = (b7 H(b1b2) *(x — a1) Pr(ma(x)), k=0,1,... .
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Then the eigenvalues, ,, of By are the zeros of i, and the corresponding eigenvecters ,, are given
by

So(/}N,m)
Y Sl(A:N”") . m=12...N.
SN-10N.m)
In particular,1 the eigenvaluegp, 11, of By, +1 (m=1, 2, ..., 2n+1) are Az,41,1=az and the solutions
of the quadratic equations
n2(l) — |:b1c1 + boco + zmcosnlfl} =0, k=1,...,n. (2.6)

Notice that since the sequenic® }, is an orthogonal polynomial sequence corresponding to a positive
definite case, then the zeros are simple and interlace, i{ek,,i}’;.:l denotes the zeros of the polynomial
Si, then

Xk, j <Xk—1,j <Xk j+1, J=12,..., k-1

Therefore using the values (2.6) we can obtain bounds for the eigenvalues of the corresponding matrices
for the even case.
Moreover (cf.[20]; see alsd15]), the Stieltjes function associated to the sequdiigg, - o reads as

1 1

Fs(z) = -
s@) ai—z 2bxo z—a1

(nz(z) - b= = p? = ). (2.7)

whereo = 24/b1bacicz and f = bicy + bocp. Furthermore{S, }, - o is orthogonal with respect to the
distribution function

1 1
2nbocr |x — ai]

dos(x) = Mé(x — az) dx + \/aZ — (m2(x) — B)?dx, (2.8)

whereM = 1 — min{bic1, bacz}/(bac2) and which support is the union of two intervalgif= 0 and the
union of two intervals with a singular setM > 0, i.e.,

B ZS if blClgbZCZ
Supfas) = { YgU{ar} if bicy > boco,

1Forthe case whelm cq > boco the eigenvaluesy, ,, of By, (m=1,2, ..., 2n) are the solutions of the quadratic equations

n2(4) — [b1c1 + boco + 2/b1bocico2c0S80,, ] =0, k=1,..., n,

wherel,,;’s are the nonzero solutions of the trigonometric equation

Vbicgsin[(n + 1)0] + /bocasin(nf) =0, (0<0<mn).
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wherexs = [9392 5 @t jy[ate 4, atae g and

k)

2
, S =\/|\/b161 + V/bac2|? +

r= \/|\/blc — Vbaca|? +

aiy—az
2

2.2. Remarks on tridiagonal 3-Toeplitz matrices

Let us now consider the irreducible tridiagonal 3-Toeplitz matrix

[an b O O O O O
c1 ao bp 0 O O O
O ¢ az b3 0O 0O O
O O ¢3 agz b1 O O
_ (N,N)
Bv=10 0 0 c¢1 a b 0 eRTT, NeN.
O O O O ¢ a3z b3
O 0 O O O ¢3 a1
Define

x—blCl—bZCZ—b3C3)’ n=012....

P, (x) = (b1bob "2y (
n(x) = (b1b2bzcic2c3)™ “U, 2 Jbibabacicacs
Let ¢, and¢, be the zeros of the quadratic polynomial
(x —a1)(x —az) — bica

and define the polynomial

n3(x) := (x —a1)(x —a2)(x — agz) — (bic1 + boco + b3cz)(x — az)
+ boco(ar — az) + bacz(az — az) + bic1 + boco + bacs.

In this case we have the following

2
ai — az
2

(2.9)

(2.10)

(2.11)

Theorem 2.2(Marcellan and Petronilhg16]). LetBy, N=1,2,3..., be the irreducible tridiagonas-
Toeplitz matrix given b{2.9),whereby, by, b3, c1, c2 andcg are positive numberdhe sequences, },, ~ o

of orthogonal polynomials associated with the matri®asis

St (x) = (b1b2b3) " {Pr(n3(x)) + baca(x — az) Pi—1(n3(x))},

Sak+1(x) = b H(b1b2b3) M {(x — a1) Pe(n3(x)) + brc1bacs Pe—1(n3(x))},

Sa2(x) = (b1b2) " L(b1babs) ¥ (x — &) (x — &) Pr(n3(x)), k=01, ...
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whereé, andé; are the roots of the polynomig2.10)and s is the polynomial given b§2.11).Then the
eigenvalues.y ,, of By are the zeros ofy, and the corresponding eigenvectms ,, are given by

