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Abstract

In this paper, we use the analytic theory for 2 and 3-Toeplitz matrices to obtain the explicit expressions for
the eigenvalues, eigenvectors and the spectral measure associated to the corresponding infinite matrices. As an
application we consider two solvable models related with the so-called chain model. Some numerical experiments
are also included.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

k-Toeplitz matrices are tridiagonal matrices of the formA = [ai,j ]ni,j=1 (with n�k) such that

ai+k,j+k = ai,j (i, j = 1,2, . . . , n − k),

so that they arek-periodic along the diagonals parallel to the main diagonal[8]. Whenk = 1 it reduces
to a tridiagonal Toeplitz matrix.
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The interest of the study ofk-Toeplitz matrices appears to be very important not only from a theoretical
point of view (in linear algebra or numerical analysis, e.g.), but also in applications. For instance, it is
useful in the study of sound propagation problems (see[2,9]).
In this paper, we present a complete study of the eigenproblems for tridiagonal 2 and 3-Toeplitz

matrices, including the spectral measure associated to the corresponding infinite Jacobi matrices, and
then we apply the results to the study of the so called chain models in Quantum Physics. Since we hope
that our discussion could be of interest both to readers working onApplied Mathematics and Orthogonal
Polynomials as well as physicists, we will further develop the works[5,6,14–17]including several results
on tridiagonalk-Toeplitz matrices that follow from the results in those papers but not explicitly included
there. Of particular interest is the symmetric case because of its interest in the study of quantum chain
models.
In fact, one of the main problems in Quantum Physics is to find the solutions of the stationary Schrö-

dringer equation

H|�〉 = �|�〉, (1.1)

whereH is the Hamiltonian of the system and� is the energy corresponding to the state|�〉. A usual
method for solving Eq. (1.1) is to expand the unknown wave functions|�〉 in the “discrete” basis (not
necessarily orthogonal){|�k〉}∞k=1, i.e.,

|�〉 =
N∑

k=1
CNk|�k〉. (1.2)

Substituting Eq. (1.2) in (1.1) and multiplying by〈�m| and taking into account the orthogonality of the
functions|�k〉 we obtain the following linear system of equations

N∑
k=1

CNk〈�m|H|�k〉 = �CNm. (1.3)

If we denote the matrix elements〈�m|H|�k〉 by hmk then we can rewrite (1.3) in the matrix form


h11 h12 . . . h1N−1 h1N
h21 h22 . . . h2N−1 h2N
h31 h32 . . . h3N−1 h3N
...

...
. . .

...
...

hN−1 hN−12 . . . hN−1N−1 hN−1N
hN1 hN2 . . . hNN−1 hNN







CN1
CN2
CN3
...

CN−1N
CNN




= �




CN1
CN2
CN3
...

CN−1N
CNN



. (1.4)

In general, the computation of the eigenvalues (and also the eigenvectors) for an arbitrary matrix, as
the previous one in (1.4), is very difficult since it is equivalent to the problem of finding the roots of a
polynomial of degreeN . Moreover, the numerical algorithms (Newton’s Method, etc.) are, in general,
unstable for largeN . For this reason simpler models (which are easier to solve and numerically more
stable and economic) have been introduced. One of these models is the so calledchain modelwhich has
been successfully used in Solid State Physics[12], Nuclear Physics[22], and Quantum Mechanics[11],
etc. In fact, any quantum model can be transformed into the correspondingchain model(see[10] and
references therein).
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In our previous paper[1] we have briefly considered the 2-periodic chain model—theconstant chain
model, i.e., when the sequences{an} and {bn} are constants equal toa andb, respectively, has been
considered in[10]—i.e., when the sequences{an} and{bn} are periodic sequences with period 2, i.e.,
{an} = {a, b, a, b, . . .} and {bn} = {c, d, c, d, . . .}. For such models it is possible to obtain analytic
formulae for the values of the energy (eigenvalues) ofH and its corresponding wave functions. Here we
will conclude the study started in[1] for the two chain model and will present the complete study of the
3-periodic chain model.
The structure of the paper is as follows. In Section 2, we give the needed mathematical background.

Section 3 is devoted to some applications of the theory of tridiagonalk-Toeplitz matrices in quantum
physics: concretely to the so-called chain model.

2. Mathematical background

We start with some basic results from the general theory of orthogonal polynomials (see e.g.[3]). It
is known that any orthogonal polynomial sequence (OPS){Pn}n�0 it is characterised by a three-term
recurrence relation

xP n(x) = �nPn+1(x) + �nPn(x) + �nPn−1(x), n = 0,1,2, . . . (2.1)

with initial conditionsP−1=0 andP0=1where{�n}n�0, {�n}n�0 and{�n}n�1 are sequences of complex
numbers such that�n�n+1 
= 0 for all n�0, or in matrix form

xPn(x) = Jn+1Pn(x) + �nPn+1(x)en, (2.2)

wherePn(x)= [P0(x), . . . , Pn(x)]T, en = [0,0, . . . ,0,1]T ∈ Rn+1 andJn+1 is the tridiagonal matrix of
ordern + 1

Jn+1 =




�0 �0 0 0 . . . 0 0
�1 �1 �1 0 . . . 0 0
0 �2 �2 �2 . . . 0 0
0 0 �3 �3 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . �n−1 �n−1
0 0 0 0 . . . �n �n



.

If {xnj }1�j �n are the zeros of the polynomialPn, then it follows from (2.2) that eachxnj is an
eigenvalue of the corresponding tridiagonal matrixJn andPn−1(xnj ) := [P0(xnj ), . . . , Pn−1(xnj )]T is a
corresponding eigenvector.
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When�n=1 and�n >0 for alln=1,2, . . . the (monic) polynomials{Pn}n�0 defined by the recurrence
relation (2.1) arise as denominators of the approximants of the continued fraction

1

x − �0 − �1

x − �1 − �2

x − �2 − · · · − �n−1
x − �n−1 − �n

x − �n − . . .

Under these conditions, by Favard’s theorem[3], {Pn}n�0 constitutes an orthogonal polynomial sequence
with respect to a positive definite moment functional, and if the moment problem associated with the
continued fraction is determined, then this linear functional can be characterised by a unique distribution
function, i.e., a function� : R → R which is nondecreasing, it has infinitely many points of increase and
all the moments

∫ +∞
−∞ x2n d�(x), n = 0,1,2, . . . , are finite. The numerators of the continued fraction,

denoted by{P (1)
n }n�0, can be given by the shifted recurrence relation

xP (1)
n (x) = P

(1)
n+1(x) + �n+1P (1)

n (x) + �n+1P
(1)
n−1(x), n�0

with initial conditionsP (1)
−1 =0 andP (1)

0 =1. This continued fraction converges to a functionF(z; �) and
the general theory of themoment problem ensures thatF is analytic in the complex plane with a cut along
the support of� (i.e., the set of points of increase of�). This fact can be summarised byMarkov–Stieltjes’s
theorem

− lim
n→+∞

�0P
(1)
n−1(z)

Pn(z)
= F(z; �) :=

∫ +∞

−∞
d�(x)

x − z
, z ∈ C\supp(�), (2.3)

where�0= ∫ +∞
−∞ d�(x) is the first moment of the distribution�(x) andF is its Stieltjes function. Now,

the function�(x) can be recovered from (2.3) by applying the Stieltjes inversion formula

�(x) − �(y) = lim
�→0+

1

�

∫ x

y

IF(t + i�, �)dt ,

where it is assumed that� is normalised in the following way

�(−∞) = 0, �(x) = �(x + 0) + �(x − 0)

2

andIz denotes the imaginary part ofz.
An important family of orthogonal polynomials are the orthonormal Chebyshev polynomials of second

kind {Un(x)}n�0 defined in terms of trigonometric polynomials in cos	 as

Un(x) = sin(n + 1)	

sin	
, x = cos	.

For these polynomials (2.1) takes the form

U−1 = 0, U0 = 1, 2xUn(x) = Un+1(x) + Un−1(x), n = 0,1,2, . . . .
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They are orthonormal with respect to the distribution function

d�U(x) = 2

�

√
1− x2 dx, supp(�U) = [−1,1],

i.e., ∫ 1

−1
Un(x)Um(x)d�U(x) = 
n,m,

where
n,m is the Kronecker symbol:
k,m =1 for k =m, elsewhere
k,m =0. The corresponding Stieltjes
function is

FU(z) = −2
z + √

z2 − 1
= −2

(
z −

√
z2 − 1

)
, z ∈ C\[−1,1], (2.4)

where the complex square root is such that|z + √
z2 − 1|>1 wheneverz /∈ [−1,1].

The Chebychev polynomialsUn are closely related with the tridiagonal 2 and 3 Toeplitz matrices as it
is shown in the next two sections.

2.1. Remarks on tridiagonal 2-Toeplitz matrices

LetBN be the irreducible tridiagonal 2-Toeplitz matrix

BN =




a1 b1 0 0 0 . . .

c1 a2 b2 0 0 . . .

0 c2 a1 b1 0 . . .

0 0 c1 a2 b2 . . .

0 0 0 c2 a1 . . .
...

...
...

...
...

. . .