So(ANm)
S1(AN.m)
VN = Ml m=12,...,N.
SN—1(AN,m)
In particular, whenN = 3n + 2, the eigenvaluesg, 2, 0f B3,12 (n=1,2,...,3n+2) are iz,421=
&1, Aan+2.2 = &2 and the solutions of the cubic equations
k
n3(l) — |:b161 + boco + bzesz + 24/ b1bobacicoc3 COS _:1i| =0, k=1 ...,n. (2.12)
n

As in the previous case, we can use the values (2.12) to give bounds for the eigenvalues of the corre-
sponding matrices in th¥ = 3n andN = 3n + 1 cases.
In this casg17] the Stieltjes function associated to the sequdiigg, - is

ép—a1 1 ap—¢& 1
So—¢1é1—z H—41é—z2
1 (;a—¢(a1—&) < 2 2)
— —B— - - , 2.13
S e (0 - Js@ - p2—a (2.13)
wherex = 2,/b1babzcicacz andp = bicy + baco + baes. In (2.13) the square root is such that-  +
V(z — B)? — 02| > « whenever; ¢ [ — a, f + . Moreover,{S,}, - is orthogonal with respect to the
distribution function
dos(x) = M15(x — &) dx + Mad(x — &) dx
B 1 (a1 — ¢1)(a1 — &2)
2nbic1bscs |(x — 1) (x — &)

which support is contained in the union of the three inter¥gls- ngl([ﬂ — o, B+ «]) (seeFig. 1) with
two possible mass points & andé,, i.e.,

2 if M1 =0,M>=0,

. s U{&) if M1=0,M>>0,
SUPHOS) =1 v U(éy) i My>0, Mp=0,
25U{51, 52} If M1>O, M2>O,

Fs(z) =

o2 — (m3(x) — B)? dx,

where

l:

ai—& [1 _ baca(éy —ay) Fy (na(fl) — ﬁ)]
é1— & o o

and

My— H—a1 [1 _ baca(&p —a1) Fy (ns(éz) - ﬁ)] _

a8 o o
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([~ f+al)

Fig. 1. The polynomial mapping — «, f + o] n?:l([[f — o, f+ o).

If we now take into account the identity

4 (n3(E1) — B)? — o®] = [(baez — bac2) A + (a1 — az) (bacs + bac2)]?,

where4 =\/(a1 — az)2 + 4b1c1 as well as the right choice of the branch of the square root in the definition
of Fy (2.4) we find

_ max0, (bscs — bac2)4 + (a1 — a2)(bses + bac2)} 0
2b3c3A -

_ max0, (bscs — bac2)4 — (a1 — a2)(bscs + bac2)} 0
2bzc3A -

My

M>

(2.14)

A simple inspection of the values 811 and M leads to the following four cases:
1. b3cz>bocy andai >asz. In this case

o M1 =0iff ag = ap andbzcz = bocy,
o My =0iff baca<bacz + a1 — az|(bacs + bac2) 472

2. bzcz>boco andaq <as. Then

o My =0iff baca<baco + |a1 — az|(bzcsz + baco) 471,
o My =0iff a1 = ap andbzcz = baco.

3. baca<bycy andaq >az. Then

o M1 =0iff baca<bacz — a1 — az|(bscs + bac2) 474,
e In this case always/, = 0.
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4. bzcz<bycy andag <ap.

e In this case always/; =0,
o My =0iff baca<boco — |a1 — az|(bzcz + baco) AL,

2.3. Some remarks on a matrix theoretic approach

Here we want to emphasize another approach to the problem concerning the study of the spectral
properties (eigenvalues, eigenvectors and asymptotic (limit) spectral measure) of the sequences of matrices
defined by (2.5) and (2.9), based on recent results by Serra Capizzano, Fasino, Kuijlaars and Tilli (cf.
[4,13,18,19]. To simplify we will consider the case when the ordéof the matrixBy in (2.5) is even.
Then By is the block Toeplitz matrix

~Ao Ag —
AL .

By

. A_1
B A1 Ap

generated by the 2 2 matrix valued polynomial

fo(x) := Ag+ A1 + A_je™™

_lar b1 10 0 10 e
S T R L3 R )

Since, in generaly(x) is not hermitian then not very much can be said on the eigenvalues. However,
according to Theorem 2.1 the conditidng; > 0 andb,c2 > 0 hold, and so it is well-known that, under
such conditionsBy is similar (via diagonal transformations) to the block Toeplitz maftixgenerated

by the 2x 2 matrix valued polynomial

with

fo(x) := Ao+ A1d* + A_je™

with

2>

b1c1 a» bacz 0

Similar considerations remains true for the generalized case of a tridiagdiogplitz matrix (see Eq.
(2.1) in[4]). Now, the limit distribution is described in Theorems 2.1 and 2 [2]nIn our specific case
the spectra of the matriRy distributes as the eigenvaluesfefx), which are

2
() = 92y \/ <“1 “2) + bic1 + baca + 2y/bicibacs COSX.

2 2
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More precisely, it follows from Theorem 2.2 [d] that, with possible exception of at most a denumer-
able set of point masses, the support of the measure of orthogonality for the orthogonal polynomials
corresponding t®y is contained in the set

S =121, 2105, 73]

(and the zeros of the orthogonal polynomials are dense in this set), where
J7 = min{i_(0), 2_(m)}, 7 = max{i_(0), i_(n)},

mMin{24(0), 2+(m)}, 74 := max{(i1(0), it (n)}.

Therefore, since

2
+ — 2
A+(0) = T az + \/(al a2> + (\/blcl + bzcz)

2 2

and

2
+ - 2
Ax(m) = “a > a2 + \/<al 5 az) + (\/blcl — \/b2C2> ,

we see that” is the same union of two intervals given in the end of Section 2.1. Also, the limit spectral
measure follows from asymptotic spectral theory of Toeplitz matrices.

We remark that the spectral distribution holds for @d@s well since constant rank corrections do not
modify the asymptotic spectral distribution. Further, the resulfdJiare true for every-Toeplitz matrix
sequences (and so, in particular, foe 2 andk = 3), as well as for variable recurrence coefficients (see
also[13]) and in the multidimensional case (cf. a[88,19]). On the other hand, our results in Theorems
2.1 and 2.2 gives more precise information on the localization of the zeros.

As a final remark, we would like to point out that in the present paper the theory of orthogonal
polynomials is used for giving spectral information, whild4nl3] the idea is exactly the opposite since
matrix theoretic tools are used for deducing information on the zeros of orthogonal polynomials.

3. Applications: the chain model

Here we will resume some important properties of the chain model. For a more detailed study we refer
to the nice paper by Haydog¢kQ].

Definition 3.1 (Haydocle[10]). The Chain Model is a quantum model determined by a sequence of
orthonormal orbits (stateglig, u1, ...} and two sets of real parametdis, as, ...} and{b, b, ...},
which describe the action of the Hamiltonighon the orbitals by a symmetric three-term recurrence
relation of the form

Hu, = by+1Up+1 + anUy + bpUy—1. (3.1)

The sequencéug, u1, ...} may be finite or infinite. In the first case we need to take the orhitals
anduy .1 equal to zero. Moreover, if10] it has been shown that this model is equivalent to expressing
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the matrixH by using an appropriate basis as a Jacobi (tridiagonal symmetric) matrix
ag b1 0 O
b1 a1 by O

H=| 0 b2 ax b3 ...|. (3.2)
0 O b3 aj

In the following we will suppose that the solutionof the Schrodinger equation (1.1) can be written

as a linear combination of the statg&g up, uo, ..., i.e.,
[e.e]
u= Z CiUg. (3.3)
k=0

For this model it is possible to obtain analytic formulae for the so-called general diagonal Green
function Go(e). In [10,12] it is shown thatGg(e) for the chain model (3.1) is related to the continued
fraction

Go(e) = , ¢€C (3.4)

bi

e—ap— b%

e—ay — 12

n
e—ay — .

8_a2_"'_

For the finite chain model, this continued fraction reduces to the ratio of two polynomials which conforms
the well known Padé approximants of ordeof the infinite continued fraction. This and some other
results concerning the calculation of the Green function will be considered in detail in the next section.
Of particular interest are the functi@r(¢)—the real part of5o(¢) describes the response of the system

to be driven at a given energy—angl(e) = —lim._.o %S(Go(s + i¢))—is the local density of the initial
state—(se¢l1] for more details).