∈ R(N,N), N ∈ N, (2.5)

whereb1, b2, c1 andc2 are positive numbers. Define the polynomials

�2(x) = (x − a1)(x − a2)

and

Pn(x) = (b1b2c1c2)
n/2Un

(
x − b1c1 − b2c2

2
√

b1b2c1c2

)
, n = 0,1,2, . . . ,

whereUn is the Chebyshev polynomial of second kind.
The following theorem holds

Theorem2.1(Gover[7] andMarcellán andPetronilho[14] ). LetBN ,N=1,2,3, . . . , be the irreducible
tridiagonal2-Toeplitz matrix given by(2.5),whereb1, b2, c1, andc2 are positive numbers. The sequence
{Sn}n�0 of orthogonal polynomials associated with the matricesBN is

S2k(x) = (b1b2)
−k{Pk(�2(x)) + b2c2Pk−1(�2(x))},

S2k+1(x) = (b−1
1 (b1b2)

−k(x − a1)Pk(�2(x)), k = 0,1, . . . .
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Then the eigenvalues�N,m ofBN are the zeros ofSN , and the corresponding eigenvectorsvN,m are given
by

vN,m =




S0(�N,m)

S1(�N,m)
...

SN−1(�N,m)


 , m = 1,2, . . . , N .

In particular,1 the eigenvalues�2n+1,m ofB2n+1 (m=1,2, . . . ,2n+1) are�2n+1,1=a1 and the solutions
of the quadratic equations

�2(�) −
[
b1c1 + b2c2 + 2

√
b1b2c1c2 cos

k�

n + 1

]
= 0, k = 1, . . . , n. (2.6)

Notice that since the sequence{Sk}k is an orthogonal polynomial sequence corresponding to a positive
definite case, then the zeros are simple and interlace, i.e., if{xk,j }kj=1 denotes the zeros of the polynomial
Sk, then

xk,j < xk−1,j < xk,j+1, j = 1,2, . . . , k − 1.

Therefore using the values (2.6) we can obtain bounds for the eigenvalues of the corresponding matrices
for the even case.
Moreover (cf.[20]; see also[15]), the Stieltjes function associated to the sequence{Sn}n�0 reads as

FS(z) = 1

a1 − z
− 1

2b2c2

1

z − a1

(
�2(z) − � −

√
(�2(z) − �)2 − �2

)
, (2.7)

where� = 2
√

b1b2c1c2 and� = b1c1 + b2c2. Furthermore,{Sn}n�0 is orthogonal with respect to the
distribution function

d�S(x) = M
(x − a1)dx + 1

2�b2c2

1

|x − a1|
√

�2 − (�2(x) − �)2 dx, (2.8)

whereM = 1−min{b1c1, b2c2}/(b2c2) and which support is the union of two intervals ifM = 0 and the
union of two intervals with a singular set ifM >0, i.e.,

supp(�S) =
{

�S if b1c1�b2c2,

�S ∪ {a1} if b1c1>b2c2,

1 For the case whenb1c1>b2c2 the eigenvalues�2n,m ofB2n (m=1,2, . . . ,2n) are the solutions of the quadratic equations

�2(�) − [b1c1+ b2c2 + 2
√

b1b2c1c2 cos	nk] = 0, k = 1, . . . , n,

where	nk ’s are the nonzero solutions of the trigonometric equation√
b1c1 sin[(n + 1)	] + √

b2c2 sin(n	) = 0, (0< 	< �).

.
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where�S = [a1+a2
2 − s, a1+a2

2 − r] ∪ [a1+a2
2 + r, a1+a2

2 + s] and

r =
√

|√b1c1 − √
b2c2|2 +

∣∣∣∣a1 − a2

2

∣∣∣∣
2

, s =
√

|√b1c1 + √
b2c2|2 +

∣∣∣∣a1 − a2

2

∣∣∣∣
2

.

2.2. Remarks on tridiagonal 3-Toeplitz matrices

Let us now consider the irreducible tridiagonal 3-Toeplitz matrix

BN =




a1 b1 0 0 0 0 0 . . .

c1 a2 b2 0 0 0 0 . . .

0 c2 a3 b3 0 0 0 . . .

0 0 c3 a1 b1 0 0 . . .

0 0 0 c1 a2 b2 0 . . .

0 0 0 0 c2 a3 b3 . . .

0 0 0 0 0 c3 a1 . . .
...

...
...

...
...

...
...

. . .




∈ R(N,N), N ∈ N. (2.9)

Define

Pn(x) = (b1b2b3c1c2c3)
n/2Un

(
x − b1c1 − b2c2 − b3c3

2
√

b1b2b3c1c2c3

)
, n = 0,1,2, . . . .