In the case of the infinite chain, it is possible to obtain an analytic expression for the Green function
Go(¢) (3.4). Inthis case, using Rational Approximation Thel@3j, we obtain that the continued fraction
(3.4) converges to the Stieltjes function associated with the measure of orthogonality of the polynomial
sequenceés,}, >0, I.e.,Go(e) = Fs(¢). Moreover, we can obtain the local densig(s) which coincides
with the corresponding measure of orthogonafity ().

3.1. The 2-periodic chain model

We will suppose that the sequencescofipling constants$a,} and{b,} are periodic sequences with
period 2, i.e.{a,} ={a, b, a, b, ...} and{b,} ={c,d, c,d, ...}. Then the matrix (3.2) becomes

OO Q
RS O

0 0 O
d 0 0
a ¢ O
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3.1.1. The eigenvalues and eigenstates of the 2-periodic chain
In order to obtain the eigenvalues and eigenstates of the 2-periodic chain we use (3.3). Then, (1.1) can
be rewritten in the form

a ¢ 0 O O ... C1 C1
¢c b d 0 0 ... Co Co
0 d a c 0 ... C3|=¢lCs | (3.5)

whereCy, are the coefficients in the linear combination (3.3), aisthe corresponding eigenvalue of the
matrix HamiltonianH. Here, it is important to remark that we need to consider finite or infinite chains.
The explicit solution of this eigenvalue problem for the finite chain with= 2n + 1 states is given by
Theorem 2.1.

In this case, we havwe, = a, ap = b, b1 = ¢c1 = ¢ andb = ¢2 = d and then the eigenvalues of (3.5) are
the following

Qo=da, ei;p= a ; b + \/(a _4b)2 +c2+d? 4+ 2cd cos(nkfl) , (3.6)
wherek =1, 2, ..., n. Moreover, the corresponding eigenvectors are
So(er)
Vo= Sl(:sg) . 0=0,41 42, ... 4n, (3.7)
SZn.(gf)
where

Sa(e) = (cd) M Pe((e — a) (e — b)) + d®Pe_1((e — a) (e — b))},
Soir1(e) = ¢ Hed) ¥ (x —a)Pe((e —a)(e — b)), k=0,1,...

and P, (x) = (cd)"Uy (<57% ).

For the particular case when= b andc = d Eq. (3.6) giveso = a, exy = a £+ 2c COS(zﬁz) for
k=1,2,...,n,whichis in agreement witfi11].

3.1.2. The Green function and the local densigyz)
Using (2.7) the following expression for the Green function follows

1
Go(e) = 2% — o) <2+ P2(e) — 4/ ‘P%(S) — (ZCd)Z) ,

wheregps,(e) = (e —a)(e—b) — ¢? — d2. To obtain the local densityy(¢), we use the distribution function
(2.8)

min(c2, d?)

no(e) = <1 72

1 1 5 >
) o(e —a) + wm (2cd)” — @5(e), (3.8)
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Fig. 2. The eigenvalues of the 2-chain modeldoe 2, =1, c = 4 andd = 3.

that is located in the union of the following two intervals

a+b a+b Ua+b a+b
2 v T 2 T

+ ‘L'+:|

with a possible mass point at= a, wherery. = %\/(b —a) +4(c+d)>

3.1.3. Some numerical experiments

In this section, we will show some numerical results corresponding to the case of 2-Toeplitz matrix. To
check the validity of the analytic formulas we have computed numerically the eigenvalues of the matrix
(3.5) using MitLAB and compare them with the analytic values given, for the dase2n + 1 by (3.6).

The corresponding analytic expressions for the eigenvectors can be obtained from (3.7). For the case
N =2n we can use the bounds, 11, <2, j <e2n41,j+1,J =1,2,...,2n.

In Fig. 2 we show the eigenvalues of the 2-Toeplitz symmeliick N matrix, N = 2n + 1 for
a=2,b=1,c=4andd = 3. We show the numerical eigenvalues (stars) and the analytical ones (open
circles) forn = 30 (left panel) and: = 500 (right panel). With this choice of parameters the density
functionng of the initial state, represented in Fig. 4 (left panel), has not any mass peiatlasee (3.8)),

i.e., itis an absolute continuous function supported on two disjoint intervals.