Let 
1 and
2 be the zeros of the quadratic polynomial

(x − a1)(x − a2) − b1c1 (2.10)

and define the polynomial

�3(x) := (x − a1)(x − a2)(x − a3) − (b1c1 + b2c2 + b3c3)(x − a3)

+ b2c2(a1 − a3) + b3c3(a2 − a3) + b1c1 + b2c2 + b3c3. (2.11)

In this case we have the following

Theorem 2.2(Marcellán and Petronilho[16] ). LetBN,N =1,2,3 . . . , be the irreducible tridiagonal3-
Toeplitz matrix given by(2.9),whereb1, b2, b3, c1, c2 andc3 are positive numbers.The sequence{Sn}n�0
of orthogonal polynomials associated with the matricesBN is

S3k(x) = (b1b2b3)
−k{Pk(�3(x)) + b3c3(x − a2)Pk−1(�3(x))},

S3k+1(x) = b−1
1 (b1b2b3)

−k{(x − a1)Pk(�3(x)) + b1c1b3c3Pk−1(�3(x))},
S3k+2(x) = (b1b2)

−1(b1b2b3)−k(x − 
1)(x − 
2)Pk(�3(x)), k = 0,1, . . . ,
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where
1 and
2 are the roots of the polynomial(2.10)and�3 is the polynomial given by(2.11).Then the
eigenvalues�N,m ofBN are the zeros ofSN , and the corresponding eigenvectorsvN,m are given by

vN,m =




S0(�N,m)

S1(�N,m)
...

SN−1(�N,m)


 , m = 1,2, . . . , N .

In particular,whenN = 3n+ 2, the eigenvalues�3n+2,m ofB3n+2 (m= 1,2, . . . ,3n+ 2) are�3n+2,1=

1, �3n+2,2 = 
2 and the solutions of the cubic equations

�3(�) −
[
b1c1 + b2c2 + b3c3 + 2

√
b1b2b3c1c2c3 cos

k�

n + 1

]
= 0, k = 1, . . . , n. (2.12)

As in the previous case, we can use the values (2.12) to give bounds for the eigenvalues of the corre-
sponding matrices in theN = 3n andN = 3n + 1 cases.
In this case[17] the Stieltjes function associated to the sequence{Sn}n�0 is

FS(z) = 
2 − a1


2 − 
1

1


1 − z
+ a1 − 
1


2 − 
1

1


2 − z

− 1

2b1c1b3c3

(a1 − 
1)(a1 − 
2)

(z − 
1)(z − 
2)

(
�3(z) − � −

√
(�3(z) − �)2 − �2

)
, (2.13)

where� = 2
√

b1b2b3c1c2c3 and� = b1c1 + b2c2 + b3c3. In (2.13) the square root is such that|z − � +√
(z − �)2 − �2|> � wheneverz /∈ [� − �, � + �]. Moreover,{Sn}n�0 is orthogonal with respect to the

distribution function

d�S(x) = M1
(x − 
1)dx + M2
(x − 
2)dx

− 1

2�b1c1b3c3

(a1 − 
1)(a1 − 
2)

|(x − 
1)(x − 
2)|
√

�2 − (�3(x) − �)2 dx,

which support is contained in the union of the three intervals�S = �−1
3 ([� − �, � + �]) (seeFig. 1) with

two possible mass points at
1 and
2, i.e.,

supp(�S) =




�S if M1 = 0,M2 = 0,
�S ∪ {
2} if M1 = 0,M2>0,
�S ∪ {
1} if M1>0,M2 = 0,
�S ∪ {
1, 
2} if M1>0,M2>0,

where

M1 = −a1 − 
2

1 − 
2

[
1− b2c2(
1 − a1)

�
FU

(
�3(
1) − �

�

)]

and

M2 = 
1 − a1


1 − 
2

[
1− b2c2(
2 − a1)

�
FU

(
�3(
2) − �

�

)]
.



526 R. Álvarez-Nodarse et al. / Journal of Computational and Applied Mathematics 184 (2005) 518–537

�+�

�−�

�3([�−�,�+�])-1

Fig. 1. The polynomial mapping[� − �, � + �] �→ �−1
3 ([� − �, � + �]).

If we now take into account the identity

4[(�3(
1) − �)2 − �2] = [(b3c3 − b2c2)� + (a1 − a2)(b3c3 + b2c2)]2,
where�=

√
(a1 − a2)

2 + 4b1c1 aswell as the right choice of the branch of the square root in the definition
of FU (2.4) we find

M1 = max{0, (b3c3 − b2c2)� + (a1 − a2)(b3c3 + b2c2)}
2b3c3�

�0,

M2 = max{0, (b3c3 − b2c2)� − (a1 − a2)(b3c3 + b2c2)}
2b3c3�

�0. (2.14)

A simple inspection of the values ofM1 andM2 leads to the following four cases:
1. b3c3�b2c2 anda1�a2. In this case

• M1 = 0 iff a1 = a2 andb3c3 = b2c2,
• M2 = 0 iff b3c3�b2c2 + |a1 − a2|(b3c3 + b2c2)�−1.

2. b3c3�b2c2 anda1�a2. Then

• M1 = 0 iff b3c3�b2c2 + |a1 − a2|(b3c3 + b2c2)�−1,
• M2 = 0 iff a1 = a2 andb3c3 = b2c2.

3. b3c3�b2c2 anda1�a2. Then

• M1 = 0 iff b3c3�b2c2 − |a1 − a2|(b3c3 + b2c2)�−1,
• In this case alwaysM2 = 0.
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4. b3c3�b2c2 anda1�a2.

• In this case alwaysM1 = 0,
• M2 = 0 iff b3c3�b2c2 − |a1 − a2|(b3c3 + b2c2)�−1.

2.3. Some remarks on a matrix theoretic approach

Here we want to emphasize another approach to the problem concerning the study of the spectral
properties (eigenvalues, eigenvectorsandasymptotic (limit) spectralmeasure)of thesequencesofmatrices
defined by (2.5) and (2.9), based on recent results by Serra Capizzano, Fasino, Kuijlaars and Tilli (cf.
[4,13,18,19]). To simplify we will consider the case when the orderN of the matrixBN in (2.5) is even.
ThenBN is the block Toeplitz matrix

BN =




A0 A−1
A1

. . .
. . .

. . .
. . .

. . .
. . .

. . . A−1
A1 A0




generated by the 2× 2 matrix valued polynomial

f2(x) := A0 + A1e
ix + A−1e−ix

with

A0 :=
[
a1 b1
c1 a2

]
, A1 :=

[
0 0
b2 0

]
, A−1 :=

[
0 c2
0 0

]
.

Since, in general,f2(x) is not hermitian then not very much can be said on the eigenvalues. However,
according to Theorem 2.1 the conditionsb1c1>0 andb2c2>0 hold, and so it is well-known that, under
such conditions,BN is similar (via diagonal transformations) to the block Toeplitz matrixB̂N generated
by the 2× 2 matrix valued polynomial

f̂2(x) := Â0 + Â1e
ix + Â−1e−ix

with

Â0 :=
[

a1
√

b1c1√
b1c1 a2

]
, Â1 :=

[
0 0√
b2c2 0

]
, Â−1 :=

[
0

√
b2c2

0 0

]
.

Similar considerations remains true for the generalized case of a tridiagonalk-Toeplitz matrix (see Eq.
(2.1) in [4]). Now, the limit distribution is described in Theorems 2.1 and 2.2 in[4]. In our specific case
the spectra of the matrixBN distributes as the eigenvalues off̂2(x), which are

�±(x) := a1 + a2

2
±

√(
a1 − a2

2

)2
+ b1c1 + b2c2 + 2

√
b1c1b2c2 cosx.
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More precisely, it follows from Theorem 2.2 in[4] that, with possible exception of at most a denumer-
able set of point masses, the support of the measure of orthogonality for the orthogonal polynomials
corresponding toBN is contained in the set

S := [�−
1 , �+

1 ] ∪ [�−
2 , �+

2 ]
(and the zeros of the orthogonal polynomials are dense in this set), where

�−
1 := min{�−(0), �−(�)}, �+

1 := max{�−(0), �−(�)},
�−
2 := min{�+(0), �+(�)}, �+

2 := max{�+(0), �+(�)}.
Therefore, since

�±(0) = a1 + a2

2
±

√(
a1 − a2

2

)2
+

(√
b1c1 + √

b2c2

)2
and

�±(�) = a1 + a2

2
±

√(
a1 − a2

2

)2
+

(√
b1c1 − √

b2c2

)2
,

we see thatS is the same union of two intervals given in the end of Section 2.1. Also, the limit spectral
measure follows from asymptotic spectral theory of Toeplitz matrices.
We remark that the spectral distribution holds for oddN as well since constant rank corrections do not

modify the asymptotic spectral distribution. Further, the results in[4] are true for everyk-Toeplitz matrix
sequences (and so, in particular, fork = 2 andk = 3), as well as for variable recurrence coefficients (see
also[13]) and in the multidimensional case (cf. also[18,19]). On the other hand, our results in Theorems
2.1 and 2.2 gives more precise information on the localization of the zeros.
As a final remark, we would like to point out that in the present paper the theory of orthogonal

polynomials is used for giving spectral information, while in[4,13] the idea is exactly the opposite since
matrix theoretic tools are used for deducing information on the zeros of orthogonal polynomials.

3. Applications: the chain model

Here we will resume some important properties of the chain model. For a more detailed study we refer
to the nice paper by Haydock[10].

Definition 3.1 (Haydocle[10] ). The Chain Model is a quantum model determined by a sequence of
orthonormal orbits (states){u0,u1, . . .} and two sets of real parameters{a1, a2, . . .} and {b1, b2, . . .},
which describe the action of the HamiltonianH on the orbitals by a symmetric three-term recurrence
relation of the form

Hun = bn+1un+1 + anun + bnun−1. (3.1)

The sequence{u0,u1, . . .} may be finite or infinite. In the first case we need to take the orbitalsu−1
anduN+1 equal to zero. Moreover, in[10] it has been shown that this model is equivalent to expressing
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the matrixH by using an appropriate basis as a Jacobi (tridiagonal symmetric) matrix

H =




a0 b1 0 0 . . .

b1 a1 b2 0 . . .