In Fig. 3 we show the eigenvalues of the 2-Toeplitz symmelvick N matrix, N = 2n + 1 for
a=2,b=1,c=3andd = 4. We show the numerical eigenvalues (stars) and the analytical ones (open
circles) forn = 30 (left panel) and = 500 (right panel). With this choice of the parameters the density
functionng of the initial state has a mass pomt=7/16 ate =1, i.e., it has an absolute continuous part
supported on two disjoint intervals, represente#im 4 (right panel), plus a delta Dirac massvat 1.

Here we have shown only the casé\oE 21 + 1 matrices for which always one has an isolate eigenvalue
¢1 = a. For the case of matrices of ord®r= 2n we have not this isolated eigenvalue. Also notice that
the spectrum oH has two branches.

3.2. The 3-periodic chain model

Let now suppose that the sequencesaipling constant$a,,} and{b, } are periodic sequences with
period 3,i.e.{a,}={a,b,c,a,b,c,...}and{b,} ={d, e, f,d, e, f,...}. Thenthe matrix (3.2) becomes



532 R. Alvarez-Nodarse et al. / Journal of Computational and Applied Mathematics 184 (2005) 518537

10 10

o

0 20 40 60 80 0 300 600 900 1200
n n

Fig. 3. The eigenvalues of the 2-chain modeldct 1, b = 2, ¢c = 3 andd = 4.

2 4 6 8

Fig. 4. The density functiong(¢) of the 2-chain model fot =2, b=1,c=4 andd =3 (left)anda =1,b=2,c=4 andd =3
(right).
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3.2.1. The eigenvalues and eigenstates of the 3-periodic chain
Again we will suppose that the solutianof the Schrodinger equation (1.1) can be written as (3.3),

thus (1.1) takes the form

a d 0 0 O C1 C1

d b e 0 O Csy Cs

0 e ¢c f O C3l=¢|C3|, (3.9)
0 O f a d

Cy Cy
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whereCy are the coefficients in the linear combination (3.3), anslthe corresponding eigenvalue of
the matrix HamiltoniarH. In this case we use Theorem 2.2 which gives an explicit expression for the
eigenvalue problem in the caseMf= 3n + 2.

In this case, we have) = a,ap = b, a3 =c, b1 =c1=d, by =c2 = e, andbz = c3 = f and then the

eigenvalues of (3.9) are the solutiong, i =1,2,3,k=1,2, ..., n, of the polynomial equations
x3— (a+b+c)x2+(ab+ac+bc—d2—e2—f2)x
k
+ cd? + ae® + bf? — abe + 2def cos( fl) =0 (3.10)
n
and
a+b—+/(a—b)?+4d? a+b++/(a—b)?+4d?
83’1+1 = ’ 83}1-‘1—2 - .
2
The corresponding eigenvectors are
So(ee)
S1(ee) . .
= . , Le{l,k),3n+1,3n+2|i=12,3, k=1,...,n}, (3.12)
S3n+1(ee)

where
Sak(x) = (def) ¥ {Pr(n3(x)) + f2(x — b) Pe_1(n3(x))},
Sakp1(x) = d " (def) ™M (x — @) Pe(ra(x)) + d? 2 Pe_1(m3(x))},
Sak2(x) = (de) Hdef) ™ (x — & (x — &) Pu(na(x)), k=0,1,...,

being
X — d2 _ 62 _ f2
Pn = " n
(x) =(def)"U ( 2def )
and
m3(x) =d?+e® + 2+ (a —c)e’ + (b —c) f?
—(d®+ 2+ fAHx—0)+ (x —a)(x — b)(x — ¢). (3.12)
The particular case =b =c andd = e = f giveSe1x =a + 2d cos(%),
n+1-—kn n+1+kn
=a—2dcos| ———— |, =a+2dcos| ———— ),
2k =14 ( 3n +3 ) Bp=at < 3 +3
fork=1,2,...,n,e3,41=a —d, e3,12 = a + d, that is in agreement witfi0].