0 b2 a2 b3 . . .

0 0 b3 a3 . . .
...

...
...

...
. . .


 . (3.2)

In the following we will suppose that the solutionu of the Schrödinger equation (1.1) can be written
as a linear combination of the statesu0,u1,u2, . . . , i.e.,

u =
∞∑
k=0

Ckuk. (3.3)

For this model it is possible to obtain analytic formulae for the so-called general diagonal Green
functionG0(�). In [10,12] it is shown thatG0(�) for the chain model (3.1) is related to the continued
fraction

G0(�) = 1

� − a0 − b21

� − a1 − b22

� − a2 − · · · − b2n

� − an − . . .

, � ∈ C (3.4)

For the finite chainmodel, this continued fraction reduces to the ratio of two polynomials which conforms
the well known Padé approximants of ordern of the infinite continued fraction. This and some other
results concerning the calculation of the Green function will be considered in detail in the next section.
Of particular interest are the functionG0(�)—the real part ofG0(�) describes the response of the system
to be driven at a given energy—andn0(�) = −lim�→0

1
�I(G0(� + i�))—is the local density of the initial

state—(see[11] for more details).
In the case of the infinite chain, it is possible to obtain an analytic expression for the Green function

G0(�) (3.4). In this case, using RationalApproximation Theory[21], we obtain that the continued fraction
(3.4) converges to the Stieltjes function associated with the measure of orthogonality of the polynomial
sequence{Sn}n�0, i.e.,G0(�) = FS(�). Moreover, we can obtain the local densityn0(�) which coincides
with the corresponding measure of orthogonalityd�S(�).

3.1. The 2-periodic chain model

We will suppose that the sequences ofcoupling constants{an} and{bn} are periodic sequences with
period 2, i.e.,{an} = {a, b, a, b, . . .} and{bn} = {c, d, c, d, . . .}. Then the matrix (3.2) becomes

H =




a c 0 0 0 . . .

c b d 0 0 . . .

0 d a c 0 . . .
...

...
...

...
...

. . .


 .
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3.1.1. The eigenvalues and eigenstates of the 2-periodic chain
In order to obtain the eigenvalues and eigenstates of the 2-periodic chain we use (3.3). Then, (1.1) can

be rewritten in the form


a c 0 0 0 . . .

c b d 0 0 . . .

0 d a c 0 . . .
...

...
...

...
...

. . .







C1
C2
C3
...


 = �




C1
C2
C3
...


 , (3.5)

whereCk are the coefficients in the linear combination (3.3), and� is the corresponding eigenvalue of the
matrix HamiltonianH. Here, it is important to remark that we need to consider finite or infinite chains.
The explicit solution of this eigenvalue problem for the finite chain withN = 2n + 1 states is given by
Theorem 2.1.
In this case, we havea1= a, a2= b, b1= c1= c andb2= c2= d and then the eigenvalues of (3.5) are

the following

�0 = a, �±k = a + b

2
±

√
(a − b)2

4
+ c2 + d2 + 2cd cos

(
k�

n + 1

)
, (3.6)

wherek = 1,2, . . . , n. Moreover, the corresponding eigenvectors are

v# =




S0(�#)
S1(�#)

...

S2n(�#)


 , # = 0,±1,±2, . . . ,±n, (3.7)

where

S2k(�) = (cd)−k{Pk((� − a)(� − b)) + d2Pk−1((� − a)(� − b))},
S2k+1(�) = c−1(cd)−k(x − a)Pk((� − a)(� − b)), k = 0,1, . . .

andPn(x) = (cd)nUn

(
x−c2−d2

2cd

)
.

For the particular case whena = b andc = d Eq. (3.6) gives�0 = a, �±k = a ± 2c cos
(

k�
2n+2

)
for

k = 1,2, . . . , n, which is in agreement with[11].

3.1.2. The Green function and the local densityn0(�)
Using (2.7) the following expression for the Green function follows

G0(�) = 1

2d2(a − �)

(
2+ �2(�) −

√
�22(�) − (2cd)2

)
,

where�2(�)= (�−a)(�−b)− c2−d2. To obtain the local densityn0(�), we use the distribution function
(2.8)

n0(�) =
(
1− min(c2, d2)

d2

)

(� − a) + 1

2�d2
1

|� − a|
√

(2cd)2 − �22(�), (3.8)
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Fig. 2. The eigenvalues of the 2-chain model fora = 2, b = 1, c = 4 andd = 3.

that is located in the union of the following two intervals[
a + b

2
− �+,

a + b

2
− �−

]
∪

[
a + b

2
+ �−,

a + b

2
+ �+

]

with a possible mass point at� = a, where�± = 1
2

√
(b − a)2 + 4(c ± d)2.

3.1.3. Some numerical experiments
In this section, we will show some numerical results corresponding to the case of 2-Toeplitz matrix. To

check the validity of the analytic formulas we have computed numerically the eigenvalues of the matrix
(3.5) using MATLAB and compare them with the analytic values given, for the caseN = 2n + 1 by (3.6).
The corresponding analytic expressions for the eigenvectors can be obtained from (3.7). For the case
N = 2n we can use the bounds�2n+1,j < �2n,j < �2n+1,j+1, j = 1,2, . . . ,2n.
In Fig. 2 we show the eigenvalues of the 2-Toeplitz symmetricN × N matrix, N = 2n + 1 for

a = 2, b = 1, c = 4 andd = 3. We show the numerical eigenvalues (stars) and the analytical ones (open
circles) forn = 30 (left panel) andn = 500 (right panel). With this choice of parameters the density
functionn0 of the initial state, represented in Fig. 4 (left panel), has not anymass point at�=1 (see (3.8)),
i.e., it is an absolute continuous function supported on two disjoint intervals.
In Fig. 3 we show the eigenvalues of the 2-Toeplitz symmetricN × N matrix, N = 2n + 1 for

a = 2, b = 1, c = 3 andd = 4. We show the numerical eigenvalues (stars) and the analytical ones (open
circles) forn = 30 (left panel) andn = 500 (right panel). With this choice of the parameters the density
functionn0 of the initial state has a mass pointM = 7/16 at� = 1, i.e., it has an absolute continuous part
supported on two disjoint intervals, represented inFig. 4(right panel), plus a delta Dirac mass atx = 1.
Herewehave shownonly the case ofN=2n+1matrices forwhich always one has an isolate eigenvalue

�1 = a. For the case of matrices of orderN = 2n we have not this isolated eigenvalue. Also notice that
the spectrum ofH has two branches.

3.2. The 3-periodic chain model

Let now suppose that the sequences ofcoupling constants{an} and{bn} are periodic sequences with
period 3, i.e.,{an}= {a, b, c, a, b, c, . . .} and{bn}= {d, e, f, d, e, f, . . .}. Then the matrix (3.2) becomes
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Fig. 3. The eigenvalues of the 2-chain model fora = 1, b = 2, c = 3 andd = 4.

Fig. 4. The density functionn0(�) of the 2-chain model fora = 2, b = 1, c = 4 andd = 3 (left) anda = 1, b = 2, c = 4 andd = 3
(right).

H =




a d 0 0 0 0 0 · · ·
d b e 0 0 0 0 · · ·
0 e c f 0 0 0 · · ·
0 0 f a d 0 0 · · ·
0 0 0 d b e 0 · · ·
0 0 0 0 e c f · · ·
0 0 0 0 0 f a · · ·
...

...
...

...
...

...
...

. . .



.

3.2.1. The eigenvalues and eigenstates of the 3-periodic chain
Again we will suppose that the solutionu of the Schrödinger equation (1.1) can be written as (3.3),

thus (1.1) takes the form


a d 0 0 0 · · ·
d b e 0 0 · · ·
0 e c f 0 · · ·
0 0 f a d · · ·
...

...
...

...
...

. . .







C1
C2
C3
C4
...


 = �




C1
C2
C3
C4
...


 , (3.9)
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whereCk are the coefficients in the linear combination (3.3), and� is the corresponding eigenvalue of
the matrix HamiltonianH. In this case we use Theorem 2.2 which gives an explicit expression for the
eigenvalue problem in the case ofN = 3n + 2.
In this case, we havea1 = a, a2 = b, a3 = c, b1 = c1 = d, b2 = c2 = e, andb3 = c3 = f and then the

eigenvalues of (3.9) are the solutions�i,k, i = 1,2,3, k = 1,2, . . . , n, of the polynomial equations

x3 − (a + b + c)x2 + (ab + ac + bc − d2 − e2 − f 2)x

+ cd2 + ae2 + bf 2 − abc + 2def cos

(
k�

n + 1

)
= 0 (3.10)

and

�3n+1 = a + b −
√

(a − b)2 + 4d2

2
, �3n+2 = a + b +

√
(a − b)2 + 4d2

2
.

The corresponding eigenvectors are

v =




S0(�#)
S1(�#)

...

S3n+1(�#)


 , # ∈ {(i, k), 3n + 1,3n + 2 | i = 1,2,3, k = 1, . . . , n}, (3.11)

where

S3k(x) = (def )−k{Pk(�3(x)) + f 2(x − b)Pk−1(�3(x))},
S3k+1(x) = d−1(def )−k{(x − a)Pk(�3(x)) + d2f 2Pk−1(�3(x))},
S3k+2(x) = (de)−1(def )−k(x − 
1)(x − 
2)Pk(�3(x)), k = 0,1, . . . ,

being

Pn(x) = (def )nUn

(
x − d2 − e2 − f 2

2def

)

and

�3(x) = d2 + e2 + f 2 + (a − c)e2 + (b − c)f 2

− (d2 + e2 + f 2)(x − c) + (x − a)(x − b)(x − c). (3.12)

The particular casea = b = c andd = e = f gives�1,k = a + 2d cos
(

k�
3n+3

)
,

�2,k = a − 2d cos

(
(n + 1− k)�

3n + 3

)
, �3,k = a + 2d cos

(
(n + 1+ k)�

3n + 3

)
,

for k = 1,2, . . . , n, �3n+1 = a − d, �3n+2 = a + d, that is in agreement with[10].