3.2.2. The Green function and the local densigy:)
Using (2.13) the following expression for the Green function follows

1 1
Gol® = (¢ —a)(e—b) —d? <b oo 2f? (@3(8) - \/(p§(3) - (2def)2)> ’




534 R. Alvarez-Nodarse et al. / Journal of Computational and Applied Mathematics 184 (2005) 518537

wheregps(e) = n3(e) — d? — e? — 2. To obtain the local densityg(z), we use the distribution function
(3.13)

J@def)? — 93

nO(‘g) = Mlé(g - él) + M25(£ - 62) + 2f27'C |(8 _ a)(e _ b) _ d2|1 (313)
where
RY 2 _ AYA 2
51:a+b+ (a —Db) +4d7 é2:a+b (a —b) +4d, (3.14)

which support is contained in the union of the three intervals defineg b§fd? +¢? + f2 — 2def, d®+
e? + f2 4+ 2def]), wherens is the polynomial defined in (3.12), and two possible mass paiftsand
M> (see (2.14))

~ max0, (f2—e?)y/(a —b)* +4d? + (a — b)(f? + ¢?)}
B 2v/(a — b)? + 4d2 f2
~ max{0, (f2—e?)y/(a — b)* +4d? — (a — b)(f2 + €?))
B 2J/(a — b)? + 4d2 f2

M1

M>

located at = ¢1 ande = &5, respectively. Moreover, the following four situations are possible (see Section
2.2):

i —Qiffa = _ —Qiff f2<e? 4 lazbl2+e®)
1. f>eanda>b. InthiscaseM1 =0iff a =bandf =e, andMo =0 iff f<<e” +

(a—b)2+4d?’
_Qiff £2< 2 la=bl(f*+e?) —0iff 4 — _
2. fzeanda<b. ThenM1=0iff fe<e“+ Vo Erad andMo,=0iff a=bandf =e.
—Qiff £2< 2 _ la=bl(f*+e? i _
3. f<eandax=b. ThenM1=0iff f<<e N In this case alway#/, = 0.
4. f<e anda<b. With this choice alway3/; = 0, andM> = 0 iff f2<e? — lazbi(f24e?)

(a—b)2+4d2’
V(a—b)?+4d?

3.2.3. Some numerical experiments

In this section, we will present some numerical experiments related to the three periodic chain model.
As in the previous case we represent with stathe values obtained by using the analytic expression
(3.10) and with circles the values obtained numerically. The eigenvectors can be easily obtained using
(3.12).

In Fig. 5we show the eigenvalues of the three 3-Toeplitz symmairic N matrix, N = 3n + 2 with
a=2,b=1c=3,d=4,e=2andf =3 forn =20 (left panel) and for = 300 (right panel). IrFig. 7
(left panel) we represent the absolute continuous part of the density fungtimirthe initial state. This
case corresponds to the situation 1 discussed above for which we have two mass points

25— 4/65
o, — 25— /65

_ 25+4/65
- ’ 2 90

! 90
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Fig. 5. The 3-chain modelwith=2,b=1,¢c=3,d=4,e=2andf = 3.
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Fig. 6. The 3-chain modelfar=3,b=2,c=1,d =2,e=3 andf = 2.

-4

6

Fig. 7. The functionng(e) of the 3-periodic chain model with = 2,6 = 1,¢ = 3,d = 4,e¢ = 2 and f = 3 (left) and
a=2,b=1c=3,d=4,e=2andf = 3 (right).

3+/65

atéy; = 2

andé, =

3—./65
2

, respectively (see (3.14)). In this casgis supported in three disjoint

intervals plus two isolated points &t andés.

In Fig. 6 we show the eigenvalues of the 3-Toeplitz symmel¥ick N matrix, N = 3n + 2 with
a=3,b=2,c=1,d=2,e=3andf =2 forn =20 (left panel) and for = 300 (right panel). IrFig. 7
(right panel) we represent the absolute continuous part of the density fungtidiihe initial state. This



536 R. Alvarez-Nodarse et al. / Journal of Computational and Applied Mathematics 184 (2005) 518—-537

case corresponds to the situation 3 discussed above for Which0 andM2 = 0, i.e., there is no mass
points, so the support af are three disjoint intervals.

Programs For the numerical simulations presented here we have used the commercial program M
The used source code can be obtained by request via e-maitka@euler.us.es orran@us.es
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