3.2.2. The Green function and the local densityn0(�)
Using (2.13) the following expression for the Green function follows

G0(�) = 1

(� − a)(� − b) − d2

(
b − � + 1

2f 2

(
�3(�) −

√
�23(�) − (2def )2

))
,
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where�3(�) = �3(�) − d2 − e2 − f 2. To obtain the local densityn0(�), we use the distribution function
(3.13)

n0(�) = M1
(� − 
1) + M2
(� − 
2) +
√

(2def )2 − �23(�)

2f 2� |(� − a)(� − b) − d2| , (3.13)

where


1 = a + b +
√

(a − b)2 + 4d2

2
, 
2 = a + b −

√
(a − b)2 + 4d2

2
, (3.14)

which support is contained in the union of the three intervals defined by�−1
3 ([d2+ e2+f 2−2def , d2+

e2 + f 2 + 2def ]), where�3 is the polynomial defined in (3.12), and two possible mass pointsM1 and
M2 (see (2.14))

M1 = max{0, (f 2 − e2)
√

(a − b)2 + 4d2 + (a − b)(f 2 + e2)}
2
√

(a − b)2 + 4d2f 2
,

M2 = max{0, (f 2 − e2)
√

(a − b)2 + 4d2 − (a − b)(f 2 + e2)}
2
√

(a − b)2 + 4d2f 2
,

located at�=
1 and�=
2, respectively. Moreover, the following four situations are possible (see Section
2.2):

1. f �e anda�b. In this caseM1 = 0 iff a = b andf = e, andM2 = 0 iff f 2�e2 + |a−b|(f 2+e2)√
(a−b)2+4d2 .

2. f �e anda�b. ThenM1 = 0 iff f 2�e2 + |a−b|(f 2+e2)√
(a−b)2+4d2 , andM2 = 0 iff a = b andf = e.

3. f �e anda�b. ThenM1 = 0 iff f 2�e2 − |a−b|(f 2+e2)√
(a−b)2+4d2 . In this case alwaysM2 = 0.

4. f �e anda�b. With this choice alwaysM1 = 0, andM2 = 0 iff f 2�e2 − |a−b|(f 2+e2)√
(a−b)2+4d2 .

3.2.3. Some numerical experiments
In this section, we will present some numerical experiments related to the three periodic chain model.

As in the previous case we represent with stars∗ the values obtained by using the analytic expression
(3.10) and with circles◦ the values obtained numerically. The eigenvectors can be easily obtained using
(3.11).
In Fig. 5we show the eigenvalues of the three 3-Toeplitz symmetricN × N matrix,N = 3n + 2 with

a = 2, b = 1, c = 3, d = 4, e = 2 andf = 3 for n= 20 (left panel) and forn= 300 (right panel). InFig. 7
(left panel) we represent the absolute continuous part of the density functionn0 of the initial state. This
case corresponds to the situation 1 discussed above for which we have two mass points

M1 = 25+ √
65

90
, M2 = 25− √

65

90
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Fig. 5. The 3-chain model witha = 2, b = 1, c = 3, d = 4, e = 2 andf = 3.

Fig. 6. The 3-chain model fora = 3, b = 2, c = 1, d = 2, e = 3 andf = 2.

Fig. 7. The functionn0(�) of the 3-periodic chain model witha = 2, b = 1, c = 3, d = 4, e = 2 andf = 3 (left) and
a = 2, b = 1, c = 3, d = 4, e = 2 andf = 3 (right).

at 
1 = 3+√
65

2 and
2 = 3−√
65

2 , respectively (see (3.14)). In this casen0 is supported in three disjoint
intervals plus two isolated points at
1 and
2.
In Fig. 6 we show the eigenvalues of the 3-Toeplitz symmetricN × N matrix, N = 3n + 2 with

a = 3, b = 2, c = 1, d = 2, e = 3 andf = 2 for n= 20 (left panel) and forn= 300 (right panel). InFig. 7
(right panel) we represent the absolute continuous part of the density functionn0 of the initial state. This
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case corresponds to the situation 3 discussed above for whichM1 = 0 andM2 = 0, i.e., there is no mass
points, so the support ofn0 are three disjoint intervals.
Programs: For thenumerical simulationspresentedherewehaveused thecommercial programMATLAB .

The used source code can be obtained by request via e-mail toniurka@euler.us.es or ran@us.es
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